Self-Assembled Ion-Pair Organocatalysis — Asymmetric Baeyer-Villiger Oxidation Mediated by Flavinium–Cinchona Alkaloid Dimer

Pramod Prasad Poudel, Kenji Arimitsu, and Kana Yamamoto* Department of Chemistry and Biochemistry, Department of Chemical and Environmental Engineering, and School of Green Chemistry and Engineering, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, United States

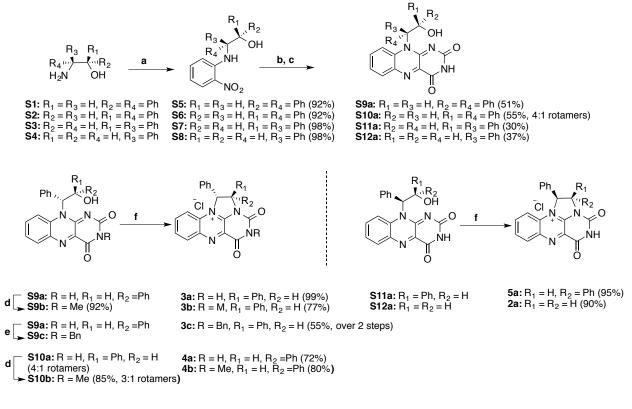
*Corresponding author. Tel.: +1-419-530-8065. E-mail address: kana.yamamoto@utoledo.edu

Supporting Information

- 1. Experimental Section
 - 1-1. Preparation/Characterization of flavinium catalysts
 - 1-2. Relative stereochemical assignment of 3a and 4a
 - 1-3. Preparation/Characterization of cyclobutanones
 - 1-4. General procedure of Baeyer-Villiger oxidation
 - 1-5. Preparation/Characterization of γ -lactone products
- 2. Methanol Adduct Formation Study
- 3. UV-Vis study and Job plot of Flavinium 3a and quinidine
- 4. Reaction screening data for Baeyer-Villiger oxidation of 3-phenyl cyclobutanone
- 5. NMR spectral data
- 6. HPLC data for γ -lactone products

1. Experimental Section

General


¹H-NMR/¹³C-NMR spectra were run in CDCl₃, *d*₆-DMSO or CD₃CN on either Varian VXRS 400 (400 MHz), Varian Unity Inova 600 (600 MHz) or Brucker Advance 600 (600 MHz) NMR spectrometers. Chemical shifts (δ) were reported as parts per million (ppm) with reference to tetramethylsilane (TMS) or solvent unless otherwise stated. The coupling constants (*J*) are reported in Hz. Mass spectra were obtained with Hewlett-Packard Esquire Ion Trap LC-MS (electrospray). High resolution mass spectra were run on a Micromass Q-Tof II. Analytical chiral HPLC was performed with an Agilent HPLC (HP 1100) utilizing chiralcel AD or OD columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries with detection at 210 nm. GC experiments were performed with Hewlett Packard 5890 series II gas chromatograph equipped with an auto injector HP 7672A and an FID detector, utilizing Restek MXT Biodiesel TG (Siltek – treated stainless steel) capillary column. Optical rotation data were collected using a Rudolph Research Analytical Autopol (APIV/6W), automatic polarimeter. UV-Vis experiments were performed using a Nicolet Evolution 300 UV-Vis spectrophotometer (Thermo Electron Corporation).

Materials

Most reagents were purchased from commercial suppliers and used without further purification. Thin layer chromatography (TLC) was carried out on glass backed silica plates, purchased from Sorbent Technology. The plates were visualized under UV (254 nm) light, and occasionally by staining with Ceric ammonium molybdate and gentle heating. During compound separations, column chromatography was carried out using 20–60 micron dry silica purchased from Sorbent Technology. *Tert*-butyl N-(3-oxocyclobutyl)carbamate (**10**) was purchased from PharmaBlock. 3-Oxocyclobutanecarboxylic acid was purchased from AK Scientific. Benzyl ester (**8**) was prepared from 3-Oxocyclobutanecarboxylic acid by Fisher esterification. The other cyclobutaneous were prepared according to the literature procedures.

1-1. Preparation of flavinium catalysts:

Unless otherwise specified, flavinium species used in this study were prepared according to the synthetic scheme illustrated in Scheme S1.

a: 2-nitrofluorobenzene, iPr₂NEt, DMF, b: H₂, Pd/C, MeOH, c: alloxan monohydrate, B(OH)₃, AcOH, d: MeI, K₂CO₃, DMF, e: BnBr, K₂CO₃, DMF, f: SOCl₂, CH₂Cl₂

Scheme S1. General synthetic scheme for flavinium catalysts.

(1S, 2R)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S5)

Diisopropylethyl amine (1.55 mL, 9.38 mmol) was added to a mixture of 2-nitrofluorobenzene (1.97 mL, 18.71 mmol) and (1S,2R)-(+)-2-amino-1,2-diphenylethanol (**S1**) (1.00 g, 4.69 mmol) in DMF (20 mL) and then the mixture was stirred at 50 °C for 24 h. The reaction mixture was cooled into room temperature, poured into saturated NH₄Cl aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂) to obtain **7** as an orange amorphous solid (1.45 g, 92%).

[α] = +639.4° (*c* = 0.50, MeOH); ¹H-NMR (600 MHz, CDCl₃) δ 2.20 (d, *J* = 4.2 Hz, 1H), 4.83 (t, *J* = 6.0 Hz, 1H), 5.14 (t, *J* = 4.8 Hz, 1H), 6.58 (m, 2H), 7.16–7.23 (m, 4H), 7.28–7.31 (m, 7H), 8.13 (d, *J* = 8.4 Hz, 1H), 8.85 (d, *J* = 6.0 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 63.4, 77.28, 115.1, 115.8, 126.6 (2C), 126.7, 127.8 (2C), 128.1, 128.40 (2C), 128.43, 128.5 (2C), 132.5, 135.9, 137.5, 139.3, 144.2; HRMS (ESI⁺) *m/z* 357.1222 (M+Na)⁺ (calcd for C₂₀H₁₈N₂O₃Na 357.1215).

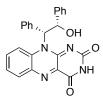
(1R, 2R)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S6)

Diisopropylethyl amine (700 μ L, 4.23 mmol) was added to a mixture of 2-nitrofluorobenzene (890 μ L, 8.45 mmol) and (1*R*,2*R*)-(+)-2-amino-1,2-diphenylethanol (**S2**) (450.0 mg, 2.11 mmol) in DMF (10 mL). After stirring the reaction mixture at 50 °C for 20 h, it was treated in the same manner as the synthesis of **S5**. The residue was purified by silica gel column chromatography (CH₂Cl₂) to obtain **8** as an orange amorphous solid (647.8 mg, 92%).

[α] = +325.1° (*c* = 0.53, MeOH); ¹H-NMR (600 MHz,CDCl₃) δ 2.23 (m, 1H), 4.75 (dd, *J* = 4.2, 6.3 Hz, 1H), 5.07 (t, *J* = 3.5 Hz, 1H), 6.49 (d, *J* = 8.8 Hz, 1H), 6.55 (t, *J* = 7.0 Hz, 1H), 7.17 (t, *J* = 7.0 Hz, 1H), 7.27–7.36 (m, 8H), 7.40 (d, *J* = 7.2 Hz, 2H), 8.13 (dd, *J* = 1.5, 8.7 Hz, 1H), 9.08 (d, *J* = 6.3 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 63.8, 77.6, 115.1, 115.6, 126.2 (2C), 126.7, 127.0 (2C), 128.1, 128.2, 128.5 (2C), 128.9 (2C), 132.6, 135.9, 139.1, 140.2, 144.5; HRMS (ESI⁺) *m/z* 357.1210 (M+Na)⁺ (calcd for $C_{20}H_{18}N_2O_3Na$ 357.1215).

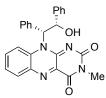
(1R, 2S)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S7)

Diisopropylethyl amine (816 µL, 4.68 mmol) was added to a mixture of 2-nitrofluorobenzene (990 µL, 9.36 mmol) and (1*R*,2*S*)-2-amino-1,2-diphenylethanol (**S3**) (500.0 mg, 2.34 mmol) in DMF (10 mL). After stirring the reaction mixture at 50 °C for 22 h, it was treated in the same manner as the synthesis of **S5**. The residue was purified by silica gel column chromatography (0 \rightarrow 100% CH₂Cl₂ / Hexanes) to obtain **S7** as an orange amorphous solid (767 mg, 2.29 mmol, 98%).


¹H-NMR (600 MHz,CDCl₃); δ 2.20 (br d, J = 4.1 Hz, 1H), 4.81 (t, J = 5.5 Hz, 1H), 5.13 (t, J = 4.4 Hz, 1H), 6.57 (m, 2H), 7.16–7.23 (m, 4H), 7.28–7.31 (m, 7H), 8.12 (d, J = 8.2 Hz, 1H), 8.83 (br d, J = 5.8 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 63.4 (CH), 77.2 (CH), 115.0 (CH), 115.8 (CH), 126.6 (CH, 2C), 127.7 (CH, 2C), 128.1 (CH), 128.38 (CH, 2C), 128.41 (CH), 128.5 (CH, 2C), 132.5 (C), 135.9 (CH), 137.5 (C), 139.2 (C), 144.2 (C); LRMS (ESI⁺) *m/z* 357.6 (M+Na)⁺ (calcd for C₂₀H₁₈N₂O₃Na 357.12). The ¹H-NMR spectra matched those of **S5**.

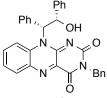
(2S)-2-Phenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S8)

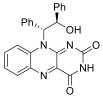
Diisopropylethyl amine (1270 µL, 7.28 mmol) was added to a mixture of 2-nitrofluorobenzene (1530 µL, 14.56 mmol) and (2*S*)-2-aminophenylethanol (**S4**) (500.0 mg, 3.64 mmol) in DMF (10 mL). After stirring the reaction mixture at 50 °C for 22 h, it was treated in the same manner as the synthesis of **S5**. The residue was purified by silica gel column chromatography (0→66% CH_2Cl_2 / Hexanes) to obtain **S8** as an orange oil still containing ~14.2% DMF (970 mg, ~95 wt%, 3.57 mmol, 98%).


¹H-NMR (600 MHz,CDCl₃); δ 2.28 (m, 1H), 3.90 (dd, *J* = 5.3, 11.4 Hz, 1H), 4.01 (dd, *J* = 4.4, 11.4, 1H), 4.71 (dt, *J* = 4.4, 5.9 Hz, 1H), 6.61 (m, 2H), 7.24–7.36 (m, 6H), 8.15 (dd, *J* = 1.5, 3.8 Hz, 1H), 8.74 (br d, *J* = 5.9 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 59.2 (CH), 67.0 (CH₂), 115.1 (CH), 115.9 (CH), 126.5 (CH, 2C), 126.7 (CH), 128.0 (CH), 129.0 (CH, 2C), 132.5 (C), 136.0 (CH), 138.7 (C), 144.6 (C); LRMS (ESI⁺) *m/z* 281.5 (M+Na)⁺ (calcd for C₁₄H₁₄N₂O₃Na 281.09).

10-[(1*R*,2S)-1,2-Diphenyl-2-hydroxy]ethyl-benzo[*g*]pteridin-2,4(3*H*,10*H*)-dione (S9a)

A catalytic amount of Pd–C (29.7 mg) was added to a solution of **S5** (296.6 mg, 0.89 mmol) in MeOH (10 mL) and the mixture was stirred for 2 h under hydrogen atmosphere. The mixture was filtered through Celite[®] and the filtrate was concentrated under reduced pressure. Alloxan monohydrate (141.7 mg, 0.89 mmol) and boric acid (57.8 mg, 0.93 mmol) were added to a solution of the crude in acetic acid (10 mL) and then the mixture was stirred at room temperature for 18 h. The reaction mixture was poured into water and extracted with CH₂Cl₂. The organic layer was washed with water, dried over Na₂SO₄, and concentrated under reduced pressure. MeOH was added to the residue solidified was collected by filtration to obtain **S9a** as a yellow solid (185.3 mg, 51%).


[α] = -68.9° (*c* = 0.10, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆) δ 5.91 (br, 1H), 6.44 (br, 1H), 6.97–7.06 (m, 5H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.49 (br, 1H), 7.59 (m, 2H), 7.68 (d, *J* = 8.2 Hz, 3H), 7.93 (d, *J* = 7.9 Hz, 1H), 11.50 (s, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 61.6, 73.3, 118.8, 126.0, 126.6 (2C), 127.3 (2C), 127.5 (2C), 127.8, 128.7, 131.4, 131.8 (2C), 134.0, 134.8 (2C), 136.7, 138.1, 140.4, 151.7, 155.3, 159.3; HRMS (ESI⁺) *m/z* 433.1261 (M+Na)⁺ (calcd for C₂₄H₁₈N₄O₃Na 433.1277).

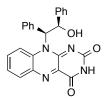

10-[(1*R*,2*S*)-1,2-Diphenyl-2-hydroxy]ethyl-3-methyl-benzo[*g*]pteridin-2,4(3*H*,10*H*)-dione (S9b)

Potassium carbonate (64.1 mg, 0.46 mmol) and methyl iodide (29 μ L, 0.47 mmol) were added to a solution of **S9a** (47.4 mg, 0.12 mmol) in DMF and then the mixture was stirred at room temperature for 11 h. The reaction was poured into saturated NH₄Cl aqueous solution and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 100/1) and recrystallization from CH₂Cl₂–hexanes to obtain **S9b** as a yellow solid (45.1 mg, 92%).

[α] = -71.5° (*c* = 0.42, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆) δ 3.28 (s, 3H), 5.94 (br, 1H), 6.45 (br, 1H), 6.96-7.01 (m, 3H), 7.08 (br, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.51 (br t, *J* = 7.1 Hz, 1H), 7.62 (m, 2H), 7.67 (d, *J* = 8.1 Hz, 3H), 7.99 (d, *J* = 7.9 Hz, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 28.1, 61.5, 73.4, 118.9, 126.1, 126.7 (2C), 127.3 (2C), 127.6 (2C), 127.8, 128.7, 131.3, 131.9 (2C), 134.1, 135.1 (2C), 136.6, 137.2, 140.4, 150.2, 154.9, 159.0; HRMS (ESI⁺) *m/z* 447.1421 (M+Na)⁺ (calcd for $C_{25}H_{20}N_4O_3Na$ 447.1433)

10-[(1*R*,**2***S***)-1**,**2-Diphenyl-2-hydroxy]ethyl-3-benzyl-benzo[g]pteridin-2**,**4(3***H*,**10***H***)-dione (S9c)** Potassium carbonate (94.6 mg, 0.7 mmol) and benzyl bromide (62 μ L, 0.52 mmol) were added to a solution of **S9a** (143.6 mg, 0.35 mmol) in DMF (10 mL) and then the mixture was stirred at room temperature for 5 h. The reaction was poured into water and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexanes/ethyl acetate = 3:1 to 2:1) to obtain **S9c** as a yellow solid (173.2 mg). Due to the difficulty in rigorous purification, the crude material was carried to the cyclization step.

