Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Visible Light-Promoted Radical Cyclization of Silicon-Tethered Alkyl Iodide and Phenyl Alkyne. An Efficient Approach to Synthesize Benzosilolines

Xinglong Lin^a, Zubao Gan^a, Ji Lu^a, Ji Lu^a, Zhishan Su^c, Changwei Hu^c, Yuebao Zhang^a, Yuebao Zhang^a, Ya Wu^a, Lu Gao^a* and Zhenlei Song^{a, b}*

^{*a}</sup> Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry,* West China School of Pharmacy, Sichuan University, Chengdu 610041, China. ^{*b*} State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ^{*c*} Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 China</sup>

E-mail: zhenleisong@scu.edu.cn

Supporting Information

Table of Contents

1. General Methods	
2. General Procedure and Spectral Data	
2.1. Synthesis of <i>1a-1t</i>	
2.2. Synthesis of 2a-2k and 3a-3h	
2.3. Mechanistic study	
2.4 Functionalization of 3a	
3. Computational Studies	
4. ¹ H and ¹³ C NMR Spectral Copies	

1. General Methods

Commercial reagents were used without any purification. Ru(bpy)₃Cl₂•6H₂O was purchased from J&K Scientific. All reactions were performed using common anhydrous, inert atmosphere techniques. Reactions were monitored by TLC which was performed on glass-backed silica plates and visualized using UV, KMnO₄ stains, H₃PO₄·12MoO₃/EtOH stains, H₂SO₄(conc.)/anisaldehyde/ EtOH stains. Column chromatography was performed using silica gel (200-300 mesh) eluting with EtOAc/petroleum ether. ¹H NMR spectra were recorded at 400 MHz (Varian) and 600 MHz (Agilent), and ¹³C NMR spectra were recorded at 100 MHz (Varian) and 150 MHz (Agilent) using CDCl₃ (except where noted) with TMS or residual solvent as standard. Infrared spectra were obtained using KCl plates on a VECTOR22. High-resolution mass spectral analyses performed on Waters Q-TOF. CH₃CN, DMSO, DMF, CH₂Cl₂, TMEDA and Et₃N were distilled from CaH₂. Et₂O and THF were distilled from sodium. All spectral data obtained for new compounds are reported here.

2. Experimental Procedures and Spectral Data of Products

2.1. General Procedure to Synthesize 1a-1t

To a solution of 1-bromo-2-iodobenzene (1.0 g, 3.53 mmol) in *i*-Pr₂NH (15 mL) was added CuI (27 mg, 0.14 mmol), Pd(PPh₃)₄ (87 mg, 0.07 mmol). The solution was degassed by three freeze-pump-thaw cycles followed by adding 1-pentyne (365 μ L, 3.71 mmol) dropwise. The resulting mixture was stirred at room temperature until the starting material was completely consumed (monitored by TLC analysis). The reaction mixture was filtered by Celite and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (eluent: petroleum ether) afforded 1-bromo-2-alkynylbenzene **S2** as a colorless liquid (787 mg, quantitative).

To a solution of S2 (787 mg, 3.53 mmol) in dry THF (10 mL) in a flame-dried flask under Ar

atmosphere was added *t*-BuLi (5.5 mL of 1.3 M solution in pentane, 7.15 mmol) dropwise at -78 °C. After stirring for 40 min, ClCH₂SiMe₂Cl (0.56 mL, 4.24mmol) was added dropwise. The reaction mixture was then stirred for 3h at -78 °C before quenched with sat. NH₄Cl (8 mL). The mixture was extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent: petroleum ether) afforded **S3** as a colorless liquid (798 mg, 90% yield).

To a solution of **S3** (798 mg, 3.18 mmol) in dry acetone (8 mL) was added dry NaI (1.43 g, 9.54 mmol). The reaction mixture was refluxed at 85°C overnight. The reaction allowed to cool to room temperature before quenching with saturated solution of Na₂S₂O₃ (10 mL). The aqueous layer was extracted with Et₂O (3×5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography afforded (eluent: petroleum ether) afforded **1a** as a colorless liquid (1.08 g, quantitative).

Preparation of 1a

1a: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.42 (d, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.31 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.26 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 2.43 (s, 2H), 2.41 (t, J = 7.2 Hz, 2H), 1.65 (tq, $J_I = 7.2$ Hz, $J_2 = 7.2$ Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H), 0.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 134.2, 132.6, 129.3, 129.2, 126.9, 93.7, 81.9, 22.1, 21.6, 13.8, -2.6, -13.2; IR (neat) cm⁻¹ 2962s, 2934m, 2901m, 2873m, 2196w, 1462m, 1430m, 1374m, 1251s, 1126m, 1076m, 819s; HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₉INaSi (M+Na)⁺: 365.0193, found 365.0197.

Preparation of 1b

1b: Using the same procedure as that used for **1a** afforded **1b** as a colorless liquid (238 mg, 62% overall yield from **S2-1b**). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.41 (d, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.31 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.26 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 2.41 (s, 2H), 2.07 (s, 3H), 0.50 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 138.5, 134.3, 132.3, 129.3, 129.2, 126.9, 89.3, 81.1, 4.4, -2.6, -13.3; IR (neat) cm⁻¹ 3050w, 2958w, 2910w, 1583w, 1431w, 1373w, 1251m, 1127w, 1078w, 819m, 797m, 721m; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₆ISi (M+H)⁺: 315.0060, found 315.0054.

Preparation of 1c

1c: Using the same procedure as that used for 1a afforded 1c as a colorless liquid (365 mg, 50% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.41 (d, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.30 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.25 (dt, $J_I = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 2.43 (s, 2H), 2.40-2.44 (m, 2H), 1.58-1.63 (m, 2H), 1.43-1.46 (m, 2H), 1.28-1.31 (m, 8H), 0.89 (t, J = 7.2 Hz, 3H), 0.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 134.2, 132.6, 129.4, 129.3, 126.9, 93.9, 81.8, 31.8, 29.2, 29.2, 28.6, 22.6, 19.6, 14.1, -2.6, -13.2; IR (neat) cm⁻¹ 2956s, 2928s, 2855s, 1462m, 1430m, 1372m, 1254s, 1093s, 1064s, 838s, 803s, 759m; HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₉INaSi (M+Na)⁺: 435.0975, found 435.0994.

Preparation of 1d

1d: Using the same procedure as that used for 1a afforded 1d as a colorless liquid (163 mg, 59% overall yield from S2-1d). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.50 (m, 2H), 7.29-7.36 (m, 2H), 4.88 (t, *J* = 3.2 Hz, 1H), 4.54 (d, *J* = 16.0 Hz, 1H), 4.47 (d, *J* = 16.0 Hz, 1H), 3.86-3.92 (m, 1H), 3.56-3,59 (m, 1H), 2.44 (s, 2H), 1.70-1.87 (m, 2H), 1.55-1.69 (m, 4H), 0.52 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 139.1, 134.4, 132.8, 129.4, 127.8, 127.7, 97.0, 96.9, 88.5, 86.9, 62.1, 54.7, 30.3,

25.4, 19.1, 1.0, -2.6, -13.5; IR (neat) cm⁻¹ 2958s, 2872s, 2222m, 2184m, 1715m, 1660m, 1460s, 1437s, 1348m, 1257s, 1180m, 1125s, 1026s, 870s, 762s; HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{23}NaO_2Si (M+Na)^+$: 437.0404, found 437.0405.

Preparation of 1e

1e: Using the same procedure as that used for **1a** afforded **1e** as a colorless liquid (183 mg, 64% overall yield from **S2-1e**). ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 7.2 Hz, 1H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 4.55 (s, 2H), 2.43 (s, 2H), 0.94 (s, 9H), 0.52 (s, 6H), 0.17 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 139.0, 134.4, 132.6, 129.3, 128.0, 127.6, 91.0, 85.8, 52.2, 25.8, 18.3, -2.5, -5.1, -13.4; IR (neat) cm⁻¹ 2955s, 2932s, 2892s, 2857s, 2221m, 2185m, 1692m, 1661m, 1466m, 1369m, 1255m, 1084m, 837m, 764m; HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₉INaOSi₂ (M+Na)⁺: 467.0694, found 467.0690.