10-[(1R,2R)-1,2-Diphenyl-2-hydroxy]ethyl-benzo[g]pteridin-2,4(3H,10H)-dione (S10a)


A catalytic amount of Pd–C (9.3 mg) was added to a solution of **8** (92.8 mg, 0.28 mmol) in MeOH (3 mL) and the mixture was stirred for 1.5 h under hydrogen atmosphere. The mixture was filtered through Celite[®] and the filtrate was concentrated under reduced pressure. Alloxan monohydrate (44.4 mg, 0.28 mmol) and boric acid (17.2 mg, 0.28 mmol) were added to a solution of the crude in acetic acid (3 mL) and then stirred at room temperature for 18 h. The reaction mixture was poured into water and extracted with CH₂Cl₂. The organic layer was washed with water, dried over Na₂SO₄, and concentrated under reduced pressure. EtOAc and hexanes were added to the residue and the yellow solid formed was collected by filtration to obtain **S10a** as a yellow solid (63.1 mg, 55%).

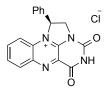
¹H-NMR (600 MHz, DMSO- d_6) δ 5.81 (d, J = 4.2 Hz, 0.8H), 6.03 (dd, J = 4.2, 8.7 Hz, 0.8H), 6.15 (br, 0.2H), 6.42 (m, 0.2H), 7.16–7.24 (m, 2.4H), 7.26–7.29 (m, 2H), 7.34 (t, J = 7.7 Hz, 1.6H), 7.40 (d, J = 8.0 Hz, 0.4H), 7.50 (d, J = 7.5 Hz, 1.6H), 7.54 (t, J = 8.1 Hz, 0.8H), 7.58–7.60 (m, 2H), 7.65–7.69 (m, 1H), 7.91 (d, J = 8.8 Hz, 0.8H), 7.94 (m, 0.4H), 7.96 (d, J = 8.7 Hz, 0.8H), 8.10 (d, J = 8.1 Hz, 0.8H), 8.14 (d, J = 7.9 Hz, 0.2H), 8.38 (d, J = 8.8 Hz, 0.2H), 11.53 (s, 0.8H), 11.55 (s, 0.2H)

10-[(1*R*,2*R*)-1,2-diphenyl-2-hydroxy]ethyl-3-methyl-benzo[*g*]pteridin-2,4(3*H*,10*H*)-dione (S10b) Potassium carbonate (45.6 mg, 0.33 mmol) and methyl iodide (21 μ L, 0.34 mmol) were added to a solution of **S10a** (33.8 mg, 0.082 mmol) in DMF and then the mixture was stirred at room temperature for 21 h. The reaction was poured into saturated NH₄Cl aqueous solution and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 100/1) to obtain **S10b** as a yellow solid (29.9 mg, 85%).

¹H-NMR (600 MHz, DMSO- d_6) δ 3.29 (s, 0.75H), 3.32 (s, 2.25H), 5.82 (d, J = 4.2 Hz, 0.75H), 6.05 (dd, J = 4.2, 8.8 Hz, 0.75H), 6.39 (d, J = 8.6 Hz, 0.25H), 6.48 (br t, J = 8.3 Hz, 0.25H), 7.18–7.20 (m, 2.5H), 7.23 (t, J = 6.6 Hz, 0.5H), 7.27 (t, J = 7.6 Hz, 1.5H), 7.36 (t, J = 7.6 Hz, 1.5H), 7.42 (d, J = 7.3 Hz, 0.5H), 7.50 (d, J = 7.6 Hz, 1.5H), 7.57 (t, J = 7.3 Hz, 0.75H), 7.60 (m, 0.5H), 7.63 (d, J = 7.9 Hz, 1.5H), 7.69 (m, 0.5H), 7.71 (t, J = 7.3 Hz, 0.75H), 7.95 (d, J = 8.6 Hz, 0.75H), 7.97 (m, 0.25H), 7.98 (d, J = 8.8 Hz, 0.75H), 8.16 (d, J = 8.1 Hz, 0.75H), 8.20 (d, J = 8.3 Hz, 0.25H), 8.46 (d, J = 8.8 Hz, 0.25H)

10-[(1S,2R)-1,2-Diphenyl-2-hydroxy]ethyl-benzo[g]pteridin-2,4(3H,10H)-dione (S11a)

A catalytic amount of Pd–C (47 mg) was added to a solution of **S7** (736 mg, 2.20 mmol) in MeOH (22 mL) and the mixture was stirred for 20 h under hydrogen atmosphere. The mixture was filtered through Celite[®] and the filtrate was concentrated under reduced pressure. Alloxan monohydrate (352 mg, 2.20 mmol) and boric acid (144 mg, 2.31 mmol) were added to a solution of the crude in acetic acid (22 mL) and then the mixture was stirred at 50 °C for 24.5 h. The reaction mixture was poured into water and extracted with CH₂Cl₂. The organic layer was washed with water, dried over MgSO₄, and concentrated under reduced


pressure. After stripping off twice with MeOH, anhydrous MeOH (2 mL) was added to the residue, and the solid was isolated by filtration to obtain **S11a** as a yellow solid (269 mg, 30%).

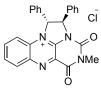
The ¹H-NMR spectra matched those of compound **S9a**. HRMS (ESI⁺) m/z 433.1276 (M+Na)⁺ (calcd for C₂₄H₁₈N₄O₃Na 433.1277).

10-[(1S)-1-Phenyl-2-hydroxy]ethyl-benzo[g]pteridin-2,4(3H,10H)-dione (S12a)

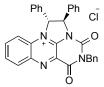
A catalytic amount of Pd–C (115 mg) was added to a solution of **S8** (1157 mg, 4.48 mmol) in MeOH (10 mL) and the mixture was stirred for 4 h under hydrogen atmosphere. The mixture was filtered through Celite[®] and the filtrate was concentrated under reduced pressure. Alloxan monohydrate (717 mg, 4.48 mmol) and boric acid (282 mg, 4.52 mmol) were added to a solution of the crude in acetic acid (10 mL) and then the mixture was stirred at room temperature for 26 h. The reaction mixture was poured into water (200 mL) and extracted with CH_2CI_2 (150 mL x 4). The organic layer was washed with water (50 mL x 2), dried over MgSO₄, and concentrated under reduced pressure. The crude mass thus obtained was washed with CH_2CI_2 (50 mL) and dried at room temperature to give **S12a** as a yellow solid (700 mg, 37%) which contained 20% (weight) of CH_2CI_2 as indicated by ¹H-NMR.

[α] = 288.7° (*c* = 0.5, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆): δ 4.33 (br, s, 1H), 4.64 (br, s, 1H), 5.35 (br, s, 1H), 7.28–7.42 (m 7H), 7.52 (br, s, 1H), 7.58 (br, s, 1H), 8.12 (d, *J* = 8.0 Hz, 1H), 11.52 (s, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 59.09, 60.08, 118.19, 125.72, 126.27, 127.48, 128.82, 131.40, 132.11, 133.62, 135.45, 136.60, 139.04, 152.52, 155.67, 159.82; HRMS (ESI⁺) *m/z* 357.0960 (M+Na)⁺ (calcd for $C_{18}H_{14}N_4O_3Na$ 357.0964)

(1S)-1-Phenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (2a) Thionyl chloride (0.5 mL) was added to a suspension of **S12a** (200 mg of 80% pure sample, 20% being CH_2CI_2 , 0.48 mmol)) in CH_2CI_2 (5 mL) at 0 °C and then the mixture was stirred at room temperature for 2 h. Hexanes (2 mL) was added to the reaction mixture and the precipitate formed was collected by filtration. The crude mass was washed with hexanes and small amount of CH_2CI_2 to obtain **2a** as a yellow solid (160 mg, 90.2%) which contained 5% (weight) of CH_2CI_2 as indicated by ¹H-NMR.

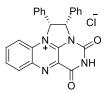

 $[α] = -173.6^{\circ}$ (c = 0.5, MeOH); ¹H-NMR (600 MHz, DMSO- d_6) δ 4.48 (dd, J = 6.3, 11.2 Hz, 1H), 5.12 (dd, J = 11.2, 10.9 Hz 1H), 7.18 (dd, J = 6.3, 10.9 Hz, 1H), 7.48–7.51 (m, 3H), 7.68 (d, J = 8.5 Hz, 1H), 7.73–7.75 (m, 2H), 8.02 (m, 1H), 8.15 (m, 1H), 8.58 (d, J = 8.3 Hz, 1H), 13.02 (s, 1H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 53.29, 66.58, 117.24, 127.47, 127.88, 129.60, 130.27, 130.89, 132.89, 135.52, 135.63, 137.98, 139.39, 144.32, 146.30, 158.05; HRMS (ESI⁺) m/z 317.1031 (M-CI)⁺ (calcd for C₁₈H₁₃N₄O₂ 317.1039)

(1*R*,2*R*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3a)


Thionyl chloride (1 mL) was added to a suspension of **S9a** in CH_2CI_2 (5 mL) at 0 °C and then the mixture was stirred at room temperature for 3h. Hexanes (10 mL) was added to the reaction mixture and the precipitate formed was collected by filtration to obtain **3a** as a yellow solid (148.3 mg, 99%).

[α] = +226.0° (c = 0.05, MeOH); ¹H-NMR (600 MHz, DMSO- d_6) δ 5.88 (d, J = 7.9 Hz, 1H), 7.00 (d, J = 7.9 Hz, 1H), 7.46–7.54 (m, 7H), 7.66 (m, 2H), 7.74 (m, 2H), 8.01 (t, J = 7.5 Hz, 1H), 8.08 (t, J = 7.5 Hz, 1H), 8.59 (d, J = 8.2 Hz, 1H), 12.95 (s, 1H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 70.4, 74.8, 117.5, 127.7 (2C), 128.2 (2C), 129.1 (2C), 129.5, 129.8 (2C), 130.5, 130.7, 132.7, 134.8, 135.2, 135.9, 137.2, 139.7, 144.3, 145.8, 158.2; HRMS (ESI⁺) m/z 393.1344 (M–CI)⁺ (calcd for C₂₄H₁₇N₄O₂ 393.1352)

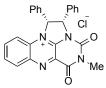
(1*R*,2*R*)-1,2-Diphenyl-3-methyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3b)


Thionyl chloride (1 mL) was added to a suspension of **S9b** (81.2 mg, 0.19 mmol) in CH₂Cl₂ (5 mL) at 0 °C and then the mixture was stirred at room temperature for 3h. Hexanes (10 mL) was added to the reaction mixture and the precipitate formed was collected by filtration to obtain **3b** as yellow solid (65.1 mg, 77%). [α] = +166.2° (*c* = 0.20, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆) δ 3.40 (s, 3H), 5.97 (d, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 7.7 Hz, 1H), 7.67 (m, 3H), 7.71 (d, *J* = 6.4 Hz, 1H), 8.04 (t, *J* = 7.7 Hz, 1H), 8.12 (t, *J* = 7.7 Hz, 1H), 8.65 (d, *J* = 8.4 Hz, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 28.8, 71.0, 74.6, 117.5, 127.5, 127.9 (2C), 128.2 (2C), 129.1 (2C), 129.6, 129.8 (2C), 130.6, 130.9, 132.9, 134.7 (2C), 135.1, 137.7, 140.1, 142.8, 146.3, 157.7; HRMS (ESI⁺) *m/z* 407.1515 (M–Cl)⁺ (calcd for C₂₅H₁₉N₄O₂ 407.1508)

(1*R*,2*R*)-1,2-Diphenyl-3-benzyl-1,2-dihydro-4,63*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3c)

Thionyl chloride (1 mL) was added to a suspension of **S9c** (173.2 mg of dried mass from previous step without purification) in CH_2Cl_2 (5 mL) at 0 °C and then the mixture was stirred at room temperature for 3.5h. Hexanes (10 mL) was added to the reaction mixture and the precipitate formed was collected by filtration to obtain **3c** as yellow solid (100.4 mg, 55.3% over two steps).

[α] = +98.2° (c = 0.5, MeOH); ¹H-NMR (600 MHz, CDCl₃) δ 5.00 (d, J = 14.4 Hz, 1H), 5.14 (d, J = 14.4 Hz, 1H), 5.87 (broad s, 1H), 6.43 (broad s, 1H), 7.15 (broad m, 4H), 7.39–7.50 (m, 8H), 7.62–7.71 (m, 6H), 8.31 (broad s, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 45.94, 73.16, 117.08, 127.75, 128.24, 128.46, 128.54, 128.73, 128.87, 129.41, 129.49, 130.05, 130.45, 131.00, 132.50, 132.86, 133.81, 133.96, 135.34, 137.29, 141.18, 143.65, 146.43, 157.41; HRMS (ESI⁺) m/z 483.1819 (M–Cl)⁺ (calcd for C₃₁H₂₃N₄O₂ 483.1821)



(1*R*,2*S*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (4a)

Thionyl chloride (200 μ L) was added to a suspension of **S10a** (42.0 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) at 0 °C and then stirred at room temperature for 3h. Hexanes (2 mL) was added to the reaction mixture and the precipitate formed was collected by filtration to obtain **4a** as a yellow solid (31.7 mg, 72%).

[α] = +206.2° (c = 0.15, MeOH); ¹H-NMR (600 MHz, DMSO- d_6) δ 6.61 (d, J = 11.2 Hz, 1H), 7.00 (br, 1H), 7.07–7.14 (m, 4H), 7.22 (br, 1H), 7.36 (d, J = 7.4 Hz, 2H), 7.42–7.46 (m, 2H), 7.53 (d, J = 11.2 Hz, 1H), 8.04 (t, J = 7.5 Hz, 1H), 8.10 (t, J = 7.5 Hz, 1H), 8.62 (d, J = 8.1 Hz, 1H), 12.94 (s, 1H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 66.1, 70.4, 117.7, 127.3, 127.4, 127.7 (2C), 128.2 (2C), 128.3, 128.5, 129.3 (2C),

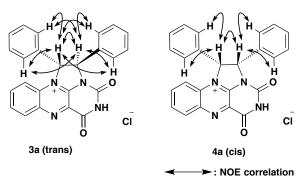
129.5, 130.8, 131.3, 132.1, 132.8, 136.1, 137.6, 139.4, 145.6, 146.2, 158.1; HRMS (ESI⁺) m/z 393.1360 (M–CI)⁺ (calcd for C₂₄H₁₇N₄O₂ 393.1352)

(1*R*,2*S*)-1,2-Diphenyl-3-methyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride(4b)

Thionyl chloride (600 μ L) was added to a suspension of **S10b** (49.1 mg, 0.12 mmol) in CH₂Cl₂ (3 mL) at 0 °C and then stirred at room temperature for 3h. Hexanes (6 mL) was added to the reaction mixture and the precipitate formed was collected by filtration to obtain **4b** as a yellow solid (40.7 mg, 80%).

[α] = +231.5° (*c* = 0.20, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆) δ 3.43 (s, 3H), 6.67 (d, *J* = 11.2 Hz, 1H), 6.91 (br, 1H), 7.02 (br, 1H), 7.09 (m, 2H), 7.14 (t, *J* = 7.5 Hz, 2H), 7.23 (m, 1H), 7.33 (br, 2H), 7.39 (m, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.53 (d, *J* = 11.2 Hz, 1H), 8.08 (t, *J* = 7.3 Hz, 1H), 8.15 (t, *J* = 7.3 Hz, 1H), 8.69 (d, *J* = 8.2 Hz, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 28.9, 66.8, 70.3, 117.8, 127.2, 127.4, 127.8 (2C), 128.3 (2C), 128.6, 129.4 (2C), 129.5, 131.1 (2C), 131.9, 132.9 (2C), 134.8, 138.1, 139.8, 144.1, 146.6, 157.6; HRMS (ESI⁺) *m/z* 407.1490 (M–CI)⁺ (calcd for C₂₅H₁₉N₄O₂ 407.1508).

(1S,2S)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (5a)


The procedure to make **3a** from **S9a** was followed to make **5a** from thionyl chloride treatment of **S11a**. It was obtained as yellow solid (95%).

[α] = -243.0° (*c* = 0.05, MeOH); ¹H-NMR (600 MHz, DMSO-*d*₆) δ 5.90 (d, *J* = 7.7 Hz, 1H), 7.01 (d, *J* = 7.7, 1H), 7.47–7.52 (m, 7H), 7.65 (m, 2H), 7.70 (m, 2H), 8.02 (m, 1H), 8.09 (m, 1H), 8.60 (d, *J* = 8.3), 12.97 (s, 1H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 70.30, 74.77, 117.48, 127.31, 127.67, 128.09, 129.09, 129.58, 129.83, 130.51, 130.81, 132.76, 134.79, 135.28, 135.80, 137.44, 139.76, 144.18, 145.79, 158.19; HRMS (ESI⁺) *m/z* 393.1347 (M–CI)⁺ (calcd for C₂₄H₁₇N₄O₂ 393.1352)

1-2. Relative stereochemical assignment of 3a and 4a

A note on relative configuration of **3a** and **4a**: The cyclization to form the flavinium salt was furnished by thionyl chloride activation of the hydroxyl group at the stereogenic center, which should undergo by S_{Ni} mechanism under the reaction conditions. However, we suspected that it may not be a case due to the sterics of the system. Therefore, NOESY spectra (see section 5) of flavinium **3a** and **4a** were obtained in order to confirm the relative configuration of the two phenyl groups.

The spectral data of **3a** showed that each proton on the ethylene bridge recorded correlations to each other as well as with the four protons at the *ortho*-position of both phenyl rings (Figure S1). On the other hand, those of **4a** only showed the correlations between one of the two phenyl rings in addition to the correlations to each other. The difference can be explained by the restriction of free rotation of the phenyl rings: that of **3a** should be relatively facile while that of **4a** can be restricted. With this assumption, the stereochemistry of these compounds was assigned as shown in Figure S1. The stereochemical assignment confirmed that the mode of thionyl chloride cyclization was S_N2 rather than the S_Ni mechanism.

Figrue S1. The correlations recorded in the 2D-NOESY experiments.

1-3. Preparation/Characterization of cyclobutanones:

Unless otherwise specified in the materials section, cyclobutanones were prepared according to the literature procedure.¹

3-phenylcyclobutanone (10)^{1, 2}

Yield: 51%.¹H-NMR (600 MHz, CDCl₃) δ 3.26 (ddt, J = 3.2, 8.2, 19.9 Hz, 2H), 3.50 (ddt, J = 3.7, 8.2, 19.9 Hz, 2H), 3.69 (pent, J = 8.0, 1H), 7.26 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H).

3-(1-Naphthyl)cyclobutanone (11)³

Yield: 20%. ¹H-NMR (600 MHz, CDCl₃) δ 3.38–3.43 (m, 2H), 3.61–3.66 (m, 2H), 4.29 (pent, J = 8.4 Hz, 1H), 7.44–7.50 (m, 2H), 7.52-7.58 (m, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz); ¹³C-NMR (150 MHz, CDCl₃) δ 26.03, 52.99, 122.27, 123.71, 125.29, 125.89, 126.26, 127.59, 139.01, 131.64, 133.98, 138.12, 206.55; HRMS (ESI⁺) *m*/z 219.0780 (M+Na)⁺ (calcd for C₁₄H₁₂ONa 219.0786).

3-(Benzyloxymethyl)cyclobutanone (12)^{1,4}

Yield: 50.7%. ¹H-NMR (600 MHz, CDCl₃) δ 2.66–2.69 (m, 1H), 2.85–2.89 (m, 2H), 3.10–3.15 (m, 2H), 3.59 (d, 2H, *J* = 6.2), 4.55 (s, 2H), 7.25–7.36 (m, 5H); ¹³C-NMR (150 MHz, CDCl₃) δ 23.65 (CH), 50.03 (CH₂), 72.87 (CH₂), 73.19 (CH₂), 127.65 (CH), 127.76 (C), 128.45 (CH), 138.01 (C), 207.55 (C).

¹ Trost, B. M.; Xie, J. J. Am. Chem. Soc. **2008**, 130, 6231–6242.

² Petersen, K. S.; Stoltz, B. M. *Tetrahedron*, **2011**, 67, 4352–4357.

³ Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. **2012**, *134*, 3615–3618.

⁴ Rammeloo, T.; Stevens, C. Chem. Commun. **2002**, 3, 250.

BnO

Benzyl-3-oxocyclobutanoate (13)⁵

Cyclobutanone **9** was prepared by trans-esterification of the corresponding carboxylic acid. Yield: 46.1%. ¹H-NMR (600 MHz, CDCl₃) δ 3.25–3.33 (m, 3H), 3.40–3.48 (m, 2H), 5.19 (s, 2H), 7.34–7.40 (m, 5H); ¹³C-NMR (150 MHz, CDCl₃) δ 17.54, 51.79, 67.26, 128.48, 128.68, 128.83, 135.54, 173.99, 203.76.

3-cyclohexylcyclobutan-1-one (15)⁶

Yield: 22.3%. ¹H-NMR (600 MHz, CDCl₃) δ 0.90–0.96 (m, 2H), 1.14–1.28 (m, 4H), 1.67–1.70 (m, 1H), 1.74–1.79 (m, 4H), 2.01-2.09 (m, 1H), 2.73–2.77 (m, 2H), 3.02–3.06 (m, 2H);¹³C-NMR (150 MHz, CDCl₃) δ 26.01, 26.18, 29.95, 30.89, 43.74, 50.80, 208.59.

3-t-butylclobutan-1-one^{1, 2}

Yield: 7.7%. Low yield is associated with volatility of the product. Presence of some impurities (solvents and other) were indicated by ¹H NMR which were not removed completely as there was a decrease in compound quantity while drying the sample under reduced pressure. NMR (¹H & ¹³C) data matched with the literature reported values.¹ ¹H-NMR (600 MHz, CDCl₃) δ 2.27–2.33 (m, 1H), 2.82–2.89 (m, 4H); ¹³C-NMR (150 MHz, CDCl₃) δ 26.41, 31.46, 34.72, 47.72, 208.32.

1-4. General procedure of Baeyer-Villiger oxidation

A mixture of a substrate (0.1 mmol) and a flavinium catalyst (10 mol%) in solvent (1 mL) was cooled to the indicated temperature. Cinchona alkaloid or other base (20 mol%) was added to the reaction mixture and the reaction was initiated by adding 30% H_2O_2 (0.15 mmol). After being stirred for the designated time, the reaction was quenched by addition of 1N sodium thiosulfate aqueous solution, and the mixture was extracted with methylene chloride. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexanes/EtOAc = 9:1 to 8:2) or by preparatory TLC (SiO₂, hexanes/EtOAc = 8:2 or 7:3) to obtain γ -butyrolactone. Reaction conversion was monitored by GC analyses with the following method: Oven temperature: 60 °C \rightarrow 370 °C (10 °C/min; 6 min hold at 370 °C; total time 37 min). Injector temp: 250 °C; Detector temp: 370 °C. Injection vol: 1 μ L; Split mode: 40:3. Dry N₂ was used as a carrier gas with a column flow rate of 15 mL/min.

⁵ Du, X.; Hinklin, R. J.; Xiong, Y.; Dransfield, P.; Park, P.; Kohn, T. J.; Pattaropong, V.; Lai, S.; Fu, Z.; Jiao, X.; Chow, D.; Jin, L.; Davda, J.; Veniant, M. M.; Anderson, D. A.; Baer, B. R.; Bencsik, J. R.; Boyd, S. A.; Chicarelli, M. J.; Mohr, P. J.; Wang, B.; Condroski, K. R.; DeWolf, W. E.; Conn, M.; Tran, T.; Yang, J.; Aicher, T. D.; Medina, J. C.; Coward, P.; Houze, J. B., *ACS Med. Chem. Lett.* **2014**, *5*, 1284–1289.
⁶ Malkov, A. V.; Friscourt, F.; Bell, M.; Swarbrick, M. E.; Koc`ovský, P. *J. Org. Chem.* **2008**, *73*, 3996–4003.

1-5. Characterization of γ -lactone products

Stereoselectivity was determined by chiral HPLC analysis using the following method: [Daicel CHIRALCEL AD (0.46 x 25 cm); *n*-hexanes/2-propanol = 98/2, flow rate = 1.25 mL/min; Injection vol = 5 μ L; detection wavelength 210 nm] for all compounds except for γ -lactones of 3-cyclohexylcyclobutanone and 3-*t*-butylcyclobutanone which were reacted with benzyl amine / Me₃Al and the corresponding γ -hydroxy-N-benzylamide derivatives⁹ were analyzed by Daicel CHIRALCEL OD (0.46 x 25 cm); *n*-hexanes/2-propanol = 90/10, flow rate = 0.75 mL/min; Injection vol = 5 μ L; detection wavelength 210 nm]. The absolute configuration of γ -lactone product of 3-phenylcyclobutanone (**10**) was determined by the reported retention time.⁶ The configuration of the other γ -lactone products was presumed to be identical based on their structural similarity, unless otherwise noted. The structures of the major isomer are shown.

(S)-4-phenyldihydrofuran-2(3*H*)-one^{2,7}

A mixture of 3-phenylcyclobutanone **10** (300 mg, 2.05 mmol) and flavinium catalyst **3a** (10 mol%) in CHCl₃ (20 mL) was cooled to about -15 °C. (DHQ)₂PHAL (10 mol%) was added to the reaction mixture and the reaction was initiated by adding 1.1 equivalent of 3% H_2O_2 in CH₃CN (9): water(1). The reaction was stirred at -15 °C for 64h and then quenched by 1N sodium thiosulfate aqueous solution (1 mL). Water (5 mL) was added to the mixture and organic layer was separated. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexanes/EtOAc = 9:1) to obtain 4-phenyldihydrofuran-2(3*H*)-one.

Yield: 87 %, e.r.: 91.7:8.3. t_R = 34.9 (major), 42.1 (minor) min. ¹H-NMR (400 MHz, CDCl₃) δ 2.69 (dd, J = 9.2, 17.2 Hz, 1H), 2.94 (dd, J = 9.0, 17.2 Hz, 1H), 3.80 (m, 1H), 4.28 (dd, J = 8.2, 9.0 Hz, 1H), 4.68 (dd, J = 8.0, 8.8 Hz, 1H), 7.23–7.40 (m, 5H).

Recrystallization of 4-phenyldihydrofuran-2(3*H*)-one^{2,}

200 mg of the lactone described above (e.r.: 91.7:8.3) was dissolved in a warm mixture of Et_2O (61mL) and hexanes (25 mL) and the resultant solution was kept in a refrigerator for 4 hrs. The white crystals was filtered and washed with cold hexanes (1 mL x 3) to give 120 mg of the enantioenriched lactone (60%, e.r.: 98.5:1.5). HPLC spectrum of the recrystallized sample is given below.

(S)-4-(naphthalen-1-yl)dihydrofuran-2(3H)-one

Ýiéld: 92 %, e.r.: 96.9:3.1. $t_R = 44.4$ (major), 54.1 (minor). ¹H-NMR (600 MHz, CDCl₃) δ 2.87 (dd, J = 7.3, 17.4 Hz, 1H), 3.09 (dd, J = 8.5, 17.4 Hz, 1H), 4.47 (dd, J = 6.3, 9.1 Hz, 1H), 4.58 (m, 1H), 4.85 (dd, J = 7.3, 9.1 Hz, 1H), 7.44 (d, J = 7.1 Hz, 1H), 7.49 (m, 1H, 7.55 (m, 1H), 7.59 (m, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.92 (m, 1H), 7.97 (d, J = 8.5 Hz, 1H); ¹³C-NMR (600 MHz, CDCl₃) δ 35.34, 36.94, 73.55, 122.59, 122.67, 125.76, 126.97, 128.56, 129.53, 131.39, 134.29, 135.30, 176.61; HRMS (ESI⁺) *m/z* 235.0739 (M+Na)⁺ (calcd for C₁₄H₁₂O₂Na 235.0735).

⁷ Xu, Q-L.; Dai, L-X.; You, S-L. Adv. Synth. Catal. 2012, 354, 2275–2282.