<u>Preparation of 1f</u>

1f: Using the same procedure as that used for **1a** afforded **1f** as a colorless liquid (162 mg, 43% overall yield from **S2-1f**). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.48 (m, 2H), 7.26-7.34 (m, 2H), 3.52 (s, 2H), 2.57 (brs, 2H), 2.42 (s, 2H), 1.62-1.67 (m, 4H), 1.42-1.48 (m, 2H), 0.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 134.3, 133.1, 129.4, 128.4, 127.4, 88.7, 86.1, 53.5, 48.6, 25.9, 23.9, -2.6, -13.3; IR (neat) cm⁻¹ 2934s, 2854s, 2753s, 2679m, 1461m, 1431m, 1338m, 1252m, 1110m, 1075m, 999m, 835s, 819s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₅INSi (M+H)⁺: 398.0795, found 398.0800.

Preparation of 1g

1g: Using the same procedure as that used for **1a** afforded **1g** as a colorless liquid (185 mg, 61% overall yield from **S2-1g**). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.2 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.2 Hz, 1H), 3.85 (t, *J* = 7.2 Hz, 2H), 2.66 (q, *J* = 7.2 Hz, 2H), 2.43 (s, 2H), 0.93 (s, 9H), 0.52 (s, 6H), 0.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 134.3, 132.5, 129.3, 128.9, 127.0, 90.5, 82.9, 61.7, 25.9, 24.0, 18.3, -2.6, -5.2, -13.3; IR (neat) cm⁻¹ 2954s, 2931s, 2895s, 2858s, 1466m, 1432m, 1383m, 1254s, 1106s, 838s, 763s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₁INaOSi₂ (M+Na)⁺: 481.0850, found 481.0856.

Preparation of 1h

1h: Using the same procedure as that used for **1a** afforded **1h** as a colorless liquid (262 mg, 83% overall yield from **S2-1h**). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.2 Hz, 1H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 4.77 (q, *J* = 6.4 Hz, 1H), 2.45 (s, 2H), 1.53 (d, *J* = 6.4 Hz, 3H), 0.95 (s, 9H), 0.53 (s, 6H), 0.18 (s, 3H), 0.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 134.3, 132.6, 129.3, 128.1, 127.5, 94.9, 84.3, 59.4, 25.8, 25.3, 18.2, -2.6, -4.5, -4.9, -13.4; IR (neat) cm⁻¹ 2955s, 2931s, 2890s, 2857s, 1465m, 1435m, 1368m, 1253s, 1101s, 1053m, 976s, 833s, 759m; HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₁IKOSi₂ (M+K)⁺: 497.0590, found 497.0594.

Preparation of 1i

1i: Using the same procedure as that used for **1a** afforded **1i** as a colorless liquid (227 mg, 71% overall yield from **S2-1i**). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.41 (d, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.30 (dt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.24 (dt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 2.46 (s, 2H), 1.34 (s, 9H), 0.52 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 138.2, 134.2, 132.7, 129.3, 129.2, 126.9, 101.5, 80.6, 30.8, 28.1, -2.7, -13.1; IR (neat) cm⁻¹ 2967s, 2901m, 2867m, 1461m, 1431m, 1367m, 1287m, 1251m, 1126m, 1070m, 817s, 759s; HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₁INaSi (M+Na)⁺: 379.0349, found 379.0356.

Preparation of 1j

1j: Using the same procedure as that used for **1a** afforded **1j** as a colorless liquid (776 mg, 60% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 7.2 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 2.46 (s, 2H), 0.52 (s, 6H), 0.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 134.3, 132.9, 129.3, 128.2, 127.8, 106.3, 97.7, -0.2, -2.8, -13.5; IR (neat) cm⁻¹ 2959s, 2899m, 2155s, 1461m, 1428m, 1253s, 1125m, 1092m, 1067s, 865s, 803s, 760s; HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₁INaSi₂ (M+Na)⁺: 395.0119, found 395.0117.

Preparation of 1k

1k: Using the same procedure as that used for **1a** afforded **1k** as a colorless liquid (400 mg, 55% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.2 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 2.02 (s, 2H), 1.06 (t, *J* = 7.6 Hz, 9H), 0.71 (t, *J* = 7.6 Hz, 6H), 0.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 134.3, 133.6, 129.3, 128.4, 127.7, 107.3, 95.6, 7.5, 4.3, -2.7, -13.4; IR (neat) cm⁻¹ 2956s, 2909m, 2877m,

2151m, 1461m, 1416m, 1373m, 1256s, 1094s, 1065s, 838s, 803s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₈ISi₂ (M+H)⁺: 415.0769, found 415.0764.

Preparation of 11

11: Using the same procedure as that used for **1a** afforded **11** as a colorless liquid (1.22 g, 92% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.58 (m, 4H), 7.32-7.40 (m, 5H), 2.50 (s, 2H), 0.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 134.4, 132.6, 131.3, 129.5, 128.5, 128.4, 128.3, 127.6, 122.9, 92.5, 90.6, -2.5, -13.4; IR (neat) cm⁻¹ 3053m, 2958m, 1597m, 1492m, 1436m, 1254s, 1124m, 1070m, 816s, 757s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₇INaSi (M+Na)⁺: 399.0036, found 399.0036.

Preparation of 1m

1m: Using the same procedure as that used for **1a** afforded **1m** as a colorless liquid (315 mg, 67% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.56 (m, 4H), 7.31-7.40 (m, 3H), 7.07 (t, *J* = 8.4 Hz, 2H), 2.47 (s, 2H), 0.57 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 162.6 (d, *J* = 248.8 Hz), 138.8, 134.5, 133.2 (d, *J* = 8.2 Hz), 132.6, 129.5, 128.2, 127.7, 119.1(d, *J* = 3.5 Hz), 115.9 (d, *J* = 21.9 Hz), 91.5, 90.3, -2.5, -13.5; IR (neat) cm⁻¹ 3052m, 2959m, 1597s, 1507s, 1465m, 1431m, 1252s, 1130s, 1155m, 1124m, 833s, 759s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₆FIKSi (M+K)⁺: 432.9682, found 432.9681.

Preparation of 1n

1n: Using the same procedure as that used for **1a** afforded **1n** as a colorless liquid (468 mg, 84% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.54 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.39 (dt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.33 (dt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 2.51 (s, 2H), 2.38 (s, 3H), 0.59 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.69, 138.68, 134.4, 132.5, 131.2, 129.5, 129.3, 128.6, 127.4, 119.9, 92.7, 90.0, 21.5, -2.6, -13.3; IR (neat) cm⁻¹ 3050m, 2958m, 2922m, 1581m, 1510s, 1460m, 1431m, 1253s, 1123s, 817s, 759s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₉IKSi (M+K)⁺: 428.9932, found 428.9925.

Preparation of 10

10: Using the same procedure as that used for **1a** afforded **1o** as a colorless liquid (487 mg, 73% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 1H), 7.70 (dt, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.67 (dd, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.55 (dd, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.40 (dt, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.36 (dt, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.36 (dt, *J*₁ = 1.6 Hz, *J*₂ = 7.2 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 2.52 (s, 2H), 0.59 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 143.2, 139.5, 136.2, 134.4, 133.2, 129.4, 128.2, 127.2, 126.8, 122.8, 91.6, 90.2, -2.5, -13.4; IR (neat) cm⁻¹ 3000m, 2217m, 1582m, 1562m, 1467m, 1429m, 1253m, 1126m, 760m; HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆INNaSi (M+Na)⁺: 399.9989, found 399.9993.