(S)-4-((benzyloxy)methyl)dihydrofuran-2(3H)-one

Yield: 85 %, e.r.: 82.0:18.0. t_R = 37.6 (major), 42.9 (minor) min. ¹H-NMR (600 MHz, CDCl₃) δ 2.37 (dd, J = 6.2, 17.7 Hz, 1H), 2.60 (dd, J = 9.0, 17.7 Hz, 1H), 2.79–2.84 (m, 1H), 3.44–3.50 (m, 2H), 4.18 (dd, J = 5.5, 9.2 Hz, 1H), 4.39 (dd, J = 7.5, 9.2 Hz, 1H), 4.52 (s, 2H), 7.29-7.37 (m, 5H); ¹³C-NMR (600 MHz, CDCI₃) δ 31.13, 35.39, 70.38, 70.77, 73.32, 127.67, 127.91, 128.52, 137.60, 176.90.

benzyl (R)-5-oxotetrahydrofuran-3-carboxylate

Yield: 58 %, e.r.: 89.3:10.7. t_R = 99.2 (major), 112.4 (minor) min. ¹H-NMR (600 MHz, CDCl₃) δ 2.74 (dd, J = 9.7, 17.9 Hz, 1H), 2.87 (dd, J = 7.3, 17.9 Hz, 1H), 3.46–3.51 (m, 1H), 4.44 (dd, J = 6.5, 9.4 Hz, 1H), 4.50 (dd, J = 8.4, 9.4 Hz, 1H), 5.18 (s, 2H), 7.33–7.37 (m, 5H); ¹³C-NMR (600 MHz, CDCl₃) δ 30.83, 39.98, 67.57, 68.97, 128.43, 128.76, 134.93, 170.97, 175.7.

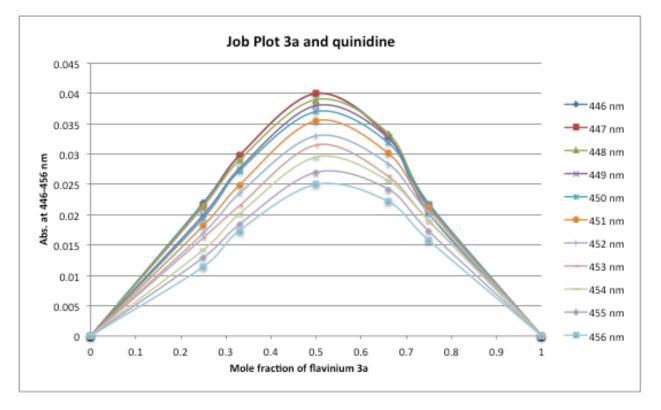
tert-butyl (*R*)-(5-oxotetrahydrofuran-3-yl)carbamate⁸

Yield: 92 %, e.r.: 97.8:2.2. $[\alpha] = +53.53^{\circ}$ (c = 0.5, CHCl₃), (lit. $[\alpha] = +56.0^{\circ}$ (c = 1.0, CHCl₃))⁸; ¹H-NMR (600 MHz, CDCl₃) δ 1.47 (s, 9H), 2.47 (dd, J = 4.2, 17.9 Hz, 1H), 2.86 (dd, J = 7.7, 17.9 Hz, 1H), 4.24 (broad d, J = 7.7 Hz, 1H), 4.49 (broad s, 1H), 4.52 (dd, J = 6.0, 9.6 Hz, 1H), 4.87 (broad s, 1H); ¹³C-NMR (600 MHz, CDCl₃) δ 28.28, 47.71, 73.66, 80.64, 154.97, 174.99.

(-)-4-cyclohexyldihydrofuran-2(3*H*)-one⁵

Yield: 85 %, e.r.: 67.0:33.0. The stereoselectivity was determined by chiral HPLC analysis after conversion to hydroxyl benzylamide derivative.⁹ The absolute configuration was not determined. [Daicel CHIRALCEL OD (0.46 x 25 cm); n-hexanes/2-propanol = 90/10, flow rate = 0.75 mL/min; Injection vol = 5 μL; detection wavelength 210 nm]: t_{R} = 14.8 (major), 22.0 (minor); [α] = -4.09° (*c* = 0.45, CHCl₃), (lit. [α] = -6.8° (*c* = 0.5, CHCl₃) for 61% ee); ¹H-NMR (600 MHz, CDCl₃) δ 0.94-1.02 (m, 2H), 1.13-1.34 (m, 4H), 1.61–1.76 (m, 5H), 2.22 (dd, J = 9.9, 17.1 Hz, 1H), 2.32 (m, 1H), 2.56 (dd, J = 8.3, 17.1 Hz, 1H), 3.98 (t, J = 8.8 Hz), 4.42 (t, J = 8.4 Hz, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 25.77, 25.85, 26.15, 30.51, 31.17, 32.77, 41.43, 41.73, 72.27, 177.46.

⁸ Bergman, Y.; Ciampini, M.; Jalal, S.; Lagiakos, H. L.; Aguilar, M-I.; Perlmutter, P. *Tetrahedron* Asymmetry, **2008**, *19*, 2861–2863. ⁹ Uchida, T.; Katsuki, T. *Helv. Chim. Acta*, **2002**, *85*, 3078–3089.


4-*t*-butyldihydrofuran-2(3*H*)-one²

Yield: 80.3 %, e.r.: 56.6:43.4. The stereoselectivity was determined by chiral HPLC analysis after conversion to hydroxyl benzylamide derivative.⁹ The absolute configuration was not determined. [Daicel CHIRALCEL OD (0.46 x 25 cm); *n*-hexanes/2-propanol = 90/10, flow rate = 0.75 mL/min; Injection vol = 5 μ L; detection wavelength 210 nm]: t_R = 10.4 (major), 14.5 (minor); ¹H-NMR (600 MHz, CDCl₃) δ 0.93 (s, 9H), 2.32–2.38 (m, 1H), 2.41–2.48 (m, 2H), 4.08–4.11 (m, 1H), 4.31–4.34 (m, 1H); ¹³C-NMR (150 MHz, CDCl₃) δ 26.81, 30.07, 31.36, 45.88, 69.81, 177.45.

3. UV-Vis study and Jobs plot of Flavinium 3a and quinidine

The stoichiometry of the association between flavinium **3a** and quinidine was determined by using Job's method of continuous variation: The absorption (446 – 456 nm) of the samples wherein molar fractions of a solution **3a** and quinidine (1 x 10^{-4} each in CH₃CN) were varied while keeping the total concentration constant.

Each data point was subtracted with absorption of the individual compounds at the equimolar concentrations, and plotted against the molar ratio. The stoichiometry of the complex formed was determined from the inflection point in the Job's plots of absorbance vs. mole fraction at a particular wavelength between 446–456 nm. Each colored line represents absorbance at a particular wavelength from 446–456 nm ranges.

4. Reaction screening data for Baeyer-Villiger oxidation of 3-phenylcyclobutanone

The structures of the compounds used in the screening study are shown in Figure S2. Unless otherwise specified, all the reactions were carried out using 0.1 mmol of 3-phenylcyclobutanone following the general experimental procedures described in section 1-4.

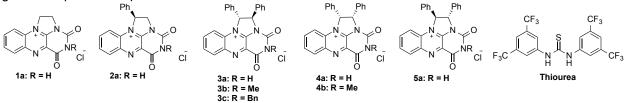


Figure S2: The structures of the compounds used in the screening study.

-		
2260	coroonina	
Dase	screening:	

								e.r.		
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)	
		MeOH	-40	18	N/A	2.8	51.4	48.6		
		MeCN	-20	18	N/A	0.4	50.2	49.8		
3a		MeCN	-25	18	10.4	0.4	50.2	49.8		
3a		MeCN	-40	18	4.7	3.8	51.9	48.1		
3b		MeCN	-40	24	N/A	2.4	51.2	48.8	13	
3a		MeOH	-40	18	N/A	4.9	52.5	47.6		
3a		CF3CH2OH	-40	24	N/A				3	
3b		MeCN	0	24	N/A	4.2	52.1	47.9	83	
3b	LiCl	MeCN	0	24	N/A	3.8	51.9	48.1	91	
3b		DCM	RT	24	N/A	1.8	50.9	49.1	38	
3b		MeOH	RT	24	N/A	4.6	52.3	47.7	37	
3b		MeCN	RT	22	N/A	3.8	51.9	48.1	91	
3a	20 mol% guinidine	DCM	-79	18	N/A	18	59.0	41.0		
	20 mol% 1,2,2,6,6-									
	pentamethyl-4-									
3a	hydroxypiperidine	DCM	-79	18	N/A	18.6	59.3	40.7		
3a	15 mol% NaHCO3	MeOH	-40	24	N/A	5.4	52.7	47.3	18	
3a	100 mol% NaHCO3	MeOH	-40	24	N/A	1				
3a	20 mol% (-)-sparteine	MeCN	-42	18	23	4.8	47.6	52.4		
	20 mol% 1,2,2,6,6-							0211	-	
	pentamethyl-4-									
3a	hydroxypiperidine	MeCN	-42	18	12	23.4	61.7	38.3		
3a	TBS-protected quinidine	MeCN	-42	18	4.8	12.4	56.2	43.8		
3a	100 mol% thiourea	MeCN	-40	18	N/A	1.6	50.8	49.2		
3a	20 mol% Proton sponge	MeCN	-40	18	7.6	4.4	52.2	47.8		
3a	20 mol% 4-methylmorpholine	MeCN	-40	18	9.7	10	55.0	45.0		
Ja	20 mol% 4-methylmorpholine	Ween	-40	10	5.7	10	55.0	45.0	-	
3a	N-oxide	MeCN	-40	18	5.2	4.8	52.4	47.6		
Ja	20 mol% quinidine + 40 mol%	WECH	-40	10	5.2	4.0	52.4	47.0	-	
3a	[BMIM]Cl	MeCN	-40	18	11.1	15.9	58.0	42.1		
Jd	20 mol% quinidine + 40 mol%	MECIN	-40	10	11.1	15.9	38.0	42.1		
3a	[BMIM]Cl	MeCN	-40	18	30	22.2	61.1	38.9		
3a	20 mol% TMEDA	MeCN	-40	18	1.2	8	54.0	46.0	_	
3a	20 mol% 1,1,1,3,3,3-	Mech	-40	18	1.2	8	54.0	46.0		
2-	hexamethyldisilazine	MACON	-40	18	6	4.4	52.2	47.8		
3a 2-	,	MeCN	-40		30.4	1.6	49.2	47.8 50.8		
3a 2a	20 mol% (-)-sparteine	MeCN		18						
3a 2-	20 mol% D(+)-10-CSA	DCM	-40	45 24	17.3 2.1	13 21.8	56.5 60.9	43.5		
3a 2-	120 mol% MeSO2NH2	DCM	-38					39.1		
3a	100 mol% Boc-L-isolucinol	MeCN	-25	18	N/A	6	53.0	47.0		
2-	100 mol%R-(+)-2,2'-diamino-	NA-CN	25	10		112	IFC F	42.5		
3a	1,1'-binaphthalene	MeCN	-25	18	N/A	13	56.5	43.5	_	
3a	100 mol% C6F6	MeCN	-25	18	N/A	6.8	53.4	46.6		
_	100 mol% R-(+)-2,2'-diamino-									
3a	1,1'-binaphthalene	MeCN	-25	18	1.5	0	50.0	50.0		
3a	100 mol% HMPA	MeCN	-25	18	1.2	6.2	53.1	46.9		
_	100 mol% (S)-(-)-N,N'-									
3a	dimethyl-1-phenylethylamine	MeCN	-25	18	10	25.2	62.6	37.4		
3a	100 mol% thiourea	MeCN	-20	18	N/A	0.8	50.4	49.6		
3a	1.2 equiv. of MeSO2NH2	DCM	-38	24	2.1	21.8	60.9	39.1		
3a	100 mol% Et3N	MeCN	-40	18	60.5	24.4	62.2	37.8		

Base screening (cont.):

								e. r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	100 mol% DIPEA	DCM	-40	18	33	15.4	57.7	42.3	
3a	100 mol% DABCO	MeCN	-35	18	21.2	28.6	64.3	35.7	
	100 mol% DABCO	MeCN	-35	18	7.9	1.4	50.7	49.3	
3a	20 mol % 3-quinuclidinol	MeCN	-35	18	38.3	36.2	68.1	31.9	
3a	100 mol% quinine	MeCN	-40	18	16.9	53.8	76.9	23.1	
3a	100 mol% quinidine	MeCN	-35	18	49.2	48.8	74.4	25.6	
	100 mol% quinidine	MeCN	-35	18	12.4	4.8	52.4	47.6	
3a	20 mol% quinidine	MeCN	-35	18	21.3	48.4	74.2	25.8	
3a	20 mol% (DHQ)2 PHAL	DCM	(-79 to -38)	18	N/A	56.6	78.3	21.7	

Solvent effects (earlier studies):

								e.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
		MeOH	-40	18	N/A	2.8	51.4	48.6	
		MeCN	-20	18	N/A	0.4	50.2	49.8	
3a		MeCN	-40	18	4.7	3.8	51.9	48.1	
3b		MeCN	-40	24	N/A	2.4	51.2	48.8	13
3a		MeOH	-40	18	N/A	4.9	52.5	47.6	
3a		CF3CH2OH	-40	24	N/A				3
3a		CF3CH2OH	-35	15	21	3.6	51.8	48.2	
3a	100 mol% quinidine	DCM	-40	18	22.7	34	67.0	33.0	
3a	100 mol% quinidine	MeCN	-35	18	49.2	48.8	74.4	25.6	
3a	100 mol% quinidine	CF3CH2OH	-35	15	94.6	2.4	51.2	48.8	
3a	20 mol % quinidine	MeOH	-40	18	6.2	2.6	51.3	48.7	
3a	100 mol% quinidine	MeCN	-25	18	37.3	39.4	69.7	30.3	
3a	170 mol% quinidine	EtOAc	-37	50	22.4	28	64.0	36.0	
3a	170 mol% quinidine	DMF	-37	50	10.2	N/A			
3a	20 mol% (DHQ)2 PHAL	MeOH	-40	18	7.6	35.6	67.8	32.2	
3a	20 mol% (DHQD)2PHAL	EtOAc	-38	24	24.7	7.8	53.9	46.1	
3a	10 mol % (DHQ)2 PHAL	Et2O	-38	24	3.9	N/A			
3a	10 mol % (DHQ)2 PHAL	THF	-38	24	2.2	N/A			

Stoichiometry of the base (cinchona alkaloid monomer):

							e	.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	100 mol% quinine	MeCN	-40	18	16.9	53.8	76.9	23.1	
3a	100 mol% quinidine	MeCN	-35	18	49.2	48.8	74.4	25.6	
3a	170 mol% quinidine	MeCN	-37	50	83	51. 2	75.6	24.4	
3a	10 mol % quinidine	MeCN	-35	18	3.7	10.2	55.1	44.9	
3a	20 mol% quinidine	MeCN	-35	18	21.3	48.4	74.2	25.8	
3a	30 mol% quinidine	MeCN	-35	18	25.3	50.4	75.2	24.8	
3a	40 mol% quinidine	MeCN	-35	18	29.5	49.6	74.8	25.2	
3a	50 mol % quinidine	MeCN	-35	18	28	49.2	74.6	25.4	
3a	20 mol% quinidine	MeCN	-35	18	13.1	50	75.0	25.0	

Structure-activity relationship (monomer):

							e	.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	100 mol% quinine	MeCN	-40	18	16.9	53.8	76.9	23.1	
3a	100 mol% quinidine	MeCN	-35	18	49.2	48.8	74.4	25.6	
	100 mol% quinidine	MeCN	-35	18	12.4	4.8	52.4	47.6	
3a	20 mol% quinidine	MeCN	-35	18	21.3	48.4	74.2	25.8	
3a	TBS-protected quinidine	MeCN	-42	18	4.8	12.4	56.2	43.8	
3c	10 mol % quinidine	MeCN	-40	18	3.1	2.5	48.8	51.3	
3c	20 mol % quinidine	MeCN	-40	18	6.8	3.8	48.1	51.9	
4a	20 mol % quinidine	MeCN	-40	18	3.1	6.8	53.4	46.6	
4b	20 mol % quinidine	MeCN	-40	18	3.3	0.8	50.4	49.6	
1a	20 mol% quinidine	MeCN	-40	18	13.6	18.8	59.4	40.6	
5a	20 mol% quinidine	MeCN	-40	18	12	13.8	43.1	56.9	
5a	20 mol% quinine	MeCN	-40	18	13.3	21	39.5	60.5	
5a	20 mol% N-Bn quinidine	MeCN	-40	18	1.7	4.8	47.6	52.4	

Stoichiometry of the base (cinchona alkaloid dimer) and solvent effects:

							e.r.		
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	20 mol% (DHQD)2 PHAL	MeCN	-40	18	28.5	6	53.0	47.0	
3a	20 mol% (DHQD)2AQN	MeCN	-38	24	42.7	8.6	54.3	45.7	
3a	20 mol% (DHQD)2Pyr	MeCN	-38	24	33.8	10.2	44.9	55.1	
3a	20 mol% (DHQ)2PHAL	MeCN	-38	24	33.7	43.8	71.9	28.1	
3a	20 mol% (DHQ)2AQN	MeCN	-38	24	25	33.6	66.8	33.2	
3a	20 mol% (DHQ)2Pyr	MeCN	-38	24	29.3	33.4	66.7	33.3	
3a	20 mol% (DHQD)2AQN	EtOAc	-38	24	22.5	11.4	55.7	44.3	
3a	20 mol% (DHQD)2Pyr	EtOAc	-38	24	22.1	8.6	45.7	54.3	
3a	20 mol% (DHQ)2PHAL	EtOAc	-38	24	27.6	48.2	74.1	25.9	
3a	20 mol% (DHQ)2PHAL	EtOAc	-35	20	10.4	60.5	80.3	19.8	
3a	20 mol% (DHQ)2AQN	EtOAc	-38	24	21.5	26.2	63.1	36.9	
3a	20 mol% (DHQ)2Pyr	EtOAc	-38	24	25.3	38.6	69.3	30.7	
3a	20 mol% (DHQD)2PHAL	DCM	-38	24	15.5	15.2	57.6	42.4	
3a	20 mol% (DHQD)2AQN	DCM	-38	24	16.7	17.8	58.9	41.1	
3a	20 mol% (DHQD)2Pyr	DCM	-38	24	18.5	21.2	39.4	60.6	
3a	20 mol% (DHQ)2PHAL	DCM	-38	24	21.5	59.8	79.9	20.1	
3a	20 mol% (DHQ)2AQN	DCM	-38	24	14.9	43.4	71.7	28.3	
3a	20 mol% (DHQ)2Pyr	DCM	-38	24	22	67	83.5	16.5	
3a	10 mol % (DHQ)2 PHAL	CHCl3	-38	24	17.6	87.2	93.6	6.4	
3a	20 mol % (DHQ)2 PHAL	CHCl3	-38	24	16.6	84	92.0	8.0	
3a	30 mol % (DHQ)2 PHAL	CHCl3	-38	24	12.5	87	93.5	6.5	

Structure-activity relationship (dimer):

							e	.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	10 mol% (DHQ)2 PHAL	DCM	-38	24	33.6	58	79.0	21.0	
3a	20 mol% (DHQ)2PHAL	DCM	-38	24	21.5	59.8	79.9	20.1	
3a	20 mol% (DHQD)2PHAL	MeCN	-38	24	33.9	6	53.0	47.0	
3b	20 mol% (DHQ)2PHAL	DCM	-38	24	18.9	36.6	68.3	31.7	
5a	20 mol% (DHQ)2PHAL	DCM	-38	24	7.4	2.6	48.7	51.3	
5a	10 mol% (DHQD)2PHAL	DCM	-38	24	9.7	34.6	32.7	67.3	
5a	20 mol% (DHQD)2PHAL	DCM	-38	24	18	52.2	23.9	76.1	
1a	20 mol% (DHQ)2PHAL	DCM	-38	24	8.1	39.4	69.7	30.3	
1a	20 mol% (DHQD)2PHAL	DCM	-38	24	5.6	4.4	47.8	52.2	
2a	20 mol% (DHQ)2 PHAL	DCM	-38	24	16.4	31	65.5	34.5	
2a	20 mol% (DHQD)2 PHAL	DCM	-38	24	42.1	13.6	43.2	56.8	
5a (10 mol%)	20 mol% (DHQD)2 PHAL	EtOAc	-35	20	9.4	49.4	25.3	74.7	
2a (10 mol%)	20 mol% (DHQD)2 PHAL	EtOAc	-35	20	12.8	35.6	32.2	67.8	

Reaction optimization (reaction conversion) – combination of other bases:

								e.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	20 mol% (DHQ)2PHAL	DCM	-38	24	21.5	59.8	79.9	20.1	
	20 mol% (DHQ)2PHAL, 80								
3a	mol% quinine	DCM	-38	24	67.9	57.8	78.9	21.1	
	20 mol% (DHQ)2PHAL, 80								
3a	mol% Et3N	DCM	-38	24	59.7	42.7	71.4	28.7	
	20 mol% (DHQ)2PHAL, 80								
3a	mol% DMAP	DCM	-38	24	43.3	44.8	72.4	27.6	
3a	120 mol% MeSO2NH2	DCM	-38	24	2.1	21.8	60.9	39.1	
	20 mol % (DHQ)2 PHAL, 100								
3a	mol% MeSO2NH2	DCM	-38	24	29.5	65.9	83.0	17.1	
	20 mol% (DHQ)2 PHAL, 80								
3a	mol% quinine	DCM	-38	24	67.9	57.8	78.9	21.1	
	20 mol% (DHQ)2 PHAL, 80								
3a	mol% Et3N	DCM	-38	24	59.7	42.7	71.4	28.7	
	20 mol% (DHQ)2 PHAL, 80								
3a	mol% DMAP	DCM	-38	24	43.3	44.8	72.4	27.6	
3a	1.2 equiv. of MeSO2NH2	DCM	-38	24	2.1	21.8	60.9	39.1	
	1 equiv. of MeSO2NH2 + 0.2								
3a	equiv. of (DHQ)2 PHAL	DCM	-38	24	29.5	65.9	83.0	17.1	

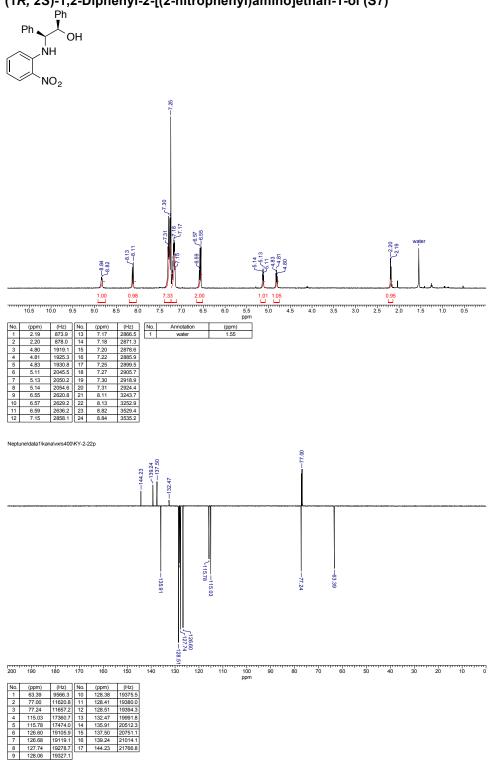
Reaction optimization (reaction conversion) – temperature effective	eaction optimizatio	n (reaction	conversion) – tem	berature	ettect
---	---------------------	-------------	------------	---------	----------	--------

	optimization (reactio							e.r.	
Catalyst	Additive	Solvent	Temp (°C)	Time (h)	GC Conv. (%)	ee (%)	RT = 34.9	RT = 42.1	Yield (%)
3a	10 mol % (DHQ)2 PHAL	СНСІЗ	-38	5d	46.4	87.2	93.6	6.4	11010 (70)
3a	20 mol % (DHQ)2 PHAL	CHCI3	-38	5d	38.2	84	92.0	8.0	
3a	30 mol % (DHQ)2 PHAL	СНСІЗ	-38	5d	27.6	87	93.5	6.5	
	20 mol % (DHQ)2 PHAL, 2 mL								
3a	solvent	снсіз	-38	5d	35.3	82.6	91.3	8.7	
	20 mol % (DHQ)2 PHAL, 2 mL								
3a	solvent, 2 equiv. of H2O2	СНСІЗ	-38	5d	41.8	78.8	89.4	10.6	
	20 mol % (DHQ)2 PHAL, 2 mL								
3a	solvent, 2 equiv. of urea.H2O2	СНСІЗ	-38	5d	14.9	48.6	74.3	25.7	
3a	5 mol % (DHQ)2 PHAL	CHCl3	-38 to -29	24	26.2	61	80.5	19.5	
3a	20 mol % (DHQ)2 PHAL	СНСІЗ	-38 to -29	24	34.6	83.8	91.9	8.1	
3a	50 mol % (DHQ)2 PHAL	CHCl3	-38 to -29	24	23.1	66.6	83.3	16.7	
3a	5 mol % (DHQ)2 PHAL	CHCl3	-38 to -29	24	26.2	61	80.5	19.5	
3a	20 mol % (DHQ)2 PHAL	CHCl3	-38 to -29	24	34.6	83.8	91.9	8.1	
3a	50 mol % (DHQ)2 PHAL	CHCl3	-38 to -29	24	23.1	66.6	83.3	16.7	
3a	10 mol% of (DHQ)2 PHAL	СНСІЗ	-15 to -20	24	70	87.6	93.8	6.2	
	10 mol% of (DHQ)2 PHAL + 5								
3a	mol% of quinine sulfate	снсіз	-20 to -15	24	71.2	85.2	92.6	7.4	
3a (20 mol%)	20 mol% of (DHQ)2 PHAL	СНСІЗ	-20 to -15	24	92	88.8	94.4	5.6	
3a	10 mol% of (DHQ)2 PHAL	CHCl3	-10 to -8	42	86.2	84.2	92.1	7.9	
3a	20 mol% of (DHQ)2 PHAL	CHCl3	-10 to -8	42	97.2	85.4	92.7	7.3	
3a	10 mol% of (DHQ)2 PHAL	CHCl3	-4 to 2	24	81.4	81.8	90.9	9.1	
3a	20 mol% of (DHQ)2 PHAL	CHCl3	-4 to 2	24	91.6	83.8	91.9	8.1	
3a	20 mol% quinidine	DCM	-77 to RT	18	0.6	23.4	61.7	38.3	
3a	20 mol% (DHQD)2 PHAL	DCM	-77 to RT	18	0.5	11.6	44.2	55.8	
3a	20 mol% (DHQ)2 AQN	DCM	-77 to RT	18	0.4	37.8	68.9	31.1	
3a	20 mol% (DHQ)2 AQN	MeCN	RT	20.5	8.7	13.5	56.8	43.3	
3a	20 mol% (DHQ)2 PHAL	MeCN + DCM	RT	18	2.9	34.6	67.3	32.7	