Preparation of 1p

1p: Using the same procedure as that used for **1a** afforded **1d** as a colorless liquid (140 mg, 21% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.57 (dd, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.81 (td, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.55 (dd, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.40 (dt, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.36 (dt, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.40 (dt, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.36 (dt, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.40 (dt, $J_1 = 1.6$ Hz, $J_2 = 7.2$ Hz

7.2 Hz, 1H), 7.31 (dd, J_1 = 4.8 Hz, J_2 = 7.2 Hz, 1H), 2.45 (s, 2H), 0.57 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 148.7, 139.1, 138.2, 134.5, 132.8, 129.5, 128.1, 127.5, 123.2, 120.2, 93.9, 88.9, -2.5, -13.8; IR (neat) cm⁻¹ 3050s, 2959s, 2215m, 1581m, 1560m, 1479s, 1407m, 1254s, 1125m, 1071m, 804m; HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆INNaSi (M+Na)⁺: 399.9989, found 399.9990.

Preparation of 1q

1q: Using the same procedure as that used for **1a** afforded **1q** as a colorless liquid (320 mg, 82% overall yield from 2-bromo-4-fluoro-1-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, $J_I = 5.6$ Hz, $J_2 = 8.4$ Hz, 1H), 7.50-7.52 (m, 2H), 7.37-7.38 (m, 3H), 7.21 (dd, $J_I = 2.4$ Hz, $J_2 = 8.4$ Hz, 1H), 7. 06 (dt, $J_I = 2.4$ Hz, $J_2 = 8.4$ Hz, 1H), 2.47 (s, 2H), 0.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 250.9 Hz), 142.2 (d, J = 4.7 Hz), 134.7 (d, J = 7.1 Hz), 131.5, 131.2, 128.54, 128.53, 128.3, 121.3 (d, J = 19.8 Hz), 116.6 (d, J = 22.1 Hz), 92.1, 89.7, -2.7, -14.3; IR (neat) cm⁻¹ 3059m, 2959m, 2215m, 1714m, 1587m, 1566m, 1493s, 1465s, 1256s, 1207s, 906m, 832s, 804s, 756s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₆FIKSi (M+K)⁺: 432.9682, found 432.9681.

Preparation of 1r

1r: Using the same procedure as that used for **1a** afforded **1r** as a colorless liquid (80 mg, 20% overall yield 4-bromo-3-iodoanisole). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.54 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.37-7.41 (m, 3H), 7.12 (d, *J* = 2.8 Hz, 1H), 6.90 (dd, *J*₁ = 2.8 Hz, *J*₂ = 8.0 Hz, 1H), 3.84 (s, 3H), 2.46 (s, 2H), 0.55 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 135.9, 131.4, 129.9, 129.7, 128.54, 128.53, 122.9, 117.7, 114.3, 92.2, 90.5, 55.2, 1.0, -2.4, -12.9; IR (neat) cm⁻¹ 2958s,

2933s, 1588s, 1553m, 1491m, 1466s, 1404m, 1317m, 1254s, 1223s, 1072s, 1031m, 816s, 756s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₉IKOSi (M+K)⁺: 444.9881, found 444.9875.

Preparation of 1s

1s: Using the same procedure as that used for **1a** afforded **1d** as a colorless liquid (195 mg, 47% overall yield from 5-bromo-4-iodo-methylenedioxybenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.50 (m, 2H), 7.32-7.39 (m, 3H), 7.05 (s, 1H), 6.96 (s, 1H), 5.99 (s, 2H), 2.51 (s, 2H), 0.55 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.6, 133.1, 131.1, 128.5, 128.3, 123.1, 122.3, 113.9, 113.0, 91.2, 90.6, -2.4, -13.3; IR (neat) cm⁻¹ 2958m, 2897s, 1596s, 1497s, 1474s, 1384m, 1338s, 1232s, 1041s, 935s, 838s, 811s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₈IO₂Si (M+H)⁺: 421.0115, found 421.0118.

Preparation of 1t

1t: Using the same procedure as that used for **1a** afforded **1t** as a colorless liquid (288 mg, 71% overall yield from 1-bromo-2-iodobenzene). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J= 7.2 Hz, 1H), 7.40 (d, J= 7.2 Hz, 1H), 7.29 (t, J= 7.2 Hz, 1H), 7.24 (t, J= 7.2 Hz, 1H), 2.41 (s, 2H), 1.45-1.54 (m, 1H), 0.84-0.92 (m, 2H), 0.80-0.83 (m, 2H), 0.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 134.2, 132.5, 129.4, 129.1, 126.8, 112.5, 96.6, 8.2, 0.3, -2.7, -13.2; IR (neat) cm⁻¹ 3008w, 2958w, 2221w, 1462w, 1430w, 1250m, 1127w, 837m, 816m, 758m; HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₇IKSi (M+K)⁺: 378.9776, found 378.9774.

2.2. General Procedure to Synthesize 2 and 3

A flame dried 10 mL borosilicate reaction tube was equipped with a rubber septum and magnetic stir bar and was charged with **1a** (34.2 mg, 0.10 mmol), Ru(bpy)₃Cl₂•6H₂O (1.5 mg, 2.0

 μ mol), TMEDA (30 μ L, 0.20 mmol), DMSO (71 μ L, 1.0 mmol) and MeCN (2.0 mL). The mixture was degassed via the freeze-pump-thaw method and PhSiH₃ (62 μ L, 0.5 mmol) was added via syringe. The reaction mixture was then placed at a distance of ~5 cm from 23 W household compact fluorescent lamp (Philips Tornado 23W CFL) and stirred at room temperature overnight. Upon the reaction was complete (monitored by TLC analysis), the mixture was quenched with water (2.0 mL) and extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude residue via silica gel flash column chromatography (eluent: petroleum ether) afforded **2a** as a colorless liquid (17.2 mg, *Z*:*E* ≥ 95:5).

The same procedure as that used for 2a was employed to synthesize 2b-2k. The same procedure as that used for 2a except for without DMSO was employed to synthesize 3a-3h. Gradient eluent: petroleum ether: $EtOAc = 5:1 \rightarrow 2:1$ for 3d and 3e; petroleum ether: EtOAc = 400:1 for 2d; petroleum ether: $EtOAc = 100:1 \rightarrow 10:1$ for 2f.

Preparation of 2a

2a: ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 6.13 (tt, $J_1 = 7.2$ Hz, $J_2 = 2.4$ Hz, 1H), 2.23 (q, J = 7.2 Hz, 2H), 1.71 (s, 2H), 1.49 (tq, $J_1 = 7.2$ Hz, $J_2 = 7.2$ Hz, 2H), 0.96 (t, J = 7.2 Hz, 3H), 0.30 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 150.6, 140.7, 139.7, 132.1, 129.5, 126.6, 124.3, 121.0, 31.7, 22.7, 16.2, 14.0, -1.8; IR (neat) cm⁻¹ 3053m, 2960s, 2930s, 2871s, 1678m, 1585m, 1460m, 1440m, 1251s, 1131s, 1030m, 844s, 759s; HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₀NaSi (M+Na)⁺: 239.1226, found 239.1222.

Preparation of 2b

2b: Using the same procedure as that used for **2a** afforded **2b** as a colorless liquid (19 mg, 68% yield, Z:E = 90:10). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 6.23 (m, 1H, *Z-isomer*), 5.73 (m, 1H, *E-isomer*), 1.98 (s, 2H, *E-isomer*), 1.97 (d, J = 6.8 Hz, 2H, *E-isomer*), 1.87 (d, J = 6.8 Hz, 2H, *Z-isomer*), 1.72 (s, 2H, *Z-isomer*), 0.33 (s, 6H, *Z-isomer*), 0.31 (s, 6H, *E-isomer*); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 140.6, 140.5, 132.1, 129.5, 126.5, 120.9, 118.3, 15.8, 15.0, -1.7; IR (neat) cm⁻¹ 3054m, 2961s, 2867s, 1679s, 1586w, 1560w, 1442m, 1251s, 1133s, 1065m, 845s, 827s, 760s; HRMS (ESI-TOF, m/z) calcd for C₁₂H₁₆NaSi (M+Na)⁺: 211.0913, found 211.0914.