5. NMR spectral data: (1*S*, 2*R*)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S5) Ph

														013 7:55:3	111
cquisition Time (Comment	11	4	Date	0	5 Feb 2013 1	5:50:08							
ate Stamp	05 Feb 2013														
ile Name	C:\Users\Kan	A Yamamoto\Deskto	p/Chiral flav	inium salts\sa	mple data\NMR\k	(A-1-37\2\pd	ata\1\1r	Frequ	uency (MH	z)	600.20				
ucleus	1H	Number of Tra	nsients 10	3	Origin	5	pect	Origi	nal Points	Count	32768				_
wner	kenji	Points Count	66	536	Pulse Sequence	ce z	g30	Rece	iver Gain		10.73				
W(cyclical) (Hz)	12019.23	Solvent	C	HLOROFORM	l-d			Spec	trum Offse	t (Hz)	3689.1606				
pectrum Type	STANDARD	Sweep Width (Hz) 10	019.05	Temperature (degree C) 2	2.050								
KA-1-37.00	2.001.1r.esp Vertic	alScaleFactor =	= 1											Т	тм
	vera													1.1	1
0.30															
-															
0.25															
0.20															
-															
0.20															
-															
0.15															
-															
0.40															
0.10			-												
3			121												
-			9112	~											
·															
0.05		<u>e 2</u>		6.58		a n					~				
0.05	83 84	8.13 8.12	1 - F g	6.57	613 5.13	112 83 81 81					23				
0.05	8.84	22 I		6.5	5.14	5.12 4.83 4.81					2.23				
	7	22 I	1 - F g	6.5	5.14	9494					2.23	1			
0.05	0.93	0.93 6.	1 - F g	1.97	.0 .14 5.13	215 9 1.00					0.97	i			
0	0.93	0.93 6.	414.97	1.97		99 1.00	6 40		20	25	0.97		10		
	7	0.93 6.	12	1.97	0 5.5	99 1.00	.5 4.0	3.5	3.0	2.5		1.5	1.0	0.5	
0	9.0 8.5	0.93 6 8.0 7.5	414.97 7.0	1.97 6.5 6	0 5.5 Chemic	99 1.00 5.0 4 al Shift (ppr	1)				2.0	1.5	1.0	0.5	
0 9.5	9.0 8.5 (Hz) Height	0.93 6 8.0 7.5	7.0 (Hz)	1.97 6.5 6 Height	0 5.5 Chemic No. (ppm)	99 1.00 5.0 4 al Shift (ppr (Hz)	1) Height	No.	(ppm)	(Hz)	0.97 2.0 Height	1.5	1.0	0.5	
0 9.5 io. (ppm) 1 2.23	9.0 8.5 (Hz) Height 337.0 0.0118	0.93 6. 8.0 7.5 No. (ppm) 6 5.13	7.0 7.0 (Hz) 3080.0	6.5 6 Height	0 5.5 Chemic No. (ppm) 11 7.17	99 1.00 5.0 4 al Shift (ppr (Hz) 4301.8	1) Height 0.0257	No. 16	(ppm) 7.28	(Hz) 4372.4	2.0 Height 0.0313	1.5	1.0	0.5	
0 9.5 10. (ppm) 1 2.23 2 4.81	0.93 9.0 8.5 (Hz) Height 337.0 0.0118 888.9 0.0099	0.93 6. 8.0 7.5 No. (ppm) 6 5.13 7 5.14	7.0 7.0 (Hz) 3080.0 3084.8	1.97 6.5 6 Height 0.0177 0.0111	0 5.5 Chemic No. (ppm) 11 7.17 12 7.17	99 1.00 5.0 4 al Shift (ppr (Hz) 4301.8 4305.7	1) Height 0.0257 0.0389	No. 16	(ppm) 7.28 8.12	(Hz) 4372.4 4873.1	1. 0.97 2.0 Height 0.0313 0.0206	1.5	1.0	0.5	
0 9.5 io. (ppm) 1 2.23 2 4.81 3 4.82	0.93 9.0 8.5 (Hz) Height 337.0 0.0118 888.9 0.0099 894.6 0.0150	0.93 6. 8.0 7.5 No. (ppm) 6 5.13 7 5.14 8 6.57	7.0 7.0 (Hz) 3080.0 3084.8 3940.9	1.97 6.5 6 Height 0.0177 0.0111 0.0309	0 5.5 Chemic No. (ppm) 11 7.17 12 7.17 13 7.19	99 1.00 5.0 4 al Shift (ppr (Hz) 4301.8 4305.7 4314.1	1) Height 0.0257 0.0389 0.0288	No. 16 17 18	(ppm) 7.28 8.12 8.13	(Hz) 4372.4 4873.1 4880.2	1 0.97 2.0 Height 0.0313 0.0206 0.0186	1.5	1.0	0.5	
0 9.5 io. (ppm) 1 2.23 2 4.81 3 4.82 4 4.83	0.93 9.0 8.5 (Hz) Height 337.0 0.0118 888.9 0.0099	0.93 6. 8.0 7.5 No. (ppm) 6 5.13 7 5.14	7.0 7.0 (Hz) 3080.0 3084.8	1.97 6.5 6 Height 0.0177 0.0111 0.0309 0.0259	0 5.5 Chemic No. (ppm) 11 7.17 12 7.17	99 1.00 5.0 4 al Shift (ppr (Hz) 4301.8 4305.7	1) Height 0.0257 0.0389	No. 16 17 18	(ppm) 7.28 8.12 8.13 8.83	(Hz) 4372.4 4873.1	1. 0.97 2.0 Height 0.0313 0.0206	1.5	1.0	0.5	

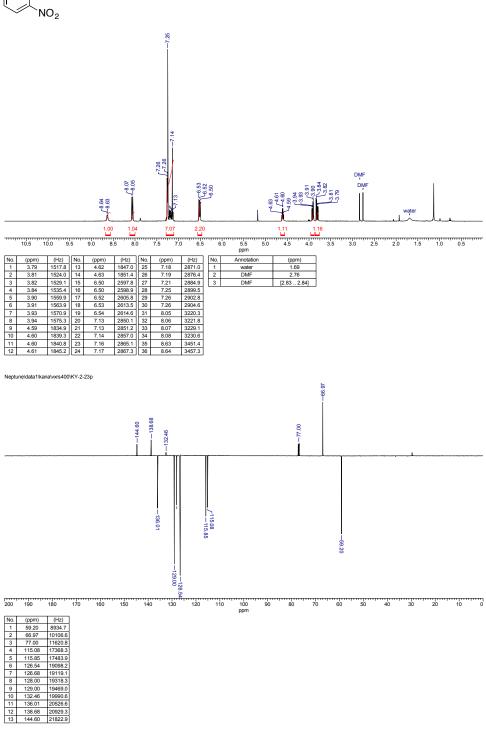
Acquisition Time (sec)		Comment		13c	Date		05 Feb 2013	3 15:39	9:28					
Date Stamp	05 Feb 2013 1							- 1	-					
File Name		Yamamoto\Desktop							Frequency		150.92			
Nucleus	130	Number of Tran		256	Origin		spect		Original Pol		32768			
Owner	kenji	Points Count		32768	Pulse Seque	nce	zgpg30		Receiver Ga		173.95			
SW(cyclical) (Hz)	36057.69	Solvent		CHLOROFORM					Spectrum C	ffset (Hz)	15085.460	00		
Spectrum Type	STANDARD	Sweep Width (H alScaleFactor =		36056.59	Temperature	e (degree C)	22.050							
0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.0 0.1	80 170			2	110 100) 90	80		63.42	50 40	30	20	10	
100		100		120		al Shift (ppm				40		20		
No. (ppm) (Hz)	Height	No. (ppm)	(Hz)	Height	No. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height			
1 63.42 9570.		5 126.61	19107.9		9 128.40	19378.6	0.3350	13	135.92	20513.2	0.1477			
	.7 0.1574	6 126.70	19122.3	0.1316	10 128.43	19383.0	0.1604	14	137.51	20753.0	0.0713			
2 77.28 11662														
2 77.28 11662 3 115.05 17362		7 127.75	19280.7		11 128.53	19397.4	0.3207	15	139.25	21016.0	0.0588			


(1*R*, 2*R*)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S6)

Acquisition Time (sec)	2.7263	Comment	1H	Date	13 Feb 2013	3 22:52:32					
Date Stamp	13 Feb 2013 22	:52:32									
ile Name	C:\Users\Kana \	(amamoto\Desktop\Chiral	flavinium salts\sa	mple data\NMR\KA-2-6	\1\pdata\1\1r	Frequency (MHz)	600.20				
lucious	1H	Number of Transients	16	Origin	spect	Original Points Count	32768				
Dwner	kenji	Points Count	65536	Pulse Sequence	zg30	Receiver Gain	9.93				
SW(cyclical) (Hz)	12019.23	Solvent	CHLOROFORM	-d		Spectrum Offset (Hz)	3688.4270				
pectrum Type	STANDARD	Sweep Width (Hz)	12019.05	Temperature (degre	e C) 22.047						
0.01	86 100	C 0	1.02 1.04		1.05			water			
9.5	9.0 8.5	8.0 7.5 7.0		0 5.5 5.0	4.5 4.0			1.5	1.0	0.5	
0.0				Chemical Shi	ft (pom)						
a.o No. (ppm) Valu	e Absolute	Value Non-Negative	Value	Chemical Shi	ft (ppm)						

1[2.17782.261.01647437	1.49682510e+7	1.01647437
2[4.7018 4.771.04501557	1.53885390e+7	1.04501557
3[5.0303 5.091.03787732	1.52834230e+7	1.03787732
4[6.4513 6.511.04009843	1.53161310e+7	1.04009843
5[6.5221 6.591.02017236	1.50227060e+7	1.02017236
6[7.1224 7.201.06464612	1.56776110e+7	1.06464612
7[7.2358 7.368.71718979	1.28366336e+8	8.71718979
8[7.3658 7.432.06572006	3.04190820e+7	2.06572008
9[8.0836 8.160.97711331	1.43886340e+7	0.97711331
109.0241 9.111.00047028	1.47325810e+7	1.00047028

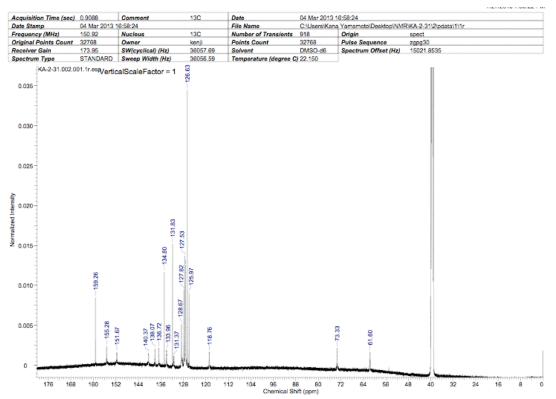
Acquisition Time (sec)	0.9088	Comment		13C	Date		13 Feb 2013	23.07	-28						
Date Stamp	13 Feb 2013 2			100			101 00 2010								
File Name		Yamamoto\Deskt	op/Chiral f	flavinium saltsi	sample data\NM	AR\KA-2-6\2\pd	iata\1\1r	F	Frequency	(MHz)	150.92				
Vucleus	13C	Number of Tra	nsients	256	Origin		spect	0	Driginal Po	ints Count	32768				
Dwner	kenji	Points Count		32768	Pulse Sec	uence	zgpg30	F	Receiver G	ain	173.95				
SW(cyclical) (Hz)	36057.69	Solvent		CHLOROFO	RM-d			5	Spectrum C	Offset (Hz)	15085.46	300			
Spectrum Type	STANDARD	Sweep Width	(Hz)	36056.59	Temperat	ure (degree C)	22.051								
0.9 0.8 0.7 0.6 0.6 0.5 0.5 0.1 0.2 0.1 192 184		160 152	144.5	519821 588215 5882151 5882151 5882151 5882151515151515151515151515555555555	120 112	104 96 mical Shift (ppr	88 80		5	56 48	40	32	24	16	11
No. (ppm) (Ha) Height	No. (enco)	(He)	Height	No. (ppm	0 (11-2)	Height	No.	(nom)	(Hz)	Height	1			
 (ppm) (Hz 63.77 9624 		No. (ppm) 5 126.23	(Hz) 19050.		No. (ppm 9 128.1		0.1863	13	(ppm) 135.84	(HZ) 20501.0	0.1544				
2 77.58 1170		6 126.73	19050.		10 128.4		0.3573	14	135.84	20990.7	0.0944	-			
	0.0 0.1000	G 120.73	10120.	u u. rodz	10 128.9							-			
3 115.05 1736	3.8 0.1385	7 127.03	19171.	8 0.2611	11 128.9	19455.7	0.2646	15	140.24	21164.6	0.0904				



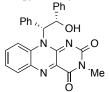
(1R, 2S)-1,2-Diphenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S7)

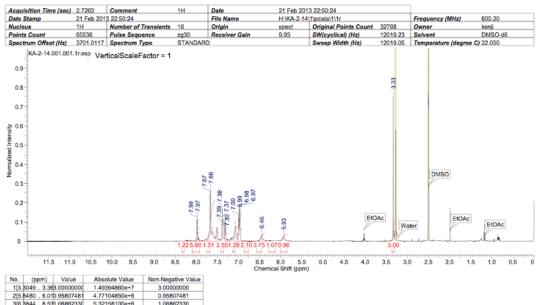
Avance600\nmrdata\kanay\KY-2-22_001001r

(2S)-2-Phenyl-2-[(2-nitrophenyl)amino]ethan-1-ol (S8)



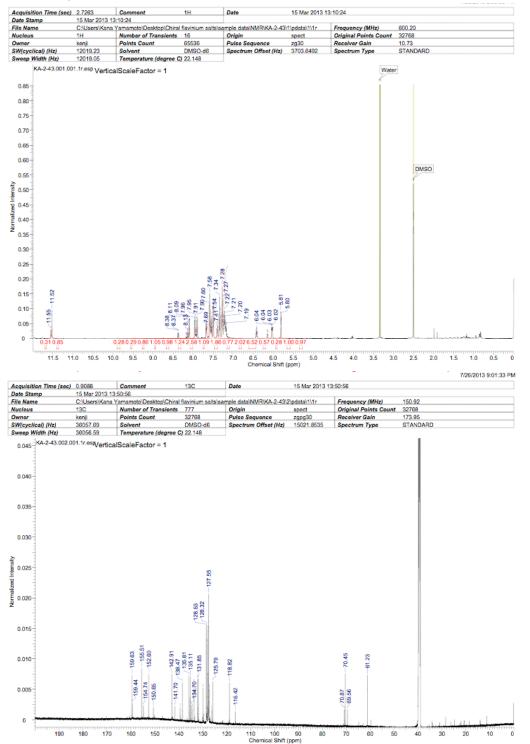
Avance600\nmrdata\kanay\KY-2-23_002001r


10-[(1R,2S)-1,2-Diphenyl-2-hydroxy]ethyl-benzo[g]pteridin-2,4(3H,10H)-dione (S9a)