Preparation of 2c

2c: Using the same procedure as that used for **2a** afforded **2c** as a colorless liquid (32 mg, 55% yield, Z:E = 86:14). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 6.12 (t, J = 7.2 Hz, 1H, Z-isomer), 5.58 (t, J = 7.2Hz, 1H, E-isomer), 2.35-2.40 (m, 2H, *E*-isomer), 2.23-2.27 (m, 2H, *Z*-isomer), 1.87 (s, 2H, *E*-isomer), 1.70 (s, 2H, *Z*-isomer), 1.46-1.47 (m, 2H), 1.28-1.36 (m, 10H), 0.88 (t, J = 7.2Hz, 3H), 0.30 (s, 6H, *Z*-isomer), 0.28 (s, 6H, *E*-isomer); *Z*-isomer ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 140.6, 139.5, 132.1, 129.5, 126.6, 124.6, 121.0, 31.9, 29.6, 29.5, 29.4, 29.3, 22.7, 16.2, 14.1, -1.8, -2.8; IR (neat) cm⁻¹ 3053m, 2955s, 2925s, 2855s, 1680s, 1560m, 1461s, 1441s, 1251s, 1131s, 1062m, 843s, 765s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₀KSi (M+K)⁺: 325.1748, found 325.1760.

Preparation of 2d

2d: Using the same procedure as that used for **2a** afforded **2d** as a colorless liquid (19 mg, 65% yield, Z:E = 83:17) as colorless liquid. *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 6.24-6.28 (m, 1H),

4.70 (dd, J_1 = 4.0 Hz, J_2 = 3.2 Hz, 1H), 4.49 (dd, J_1 = 6.4 Hz, J_2 = 12.4 Hz, 1H), 4.33 (dd, J_1 = 6.4 Hz, J_2 = 3.2 Hz, 1H), 3.92-3.96 (m, 1H), 3.51-3.55 (m, 1H), 1.82-1.89 (m, 1H), 1.78 (s, 2H), 1.72-1.77 (m, 1H), 1.55-1.65 (m, 4H), 0.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 143.2, 141.2, 132.1, 129.6, 127.4, 121.7, 119.7, 97.9, 65.1, 62.4, 30.8, 25.5, 19.6, 16.4, -1.7, -1.8; IR (neat) cm⁻¹ 3442brm, 3053m, 2947s, 2871s, 1727m, 1680m, 1441m, 1354m, 1253m, 1133m, 1028m, 828m; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₄NaO₂Si (M+Na)⁺: 311.1438, found 311.1441.

Preparation of 2e

2e: Using the same procedure as that used for **2a** afforded **2e** as a colorless liquid (22 mg, 71% yield, Z:E = 80:20). *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.24 (t, J = 7.2 Hz, 1H), 6.20-6.23 (m, 1H), 4.46 (d, J = 6.4 Hz, 2H), 1.69 (s, 2H), 0.93 (s, 9H), 0.31 (s, 6H), 0.11 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 140.9, 140.2, 132.1, 129.6, 127.2, 123.6, 121.6, 61.9, 26.0, 18.4, 16.3, -1.8, -5.0; IR (neat) cm⁻¹ 2955s, 2927s, 2855s, 1734m, 1650m, 1464m, 1254s, 1086s, 837s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₃₀NaOSi₂ (M+Na)⁺: 341.1727, found 341.1728.

Preparation of 2f

2f: Using the same procedure as that used for **2a** afforded **2f** as a colorless liquid (41mg, 76% yield, Z:E = 90:10) as colorless liquid. *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.23 (t, J = 7.2 Hz, 1H), 6.24 (tt, $J_1 = 2.0$ Hz, $J_2 = 6.8$ Hz, 1H), 3.22 (d, J = 6.8 Hz, 2H), 2.47 (brs, 4H), 1.73 (s, 2H), 1.59-1.64 (m, 4H), 1.45-1.64 (m, 2H), 0.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 142.2, 140.8, 132.0, 129.6, 127.0, 121.5, 120.6, 58.3, 54.6, 25.9, 24.3, 16.7 -1.8; IR (neat) cm⁻¹ 2933s, 2854s, 2795s, 1465m, 1250m, 1130m,

963m, 845s, 814s, 757s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₆NSi (M+H)⁺: 272.1829, found 272.1823.

Preparation of 2g

2g: Using the same procedure as that used for **2a** afforded **2g** as a colorless liquid (25 mg, 74% yield, Z:E = 94:6). *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 6.11-6.15 (m, 1H), 3.73 (t, J = 7.2 Hz, 2H), 2.51 (q, J = 7.2 Hz, 2H), 1.73 (s, 2H), 0.92 (s, 9H), 0.31 (s, 6H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 141.4, 140.8, 132.1, 129.5, 126.7, 121.1, 120.1, 62.8, 33.5, 26.0, 18.4, 16.2, -1.8, -5.2; IR (neat) cm⁻¹ 2954s, 2897s, 2857s, 1466m, 1444m, 1252s, 1095s, 837s, 773s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₂NaOSi₂ (M+Na)⁺: 355.1884, found 355.1881.

Preparation of 2h

2h: Using the same procedure as that used for **2a** afforded **2h** as a colorless liquid (23 mg, 70% yield, *Z*:*E* = 88:12) as a colorless liquid. *Z-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 6.08 (d, *J* = 8.0 Hz, 1H), 4.75 (qd, *J*₁ = 6.4 Hz, *J*₂ = 8.0 Hz, 1H), 1.74 (dd, *J*₁ = 1.6 Hz, *J*₂ = 16.4 Hz, 1H), 1.66 (dd, *J*₁ = 1.6 Hz, *J*₂ = 16.4 Hz, 1H), 1.28 (d, *J* = 6.4 Hz, 3H), 0.89 (s, 9H), 0.31 (s, 3H), 0.30 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 140.8, 137.6, 132.1, 129.7, 129.2, 127.1, 121.6, 67.6, 25.9, 24.3, 18.3, 16.5, -1.8, -2.0, -4.4, -4.7; IR (neat) cm⁻¹ 2957s, 2929s, 2892s, 2857s, 1466m, 1443m, 1252s, 1079s, 1003s, 834s, 766s; HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₂NaOSi₂ (M+Na)⁺: 355.1884, found 355.1879.

Preparation of 2i

2i: Using the same procedure as that used for **2a** afforded **2i** as a colorless liquid (18.8 mg, 82% yield, $Z:E \ge 95:5$) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 6.12 (s, 1H), 1.88 (s, 2H), 1.23 (s, 9H), 0.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 138.2, 134.8, 132.0, 129.5, 126.5, 121.3, 111.3, 32.7, 30.7, 18.0, -2.1; IR (neat) cm⁻¹ 3056w, 2958s, 2903m, 2867m, 1683m, 1540w, 1458m, 1443m, 1361m, 1252s, 1131s, 1017m, 842s, 810s, 759s; HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₃Si (M+H)⁺: 231.1564, found 231.1561.

Preparation of 2j

2j: Using the same procedure as that used for 2a afforded 2j as a colorless liquid (33 mg, 67%, Z:E = 91:9). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 6.13 (s, 1H, *Z-isomer*), 5.64 (s, 1H, *E-isomer*), 2.14 (s, 2H, *E-isomer*), 1.90 (s, 2H, *Z-isomer*), 0.30 (s, 6H), 0.20 (s, 9H); *Z-isomer* ¹³C NMR (150 MHz, CDCl₃) δ 156.7, 151.1, 140.8, 132.0, 129.6, 127.6, 122.0, 121.5, 21.9, -0.1, -2.2; IR (neat) cm⁻¹ 3057m, 2955s, 2923m, 1681m, 1589m, 1558m, 1536m, 1415m, 1250s, 1131m, 1040s, 841brs, 761s; HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₃Si₂ (M+H)⁺: 247.1333, found 247.1338.

Preparation of 2k

2k: Using the same procedure as that used for **2a** afforded **2k** as a colorless liquid (40 mg, 70% yield, $Z:E = \ge 95:5$). ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, J = 7.2 Hz, 1H), 7.53 (d, J = 7.2 Hz,

1H), 7.36 (t, J = 7.2 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 6.06 (s, 1H), 1.90 (s, 2H), 0.99 (t, J = 7.8 Hz, 9H), 0.71 (q, J = 7.8 Hz, 6H), 0.31 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 157.5, 151.4, 140.7, 132.0, 129.6, 127.5, 122.2, 118.1, 22.6, 7.7, 4.5, -2.2; IR (neat) cm⁻¹ 3057m, 2954s, 2909s, 2876s, 1681w, 1594m, 1578m, 1460m, 1443m, 1415m, 1250s, 1130s, 1011s, 837brs, 796s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₈NaSi₂ (M+Na)⁺: 311.1622, found 311.1626.

Preparation of 3a

3a: Using the same procedure as that used for **2a** except for without DMSO afforded **3a** as a colorless liquid (106 mg, 85% yield, *E:Z* = 80:20). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.2 Hz, 1H), 7.14-7.26 (m, 7H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.63 (s, 1H), 2.02 (s, 1H), 0.36 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 148.2, 144.0, 141.7, 138.8, 132.0, 128.6, 128.2, 128.1, 127.0, 126.6, 126.2, 123.9, 27.9, -2.7; *Z-isomer* ⁻¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.37-7.44 (m, 4H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.09 (s, 1H), 2.13 (s, 2H), 0.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 142.3, 140.7, 138.8, 132.2, 129.8, 129.2, 128.2, 127.4, 126.3, 123.5, 121.8, 19.9, -1.9; IR (neat) cm⁻¹ 3054s, 2955s, 1593m, 1492m, 1442m, 1249s, 1133s, 843s, 818s, 762s, 695m; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₈NaSi (M+Na)⁺: 273.1070, found 273.1059.

Preparation of 3b

3b: Using the same procedure as that used for **3a** afforded **3b** as a colorless liquid (33 mg, 82%, *E:Z* = 80:20). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.16-7.23 (m, 4H), 7.05 (t, *J* = 7.2 Hz, 1H), 6.93 (t, *J* = 8.4 Hz, 2H), 6.58 (s, 1H), 2.02 (s, 2H), 0.37 (s, 6H); ¹³C NMR

(100 MHz, CDCl₃) δ 161.4 (d, J = 243.6 Hz), 148.0, 144.1, 142.0, 132.2, 130.2, 130.1, 128.3 (d, J = 3.4 Hz), 127.1, 126.5, 122.7, 115.1 (d, J = 21 Hz), 27.9, -2.7; IR (neat) cm⁻¹ 3050m, 2955m, 2926m, 1596m, 1504s, 1250s, 1224s, 1127s, 869s, 843s, 768s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₇FKSi (M+K)⁺: 307.0715, found 307.0713.

Preparation of 3c

3c: Using the same procedure as that used for **3a** afforded **3c** as a colorless liquid (31 mg, 77%, *E:Z* = 75:25). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.03-7.06 (m, 3H), 6.06 (s, 1H), 2.33 (s, 3H), 2.02 (s, 2H), 0.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 144.0, 141.0, 135.83, 135.81, 132.0, 128.9, 128.5, 128.2, 126.9, 126.6, 123.9, 27.9, 21.2, -2.7; IR (neat) cm⁻¹ 2953m, 2923m, 2859m, 1509m, 1442m, 1249s, 1126s, 867s, 841s, 770s, 724s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₀KSi (M+K)⁺: 303.0966, found 303.0962.

Preparation of 3d and 3d'

3d: Using the same procedure as that used for **3a** afforded **3d** as a pale yellow liquid (26 mg, 34%, $E:Z \ge 95:5$) and **3d'** as a pale yellow liquid (27.2 mg, 31% yield). **3d**: ¹H NMR (400 MHz, CDCl₃) δ 8.58 (brs, 1H), 7.70 (t, J = 7.2 Hz, 1H), 7.61(d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.26-7.33 (m, 3H), 7.13-7.16 (m, 1H), 6.53 (s, 1H), 2.28 (s, 1H), 0.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 151.4, 149.1, 146.4, 138.2, 136.5, 134.6, 128.9, 128.4, 126.7, 126.4, 123.9, 121.5, 20.9, 1.7; IR (neat) cm⁻¹ 2923m, 1636m, 1588m, 1469m, 1431m, 1399m, 1250m, 1129s, 1093s, 906s, 821m, 769s, 737s; HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₈NSi (M+H)⁺: 252.1203, found 252.1212. **3d':**

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 4.0 Hz, 1H), 7.65 (dt, $J_I = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.52 (dd, $J_I = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.30 (dt, $J_I = 1.6$ Hz, $J_2 = 7.2$ Hz, 1H), 7.23-7.26 (m, 2H), 7.14-7.16 (m, 2H), 5.13 (s, 1H), 4.80 (s, 1H), 3.91 (s, 2H), 0.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 149.9, 149.3, 148.8, 138.7, 137.2, 134.4, 128.6, 127.1, 126.3, 124.5, 121.8, 117.2, 45.3, 2.2; IR (neat) cm⁻¹ 2957s, 2854s, 1473m, 1433s, 1252s, 1133brs, 897s, 828s, 780s, 741s; HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₉NNaOSi (M+Na)⁺: 292.1128, found 292.1132.

Preparation of 3e

3e: Using the same procedure as that used for **3a** afforded **3e** as a pale yellow liquid (34 mg, 67%, E:Z = 77:23). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.40 (d, J = 3.6 Hz, 1H), 7.55(t, J = 7.2 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.13-7.15 (m, 2H), 7.05 (t, J = 7.2 Hz, 1H), 6.53 (s, 1H), 2.05 (s, 2H), 0.37 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 147.5, 147.2, 144.6, 144.2, 135.8, 134.6, 132.4, 128.5, 127.5, 126.3, 123.0, 119.5, 28.4, -2.8; IR (neat) cm⁻¹ 3050m, 2926m, 1680m, 1583m, 1475m, 1424m, 1251s, 1128m, 1029m, 892m, 777m, 754m; HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₈NSi (M+H)⁺: 252.1203, found 252.1208.

Preparation of 3f

3f: Using the same procedure as that used for **3a** afforded **3f** as a colorless liquid (49 mg, 91%, *E:Z* = 77:23). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.28 (m, 4H), 7.15-7.20 (m, 3H), 6.72 (dt, *J*₁ = 2.8 Hz, *J*₂ = 8.0 Hz, 1H), 6.60 (s, 1H), 2.05 (s, 2H), 0.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J* = 248.5 Hz), 146.9 (d, *J* = 4.8 Hz), 143.9 (d, *J* = 2.7 Hz), s140.5, 138.7, 128.6, 128.3, 128.2 (d, *J* = 7.2 Hz), 126.3, 123.6, 117.8 (d, *J* = 19.2 Hz), 115.6 (d, *J* = 22.5 Hz), 28.0, -2.8; IR

(neat) cm⁻¹ 3021m, 2955m, 2926m, 1597m, 1567m, 1455s, 1256, 1207s, 1124m, 903m, 841s, 821s, 798s, 755s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₇FKSi (M+K)⁺: 307.0715, found 307.0717.