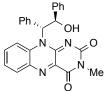


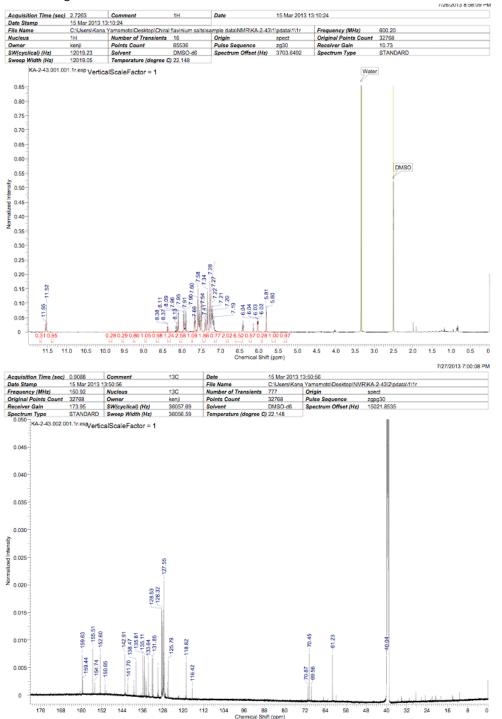
Acquisition Time (s	ec) 2.7263	Comment	1H	Date	04 Mar 2013	16:09:20	
Date Stamp	04 Mar 2013 16	3:09:20					
ile Name	C:\Users\Kana	Yamamoto\Desktop\Chira	I flavinium salts\s	ample data\NMR\KA-2-3	1\1\pdata\1\1r	Frequency (MHz)	600.20
lucleus	18	Number of Transients		Origin	spect	Original Points Count	32768
Dwner	kenji	Points Count	65536	Pulse Sequence	zg30	Receiver Gain	10.73
W(cyclical) (Hz)	12019.23	Solvent	DMSO-d6	Spectrum Offset (Hz	3703.6492	Spectrum Type	STANDARD
Sweep Width (Hz)	12019.05	Temperature (degree	C) 22.150				
0.9 0.8 60.7 60.0 60.5 60.5 60.5 60.5 60.5 60.5 60.5			1912 B912			- 334	
0.3			3.27 1.76 1.25 2.3	25 1.22 5.41 1.00 0.89		0.86	
0.3	11.0 10.5 10.0		261 961 3.27 1.76 1.25 2.	251.225.411.00 0.88	5.5 5.0		0 2.5 2.0 1.5 1.0 0.5
0.3			3.27 1.76 1.25 2. 8.0 7.5	25 1.22 5.41 1.00 0.69 7.0 6.5 6.0	5.5 5.0 (ppm)		0 2.5 2.0 1.5 1.0 0.5 Height
0.3 0.2 0.1 1.10 11.5 No. (ppm)	11.0 10.5 10.0	9.5 9.0 8.5	3.27 1.76 1.25 2. 8.0 7.5	7.0 6.5 6.0 Chemical Shift	5.5 5.0 t (ppm) z) Height	4.5 4.0 3.5 3.0	Height
0.3 0.2 0.1 1.10 11.5 No. (ppm) 1 3.34 2	11.0 10.5 10.0 (Hz) Height) 9.5 9.0 8.5 No. (ppm) (Hz	3.27 1.76 1.26 2. 8.0 7.5 Height 9 0.2493	25 122 5 41 1.00 0.89 7.0 6.5 6.0 Chemical Shift	5.5 5.0 (ppm) z) Height 3.9 0.2692	4.5 4.0 3.5 3.0 No. (ppm) (Hz)	Height 7 0.1695
0.3 0.2 0.1 1.10 11.5 No. (ppm) 1 3.34 2 5.94 3	11.0 10.5 10.0 (Hz) Height 003.6 0.7071	0 9.5 9.0 8.5 No. (ppm) (Hz 7 7.02 4211	3.271.761.252 8.0 7.5) Height 9 0.2493 9 0.1203	7.0 6.5 6.0 Chemical Shift No. (ppm) (H	5.5 5.0 t (ppm) z) Height 3.9 0.2692 1.4 0.1363	4.5 4.0 3.5 3.0 No. (ppm) (Hz) 19 7.92 4755.7	Height 7 0.1695 8 0.1579
0.3 0.2 0.1 1.5 No. (ppm) 1 3.34 2 2 5.51 3 3 6.44 3	11.0 10.5 10.0 (Hz) Height 003.6 0.7071 545.5 0.0432 0.0432 0.0432	9.5 9.0 8.5 No. (ppm) (Hz 7 7.02 4211 8 7.06 4234	8.0 7.5 0.2493 0.2493 8.0.0731	7.0 6.5 6.0 Chemical Shif 13 7.39 443 14 7.40 444	5.5 5.0 t (ppm) 2) Height 3.9 0.2692 1.4 0.1363 2.8 0.0739	4.5 4.0 3.5 3.0 No. (ppm) (Hz) 19 7.92 4755.7 20 7.94 4763.0	Height 7 0.1695 8 0.1579
0.3 0.2 0.1 11.5 No. (ppm) 1 1 3.34 2 2 5.91 3 3 6.44 3 3 6.44 3	11.0 10.5 10.0 (Hz) Height 003.6 0.7071 545.5 0.0432 865.1 0.0557	No. (ppm) (Hz 7 7.02 4211 8 7.06 4234 9 7.31 4385	B 0.75 0 Height .9 0.2493 .9 0.1203 .8 0.0731 .0 0.1793	25 122 5.41 1.00 0.68 7.0 6.5 6.0 Chemical Shift 13 7.39 443 14 7.40 455	5.5 5.0 : (ppm) Height 3.9 0.2692 1.4 0.1363 2.8 0.0739 2.1 0.0844	4.5 4.0 3.5 3.0 No. (ppm) (Hz) 19 7.92 4755.7 20 7.94 4763.0	Height 7 0.1695 8 0.1579

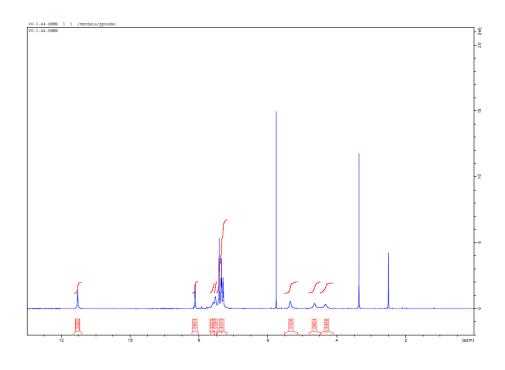
10-[(1*R*,2*S*)-1,2-Diphenyl-2-hydroxy]ethyl-3-methyl-benzo[*g*]pteridin-2,4(3*H*,10*H*)-dione (S9b)

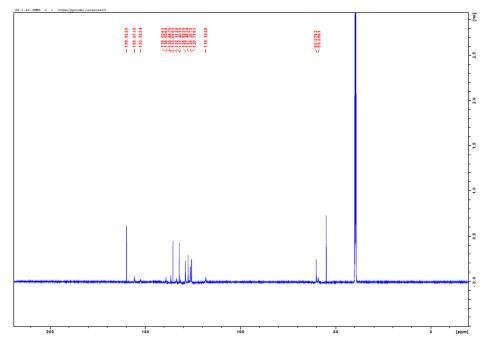


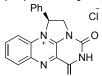
x[0.0400 0.0 i0.0000140 i	4.77104030610	0.00007401
3[6.3844 6.531.06862330	5.32156100e+6	1.06862330
4[6.9255 7.033.75067925	1.86777400e+7	3.75067925
5[7.0323 7.122.10106421	1.04629400e+7	2.10106421
6[7.2846 7.331.28482831	6.39822500e+6	1.28482831
7[7.3528 7.412.54945183	1.26958330e+7	2.54945183
87.4710 7.531.30715954	6.50943050e+6	1.30715954
9[7.5665 7.735.60272360	2.79006040e+7	5.60272360
107.9506 8.001.21683300	6.05962000e+6	1.21683300

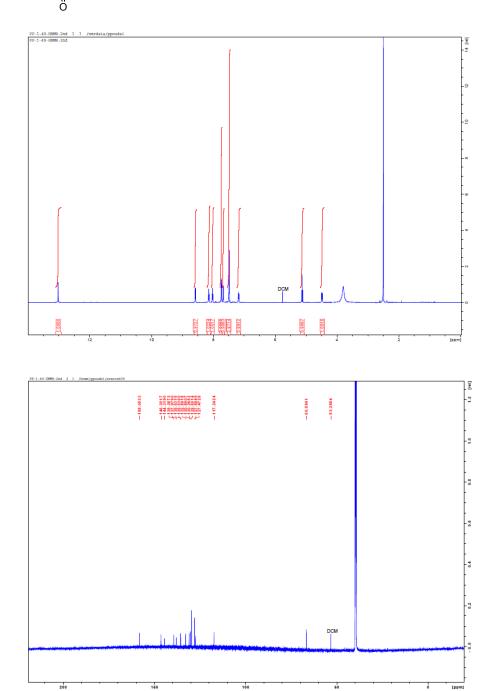

Acquisition Time	e (sec) 0.	9088	Commen	t	13C		Date		15 Mar 2	2013 19:51	:28				
ate Stamp	15	5 Mar 2013	19:51:28				File Name		H:\KA-2-	14\3\pdata	\1\1r			Frequency (MHz)	150.92
lucleus			Number	of Transien	ts 886		Origin		spect	Origi	nal Point		32768	Owner	kenji
oints Count	32	768	Puise Se	quence	zgpg3	30 /	Receiver G	ain	173.95	SW(c	yclical) ((Hz)	36057.69	Solvent	DMSO-d6
pectrum Offset	t (Hz) 16	021.8535					Spectrum	Туре	STAND/	ARD				Sweep Width (Hz)	36056.59
Concernature (de 0.045 KA-2-1 0.040 0.035 0.025 0.025 0.010 0.010	hgree C) 22	2.150 1r.essVerti 80.031 15.00	calScale		1 127.80 -125.56 126.08	118.85				07 F.Z.	0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	61.42		-29.00	
0	168	160 1	52 14		128	120	112 1	04 96	88 ical Shift (pp	80		34 56	48	40 32 24	16 8
No. (ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Heigh	t No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	
1 28.08	4237.4	0.0108	6	126.08	19027.8	0.006	9 11	128.85	19446.0	0.0020	16	136.61	20617.9	0.0006	
2 61.42	9269.5	0.0007	7	127.57	19253.4	0.008	3 12	128.95	19461.4	0.0015	17	137.15	20698.2	0.0007	
3 73.40	11077.5	0.0009	8	127.80	19287.5	0.005	4 13	131.90	19905.9	0.0090	18	150.15	22661.3	0.0004	
4 118.85	17936.2	0.0005	9	128.46	19386.6	0.002	5 14	134.14	20243.8	0.0008	19	154.89	23376.6	0.0004	


10-[(1R,2R)-1,2-Diphenyl-2-hydroxy]ethyl-benzo[g]pteridin-2,4(3H,10H)-dione (S10a)


10-[(1*R*,2*R*)-1,2-diphenyl-2-hydroxy]ethyl-3-methyl-benzo[*g*]pteridin-2,4(3*H*,10*H*)-dione (S10b)





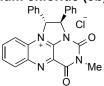


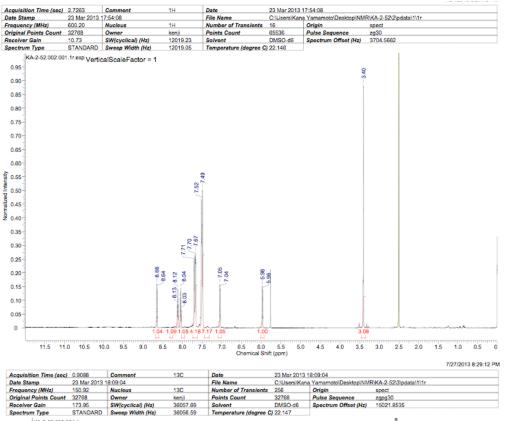
(1S)-1-Phenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[g]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (2a)

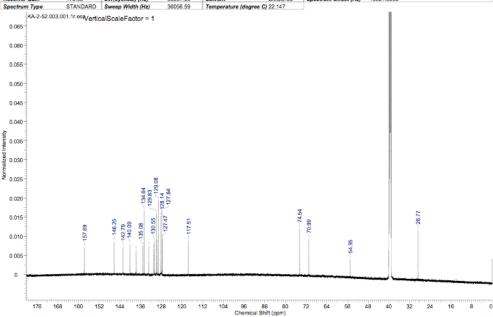
Ph Ph CĪ _0 N ŃН Ν ö 2013/02/18 11:36:12 05 Feb 2013 19 42.40 600.20 Nucle 32768 Oxer in Time (sec) 05 Feb 2013 19:42:40 File Na is grouphts Origin Pulse Sequence Spectrum Offset (Hz). KA-1-57020 D ¥Yar 16 65536 Date Stamp Frequency (MHz) Original Points Count ry (mitz) 600.20 Nucleus Danies Count 32268 Danier Gain 10.73 StR(cyclical) (Hz) 17 ype STANDARD Sweep Woth (Hz) KA-1-57.002.001.1r.esp VerticalScaleFactor = 1 Points C zg30 3702.5 eceiver Gain 12019.23 DMSO 22.052 ee (C) 5.77 1.00 0.95 DMSO 7.52 0.90 0.85 0.80 0.75 148 0.70 0.65 000 0.60 Appendix 0.55 Tpezje 7.76 7.74 7.66 0.45 m ch 0.40 0.35 2.95 5.89 0.30 0.25 8.58 8.58 8.09 8.09 8.00 8.00 8.01 2.0 7.46 8 0.20 0.15 0.10 0.05 0 0.97 0.96 2.014.107.12 0.98 1.00 13 11 8 12 10 9 2 6 cal Shift (ppm) Che neuro lo olocito r Acquisition Time (sec) 0.9088 Date Stamp 05 Feb File Name C:Wser Date 05 Feb 2013 19:29:52 Comment C13 05 Feb 2013 19:29:52 C:\Users\Kana Yamamoto\Desktop\Chiral flavinium salts\sample data\NMR\KA-1-57\1\pdata\1\1r Frequency (MHz) 150.92 Original Points Cou Receiver Gain Spectrum Type Nucleus Owner Number of Transients Points Count 256 32768 Origin Pulse Sequence nt 32768 173.95 130 spect zgpg30 kenji Solvent DMSO-Temperature (degree C) 22.050 SW(cyclical) (Hz) 36057.69 DMSO-d6 Spectrum Offset (Hz) 15020.7539 STANDARD veep Width (Hz) 36056.59 S KA-1-57.001.001.1r.es/VerticalScaleFactor = 1 0.07 0.06 0.05 Per 0.04 127.73 0.03 130.48 54.97 -145.82 -144.31 -139.71 135.90 158.20 74.78 70.42 17.45 0.02 127.33 0.01 0 190 180 170 160 140 110 Cher 100 90 ical Shift (ppm) 80 70 60 40 30 20 10 150 130 120 50
 No.
 (ppm)
 (Hz)
 Height