Preparation of 3g

3g: Using the same procedure as that used for **3a** afforded **3g** as a colorless liquid (25 mg, 90%, *E:Z* = 80:20). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 1H), 7.24-7.27 (m, 4H), 7.15-7.18 (m, 1H), 6.75 (dd, *J*₁ = 2.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.69 (s, *J* = 2.0 Hz, 1H), 6.66 (s, 1H), 3.39 (s, 3H), 2.02 (s, 2H), 0.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 150.0, 141.8, 138.9, 135.0, 132.9, 128.8, 128.2, 126.3, 124.2, 115.4, 110.6, 54.6, 27.7, -2.4; IR (neat) cm⁻¹ 2954s, 2924s, 2854s, 1590s, 1555s, 1465s, 1291m, 1232s, 1131m, 845s, 795s, 754s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₁OSi (M+H)⁺: 281.1356, found 281.1356.

Preparation of 3h

3h: Using the same procedure as that used for **3a** afforded **3h** as a colorless liquid (34 mg, 58%, *E:Z* = 80:20). *E-isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.25 (m, 4H), 7.16-7.18 (m, 1H), 6.92 (s, 1H), 6.64 (s, 1H), 6.53 (s, 1H), 5.86 (s, 2H), 2.00 (s, 2H), 0.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 147.3, 143.0, 141.0, 138.7, 137.7, 128.6, 128.3, 126.2, 122.6, 110.3, 107.4, 100.8, 28.2, -2.5; IR (neat) cm⁻¹ 2954s, 2926s, 2894s, 1596m, 1499s, 1467s, 1346m, 1467s, 1346m, 1313m, 1246s, 1123s, 1040s, 941s, 845s, 756s; HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₉O₂Si (M+H)⁺: 295.1149, found 295.1150.

2.3. Mechanistic Studies

Using the same procedure as that used for **2a** afforded **4** (8 mg, 18%, *Z*:*E* = 3:1) as a colorless liquid and **5** (9 mg, 22%) as a colorless liquid. **4**: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 5.52 (td, *J_I* = 2.0 Hz, *J₂* = 9.6 Hz, 1H), 1.85 (d, *J* = 2.0 Hz, 2H), 1.68-1.73 (m, 1H), 0.85 (dt, *J_I* = 4.4 Hz, *J₂* = 6.4 Hz, 2H), 0.49 (dt, *J_I* = 4.4 Hz, *J₂* = 6.4 Hz, 2H), 0.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 140.3, 138.1, 132.2, 129.5, 128.6, 126.3, 120.7, 16.2, 12.0, 7.4, -1.6; **5**: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 1H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 5.52-5.56 (m, 1H), 2.13 (qd, *J_I* = 7.6 Hz, *J₂* = 7.2 Hz, 2H), 1.86 (d, *J* = 3.2 Hz, 1H), 1.85 (d, *J* = 3.2 Hz, 1H), 1.06 (t, *J* = 7.6 Hz, 3H), 0.33 (s, 3H), 0.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 148.2, 131.9, 130.2, 129.7, 126.3, 123.7, 106.3, 95.7, 22.5, 17.2, 13.6, -1.59, -1.64. IR (neat) cm⁻¹ 2961s, 2926s, 2854s, 1681s, 1558m, 1516m, 1252m, 830m, 795m; HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₈KSi (M+K)⁺: 253.0809, found 253.0818.

2.4. Functionalization of 3a

Preparation of 8

To a solution of **3a** (25 mg, 0.1 mmol) and 4-bromobenzaldehyde dimethyl acetal (25 μ L, 0.15 mmol) in anhyd. CH₂Cl₂ (2.0 mL) under argon atmosphere, SnCl₄ (0.15 mL of 1.0 M solution in CH₂Cl₂, 0.15 mmol) was added dropwise at -78 °C. The mixture was then stirred overnight before quenching with sat. NaHCO₃ (3 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: petroleum ether/EtOAc = 100:1→50:1) afforded **8** (32.7 mg, 70% yield, *syn/anti* = 90 : 10) as colorless

viscous liquid. *Major isomer*^{1 1}H NMR (400 MHz, CDCl₃) δ 7.57 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.38 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.32 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.16-7.25 (m, 8H), 6.70 (d, J = 8.0 Hz, 1H), 5.26 (s, 1H), 5.18 (s, 1H), 4.55 (d, J = 3.6 Hz, 1H), 4.06 (brs, 1H), 3.94 (s, 1H), 3.03 (s, 3H), 0.46 (s, 3H), 0.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 148.1, 138.5, 138.1, 136.5, 135.1, 131.2, 130.9, 128.9, 128.6, 127.8, 127.4, 126.9, 126.6, 121.1, 119.3, 83.7, 60.0, 57.0, 3.5, 2.2; *Minor isomer* ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz, 2H), 7.15 (t, J = 7.6 Hz, 1H), 7.09-7.10 (m, 3H), 6.94 (t, J = 7.6 Hz, 1H), 6.84-6.86 (m, 4H), 6.18 (d, J = 7.6 Hz, 2H), 5.64 (s, 1H), 5.56 (s, 1H), 5.35 (s, 1H), 4.64 (d, J = 10.4 Hz, 1H), 3.80 (d, J = 10.4 Hz, 1H), 3.30 (s, 3H), 0.52 (s, 3H), 0.41 (s, 3H); IR (neat) cm⁻¹ 3419brm, 2956m, 2920m, 2851m, 1487m, 1254m, 1095m, 826m, 782m; HRMS (ESI-TOF, m/z) calcd for C₂₅H₂₇BrNaO₂Si (M+Na)⁺: 489.0856, found 489.0859.

Preparation of 9

To a solution of **3a** (25 mg, 0.1 mmol) in anhyd. CCl₄ (1.0 mL) were added NBS (36 mg, 0.2 mmol) and benzoyl peroxide (1.0 mg, 3 μ mol) under argon atmosphere. The mixture was then degassed via the freeze-pump-thaw method and backfilled with argon. After stirring at 80 °C overnight, the reaction mixture was cooled to 25 °C, filtered through a cotton plug, and concentrated in vacuo. Purification of the crude residue via silica gel flash column chromatography (eluent: petroleum ether) afforded **9** as an off-white solid (35 mg, 85% yield, m.p. 128-130 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.53 (m, 3H), 7.26-7.33 (m, 3H), 7.14-7.21 (m, 3H), 6.95 (s, 1H), 0.45 (s, 3H), 0.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 144.8, 137.3, 136.9, 132.0, 129.5, 128.4, 127.8, 126.6, 125.5, 49.6, -4.8, -5.2; IR (neat) cm⁻¹ 2958m, 2924m, 1585m, 1490m, 1440s, 1400s, 1247s,

^{1.} The *syn*-stereochemistry was assigned based on the results from previous studies, which provided structurally similar products to ours. Generally, the *anti*-isomer possesses a larger coupling constant ($J_{H1-H2} = 9-10$ Hz) than the *syn*-isomer ($J_{H1-H2} = 4-8$ Hz). Thus, in our case, the major isomer containing a smaller coupling constant ($J_{H1-H2} = 3.6$ Hz) was assigned as *syn*-stereochemistry, and the minor isomer containing a larger coupling constant ($J_{H1-H2} = 10.4$ Hz) was assigned as *syn*-stereochemistry. For the related references, see: (a) K. H. Kim, H. S. Lee, S. H. Kim, K. Y. Lee, J.-E. Lee, J. N. Kim, *Bull. Korean Chem. Soc.* 2009, **30**, 1012; (b) H.-J. Gais, L. R. Reddy, G. S. Babu, G. Raabe, *J. Am. Chem. Soc.*, 2004, **126**, 4859; (c) M. Bandini, P. G. Cozzi, P. M., A. Umani-Ronchi, *Angew. Chem. Int. Ed.* 2004, **43**, 84; (d) M. Song, J. Montgomery, *Tetrahedron*, 2005, **61**, 11440.

1091s, 937s, 845s, 785s; HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{16}Br_2NaSi (M+Na)^+$: 428.9280, found 428.9275.

Preparation of 10

To a solution of *t*-BuOK (67.3 mg, 0.6 mmol) in anhyd. THF (0.7 mL) was added *tert*-butyl hydroperoxide (0.11 mL of 5.5 M in decane over MS, 0.6 mmol) at 0 °C under argon atmosphere. After stirring for 10 min, a solution of **3a** (25 mg, 0.1 mmol) in anhyd. THF (0.4 mL) and TBAF (0.6 mL of 1.0 M solution in THF, 0.6 mmol) were added sequentially. The mixture was stirred overnight at 70 °C before quenching with sat aq Na₂S₂O₃ (3 mL) and sat aq NH₄Cl (5 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: petroleum ether/EtOAc = $20:1\rightarrow5:1$) afforded **10** as a white powder (13 mg, 56% yield, m.p. 108-110 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.2 Hz, 1H), 7.13-7.15 (m, 3H), 6.95-7.03 (m, 4H), 6.85-6.88 (m, 2H), 4.45 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 136.2, 135.5, 132.2, 129.8, 129.5, 128.9, 128.2, 127.7, 125.5, 120.8, 116.7, 69.8; IR (neat) cm⁻¹ 3426s, 3084s, 1450s, 1398s, 1365s, 1238s, 1071s, 749s; HRMS (ESI-TOF, m/z) calcd for C₁₅H₁₄NaO₂ (M+Na)⁺: 249.0886, found 249.0889.

Preparation of 11

To a solution of **3a** (25 mg, 0.1 mmol) in anhyd. MeCN (2.0 mL) was added Selectfluor (53 mg, 0.15 mmol) under argon atmosphere at -20 °C. The mixture was stirred for 3 h before quenching with water (3 mL). The aqueous layer was extracted with Et_2O (3 × 5 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated in vacuo. Purification of the crude

residue via silica gel flash column chromatography (gradient eluent: petroleum ether/EtOAc = $50:1\rightarrow 20:1$) afforded **11** as a colorless viscous liquid (20 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.26-7.36 (m, 6H), 7.21 (t, J = 7.2 Hz, 1H), 6.74 (d, J = 7.2 Hz, 1H), 6.17 (d, J = 45.6 Hz, 1H), 5.57 (s, 1H), 5.26 (s, 1H), 2.17 (brs, 1H), 0.43 (s, 3H), 0.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1 (d, J = 20.7 Hz), 144.2, 138.2, 137.4, 134.4, 129.2, 128.8, 128.7(d, J = 2.4 Hz), 128.4, 126.9, 126.8 (d, J = 1.1 Hz), 116.8 (d, J = 8.0 Hz), 95.7 (d, J = 175.1 Hz), 2.1, 1.8; IR (neat) cm⁻¹ 3336brs, 3053s, 2959s, 2926s, 1585m, 1456m, 1255s, 1117s, 1003s, 854s, 831s, 780s, 737s; HRMS (ESI-TOF, m/z) calcd for C₁₇H₁₉FNaOSi (M+Na)⁺: 309.1081, found 309.1093.

3. Computational details

All calculations were performed using Gaussian 09 programs package.¹ Geometries were fully optimized at the UB3LYP/6-31+G* level in CH₃CN solvent and characterized by frequency analyses. The wave function stability was tested at the same theoretical level.² The self-consistent reaction field (SCRF) method with PCM³ solvation model was used to evaluate solvent effect on reaction. The intrinsic reaction coordinate (IRC) path was traced in order to check the potential energy profile connecting each transition state to the two associated minima.⁴ The Gibbs free energies (G_{298K}) obtained in solvent and corrected by zero-point vibrational effect were used in the discussion.

References:

(1) Guassian 09 (Reversion D. 01), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Wallingford CT, 2013.

(2) (a) R. Seeger and J. A. Pople, *J. Chem. Phys.* **1977**, *66*, 3045. (b) R. Bauernschmitt and R. Ahlrichs, *J. Chem. Phys.* **1996**, *104*, 9047.

(3) (a) M. Cossi, G. Scalmani, N. Rega, V. Barone, *J. Chem. Phys.* **2002**, 117, 43. (b) J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.* **2005**, 105, 2999.

(4) (a) K. J. Fukui, *Phys. Chem.* **1970**, *74*, 4161. (b) K. Fukui, *Acc. Chem. Res.***1981**, *14*, 363. (c) C. Gonzalez, H. B. Schlegel, *J. Chem. Phys.***1989**, *90*, 2154.

Figure 1. Energy profile for the isomerization between Z-radical and E-radical. Realtive Gibbs free energies (ΔG , kcal mol⁻¹) obtained in CH₃CN solvent at the UB3LYP/6-31+G*(PCM, CH₃CN) level are given in parentheses.

XYZ Coordinates and Energies of all the species studied in this work.

Z-radical

Zero-point correction= 0.28671 (a.u.) Thermal correction to Gibbs Free Energy= 0.24003 (a.u.) Sum of electronic and zero-point Energies= -834.12328 (a.u.) Sum of electronic and thermal Free Energies= -834.16995 (a.u.) Number of imaginary frequency: 0

34

С	-2.683020	-0.733373	-0.676377
С	-2.789503	0.639256	-0.949233
С	-1.698922	1.479145	-0.706918
С	-0.497143	0.967661	-0.191096
С	-1.498202	-1.261451	-0.165444
С	-0.397837	-0.419121	0.079701
Н	-3.717140	1.045499	-1.345274
Н	-3.530592	-1.389569	-0.860378
Н	-1.790125	2.542505	-0.922323
Si	1.129710	1.828138	0.218932
Н	-1.422015	-2.324973	0.049300
С	0.907983	-0.896570	0.617360
С	1.888747	0.246792	0.974333
С	0.949940	3.244487	1.457844
С	2.046810	2.430338	-1.322467
Н	1.933198	3.630441	1.756652
Н	0.425078	2.916229	2.363194
Н	0.384369	4.078420	1.022805
Н	2.184044	1.616605	-2.045039
Н	1.491502	3.234868	-1.821465
Н	3.038052	2.821867	-1.059652
Н	2.899462	0.027787	0.611886
Н	1.960468	0.345879	2.066506
С	1.223895	-2.175670	0.774784
С	2.335419	-3.032446	1.227620
С	2.879111	-3.985583	0.139847
С	4.024668	-4.864329	0.652966

Н	2.011964	-3.631648	2.092959
Н	3.160101	-2.392948	1.592522
Н	2.058271	-4.617665	-0.223296
Н	3.219586	-3.390386	-0.717596
Н	4.393462	-5.530323	-0.136084
Н	3.698494	-5.489872	1.493854
Н	4.869372	-4.254490	0.998278

E-radical

Zero-point correction= 0.28678 (a.u.) Thermal correction to Gibbs Free Energy= 0.24081 (a.u.) Sum of electronic and zero-point Energies= -834.12028 (a.u.) Sum of electronic and thermal Free Energies= -834.16625 (a.u.) Number of imaginary frequency: 0

2	Λ
5	-

С	-2.875594	-0.624869	-0.562087
С	-2.908261	0.748968	-0.835040
С	-1.773469	1.531180	-0.593022
С	-0.599952	0.956222	-0.084404
С	-1.716031	-1.219321	-0.058724
С	-0.569991	-0.438764	0.173852
Н	-3.815276	1.205600	-1.223779
Н	-3.760547	-1.233212	-0.733266
Н	-1.811936	2.599406	-0.799976
Si	1.066264	1.726837	0.360584
Н	-1.715131	-2.281164	0.170029
С	0.734242	-0.969837	0.688383
С	1.636922	0.139022	1.253184
С	0.933220	3.236613	1.488389
С	2.105902	2.138167	-1.165513
Н	0.458910	4.078176	0.967537
Н	1.926970	3.567940	1.816404
Н	0.338156	3.014077	2.382335
Н	2.219333	1.262235	-1.815961
Н	1.640046	2.938001	-1.755285

Н	3.108758	2.477104	-0.875428
Н	2.696737	-0.112162	1.144501
Н	1.440814	0.258509	2.329746
С	1.122789	-2.235041	0.613269
С	0.769246	-3.584824	0.133795
С	1.987643	-4.436213	-0.291021
С	1.580961	-5.827675	-0.786684
Н	0.082179	-3.500395	-0.727347
Н	0.216543	-4.127718	0.916833
Н	2.537167	-3.904313	-1.078709
Н	2.672381	-4.528375	0.561923
Н	2.459883	-6.412234	-1.083009
Н	0.914710	-5.760185	-1.656322
Н	1.053514	-6.388853	-0.004591

Z-E-TS

Zero-point correction= 0.28559 (a.u.) Thermal correction to Gibbs Free Energy= 0.23994 (a.u.) Sum of electronic and zero-point Energies= -834.11600 (a.u.) Sum of electronic and thermal Free Energies= -834.16164 (a.u.) Number of imaginary frequency: 1

34

С	-3.155328	-0.120740	-0.776788
С	-3.052221	1.278525	-0.762029
С	-1.834207	1.879321	-0.430080
С	-0.711226	1.100150	-0.107531
С	-2.050627	-0.912301	-0.462858
С	-0.824470	-0.311092	-0.127428
Н	-3.917160	1.891025	-1.005254
Н	-4.102308	-0.591847	-1.030160
Н	-1.764212	2.965951	-0.422322
Si	1.046383	1.604886	0.356585
Н	-2.136972	-1.996840	-0.469993
С	0.415386	-1.086744	0.210842
С	1.548892	-0.187518	0.774915

С	1.131706	2.785667	1.830888
С	2.002146	2.330284	-1.107057
Н	0.593838	2.379714	2.696278
Н	0.687601	3.758516	1.583604
Н	2.172558	2.962993	2.131119
Н	1.990533	1.647131	-1.965174
Н	1.564755	3.284049	-1.429216
Н	3.049482	2.517503	-0.836883
Н	2.523040	-0.490653	0.376597
Н	1.600090	-0.311207	1.866246
С	0.542146	-2.385129	0.041725
С	0.677574	-3.818751	-0.185481
С	2.120904	-4.377126	-0.044828
С	2.180699	-5.885490	-0.306600
Н	0.308091	-4.072146	-1.194158
Н	0.024215	-4.362639	0.515661
Н	2.776010	-3.846961	-0.747770
Н	2.490687	-4.154277	0.964000
Н	3.205757	-6.261495	-0.207303
Н	1.831990	-6.126101	-1.319116
Н	1.551246	-6.436756	0.403767

Lin-7-54-2 C13 CDCl3 150MHZ

126.911 129.179 129.373 138.558 134.255 132.298

421.184 212.77 77.000 76.788 692.68-

919.2---4.403

-13.339

 $^{-10}$

S33

	•	F
097 [.] 81-—		-10
, 		- 0
520 L ³		10
760.61		20
~59.326 730.326 730.326		30 -
		-
		4
-24'92		- 20
080.29—		- 09
882 [.] 977		- 20
۲۲ <u>.000 کا ا</u>		- 80
∠68 [.] 98∕ ∽88.553		- 06
810.79—		100
		110
	OTHP	120
2127.744	P	30
134.385 132.822 129.380		1
139.144	Me	- 14
		150
C13 MHZ		160
7-41-1a 313 150		170
CDC CDC		180

			-2
-4.483 7-4.483 75-4.483			-10
253.2-7 7353.2-7			- 0
622.01 —			- 10
262.25 25.252 258.222			20
JE 030			30
			40
			20
-214 [.] 69			
⊅89 .97√			- 02
715.77 718.77 718.247		-	80 S45 S45
468.40			- 06
			100
	OTBS		110
۲ ۵۲.464			120
√_128.174			130
138.681 138.681	Me		140
			150
C13 MHZ			160
7-93-2 (313 100			170
Lin-7 CDC			180

Lin-7-95-1R C13 CDCl3 100MHZ Me Si-Me

2£9.16∼ €71.09∕

-126.808 -128.858

122.721

J-128.245

129.485

-133.190 -134.424

1136.211

-150.228

77.320 78.681 786.681

--5.511

Lin-7-95-2R C13 CDCl3 100MHZ

7151.817 7138.151 7138.161 7138.172 7138.172 7138.140 7123.832 7123.2327 7123.2327

906.66—

996.88—

77.319 76.684

--2.491

768.61--

۲78.841 ۲48.575

113.040 133.096 133.040 133.040 133.040 133.040

-101.256

275.06 891.16

715.77 000.77 7

-13.320

914.2--

-Ph

С

Me_Ne

180

			I
£87.1-—			- 0
747.22√ √13.950 √73.977			20 10
889.16—		ا۔ اور	30
			40
			50
682 [.] 92			- 102
212.77 <u>7</u>	=		- 80
			- 06
			100
	-Pr		110
~151 [.] 021			120
219:921- 219:621- 219:721-	2a Si M		1 130
747.951√ √140.654			140
678.081—			150
MHZ			160
-7-44-1a Cl3 150			170
CD CD			1

Lin-7-104-3 C13 CDCI3 100MHZ

754.021-

۲40.630 ۲40.630

~132.137 ~126.630 ~128.630 ~128.643

£15.811~

987.1-~	
29.550 29.5472 29.344 29.3472 29.3472 29.3472 29.5680 	30 20 10
606.Γε _]	50 40
589.97 77.000	70 60
816.77	- 08 - 06 - 06 - 06 - 06 - 06 - 06 - 06
-C ₈ H ₁₇	L 110 100
	140 140 140
Lin-7-91-4 C13 CDCI3 100MHZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

132.050 ~140.205

-123.565 -129.633 122.206 132.070

~121.613

Ŧ

E

0

10

100

110

120

130

140

150

160

170

180

~132.074 918.041~

127.061 129.641

ر 120.599 209.121

Si / Me 2f Me

-28.350

~52.949

917.91-

~54'358

-24.633

100

0

10

20

30

40

50

60

- 20

- 8

90

150

160

170

- 180

966.641-

~142.209

ŝ

...

061.0-

ς

١

Lin-7-33-2a C13 CDCl3 150MHZ

-148.194 -148.194 -148.197 -138.835 -138.630 -128.630 -128.630 -128.630 -128.238 -128.630 -128.238 -12

196.72-

889.2**-**—

0[.]330 √0.332

Lin-7-120-2R NOEDS 7.09 CDCl3 400MHZ

-151.290 -151.290 -122.246 -128.170 -128.185 -128.185 -128.185 -128.185 -128.1845 -121.

088.01-

986.1--

66S

Ē

0

10

20

- 20

40

50

60

- 20

80

- 6

100

110

120

130

140

150

160

170

180

ومعادلة متلفى أحفار وريتا

محديد إنفيط يامثا إم

7 117.2---0 10 20 -27.883 30 40 50 60 20 775.77 000.77 75.662 80 6 100 110 226.411~ 285:85F 120 128.297 р-F-Рh Me -130.217 -130.141 130 S, 3b Me -132.154 140 996.141~ 890.441~ 747.982 150 160 761.001~ 162.631 170 Lin-7-87-2 C13 CDCl3 100MHZ 180 190

Lin-7-104-4b C13 CDCl3 100MHZ

-150.315

-120.668 √126.294 019.821~ 209[.]671 ___132.160 138.131 -140.275

135.7~ -11.984 ~16.236

149.1--

Lln-8-1-2a C13 CDCI3 100MHZ

817.631—