 19
 144.31
 21779.9
 0.0094

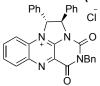
 20
 145.82
 22007.7
 0.0127

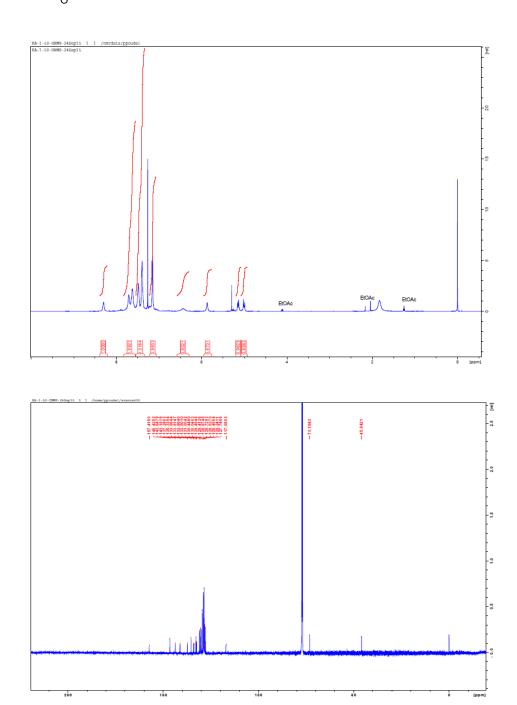

 21
 158.20
 23875.1
 0.0138
 (Hz) 8295.7 10627.4 No. 13 14 15 Height 0.0108 0.0118 0.0136 (ppm) 54.97 70.42 74.78 (ppm) 132.71 134.77 135.23 (Hz) 20028.1 (ppm) 128.22 (Hz) 19351.4 No. Height 0.0215
 Instruction
 Open (12)
 Forger (12)
 20339.5 20408.8
 16
 135.90
 2050.0
 0.0086

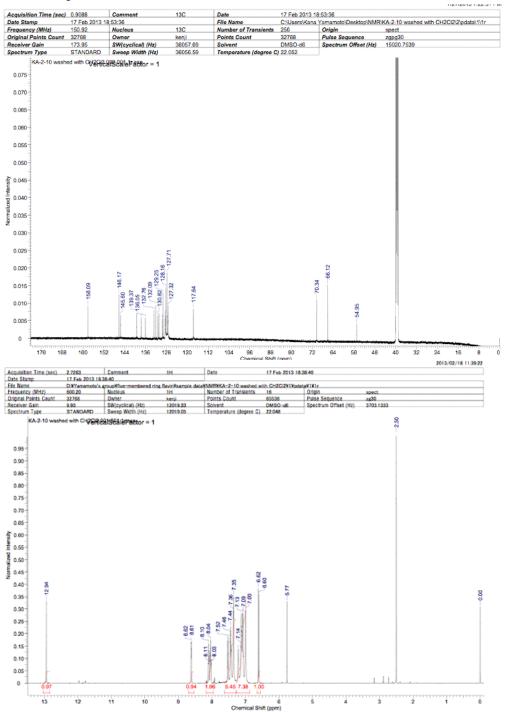

 17
 137.23
 20711.4
 0.0073

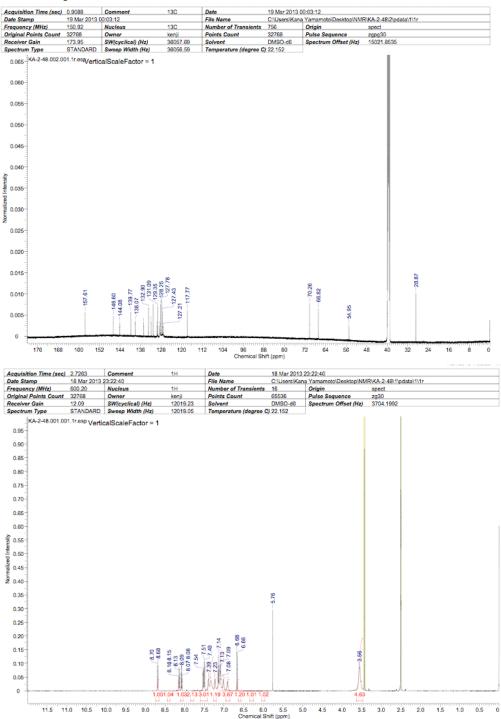

 18
 139.71
 21085.6
 0.0101

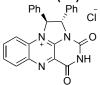
(1*R*,2*R*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3a)

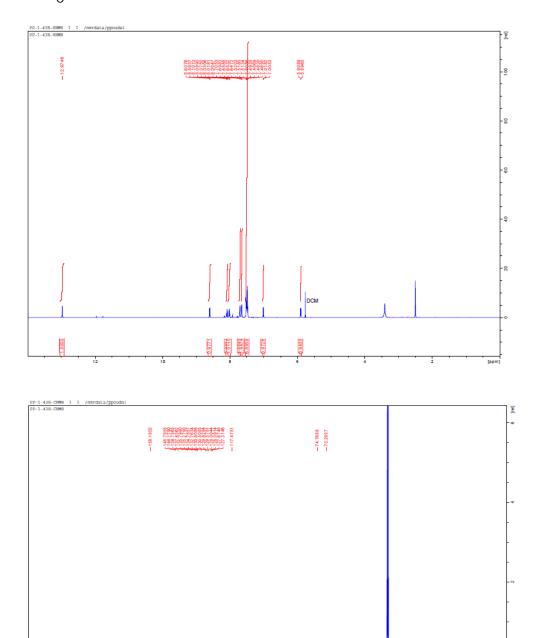

(1*R*,2*R*)-1,2-Diphenyl-3-methyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3b)




(1*R*,2*R*)-1,2-Diphenyl-3-benzyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12ium chloride (3c)


(1*R*,2*S*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (4a)




(1*R*,2*S*)-1,2-Diphenyl-3-methyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (4b)

(1*S*,2*S*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (5a)

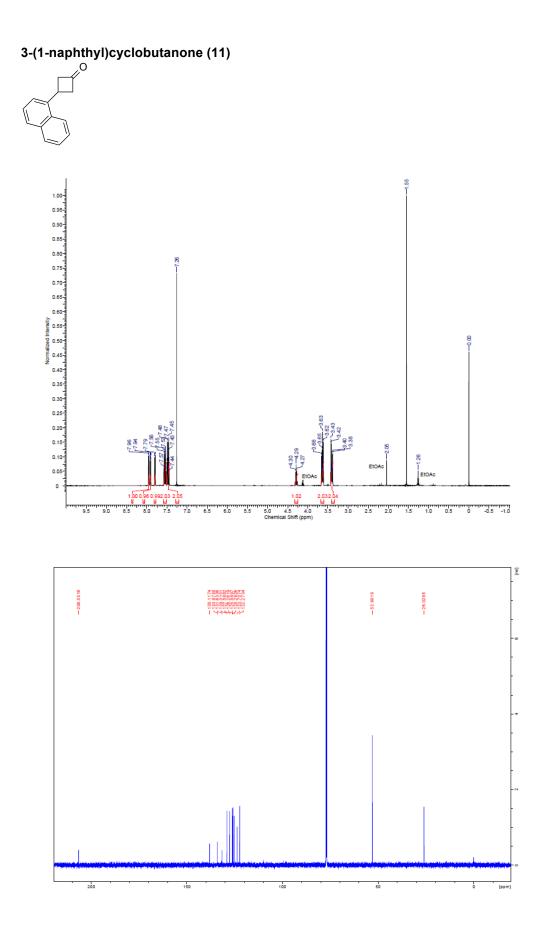
a di

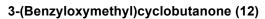
150

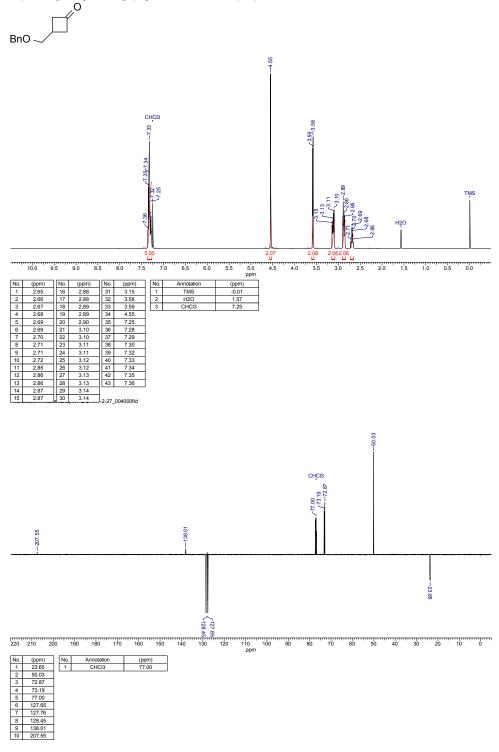
100

200

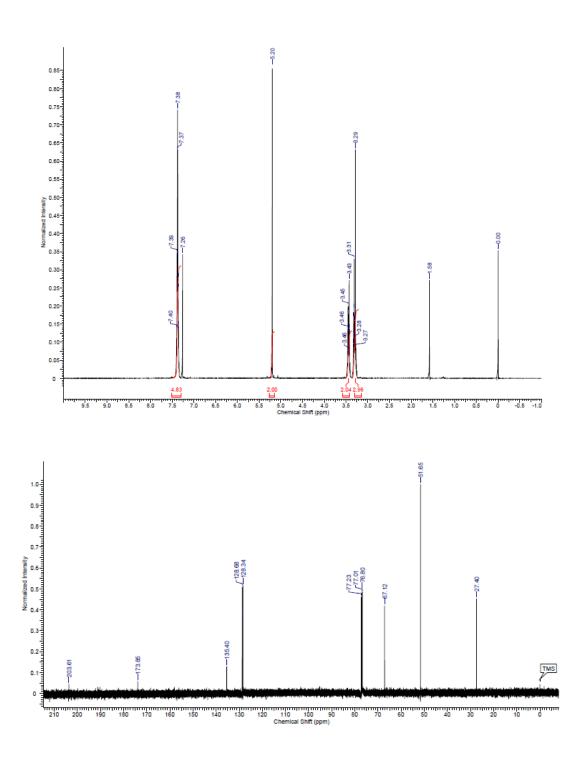
рсм


50

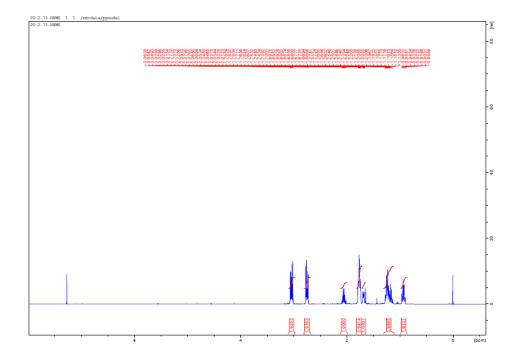

[ppm]

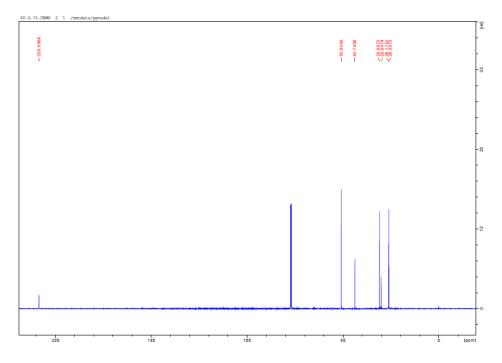

3-Phenylcyclobutanone (10)

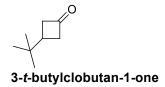
lcqu	isition Time	(sec) 3.	0000	Comm	ient	K	A-2-29-C1	Date		Mar 1 2013	Date Stamp		Mar 1 2013	3			
le N	lame	C	(Users\Kana)	(amamo	to\Desktop	INMR other	ers/KA-2-29-C	1.fid\fid			Frequency (MHz)	599.88				
ucle	NUS	11	н	Numb	er of Trans	sients 1	6	Origina	Points Count	24000	Points Coun	t	32768				
ulse	Sequence	52	Zpul	Receiv	ver Gain	4	2.00	Solvent		CHLOROFORM	A-d						
	trum Offset		006.5615	Spectr	rum Type	S	TANDARD	Sweep	Width (Hz)	8000.00	Temperature	dearee C	AMBIENT 1	TEMPER/	TURE		
	KA-2-29-0				Factor =												
0.2	5																
0.0	5				/1.38 /1.37	7.25 7.26				3.70 3.69 3.67	3.61.3.53 3.61.3.51 3.47 3.47 3.24 3.29 3.29 3.27	3.25					
0.0	5				2.121.9	97.4					353 369 351 369 351 351 352 349 351 352 349 351 352 349 351 352 349 351 352 349 351 352 353 351 352 353 351 352 353 353 353 353 353 353 353 353 353	3.26		l			
			0 8.5	8.0	2.121.9	9874 1.42		3.0 5	5 5.0 Chemical Shift (p	4.5 4.0	656 132 137 130	92 क 87 8 87 8 87 8 87 8 8 8 8 8 8 8 8 8 8 8	2.0	1.5	1.0	0.5	
0	9,	.5 9.	0 8.5	8.0	2.121.9 2.121.9 7.5	98 5 1.42 7.0	6.5 €	3.0 5.	.5 5.0 Chemical Shift (p	4.5 4.0 ppm)	650 101 101 100 100 101 101 1000 10			1.5	1.0	0.5	
0	9, (ppm)	.5 9. (Hz)	0 8.5 Height	8.0 No.	2.12 1.9 7.5 (ppm)	92 85 1.42 7.0 (Hz)	6.5 € Height	3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	5 5.0 Chemical Shift (p ipm) (Hz)	4.5 4.0 ppm) Height	275 195 195 195 195 195 197 190 3.5 3.5 3.7 No. (ppm)	(Hz)	Height	1.5	1.0	0.5	
0	9, (ppm) 3.24	.5 9. (Hz) 1940.7	0 8.5 Height 0.0035	8.0 No. 12	2.121.9 2.121.9 7.5 (ppm) 3.27	92 151.42 7.0 (Hz) 1963.9	6.5 € Height 0.0296	3.0 5. No. (p 23 3	5 5.0 Chemical Shift (p pm) (Hz) 1.50 2101.9	4.5 4.0 pm) Height 1 0.0192	CE FZC E E	(Hz) 2220.8	Height 0.0091	1.5	1.0	0.5	
0	(ppm) 3.24 3.24	.5 9. (Hz) 1940.7 1943.9	0 8.5 Height 0.0035 0.0226	8.0 No. 12 13	8 2.12 1.9 7.5 (ppm) 3.27 3.28	9 5 1.42 1963.9 1967.8	6.5 € Height 0.0296 0.0104	No. (p 23 3 24 3	5 5.0 Chemical Shift (p ipm) (Hz) 1.50 2101.9 1.51 2103.8	1 4.5 4.0 ppm) Height 1 0.0192 0.0063	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	(Hz) 2220.8 2228.8	Height 0.0091 0.0034	1.5	1.0	0.5	
0	9, (ppm) 3.24 3.24 3.24	5 9. (Hz) 1940.7 1943.9 1945.9	0 8.5 Height 0.0035 0.0226 0.0072	8.0 No. 12 13 14	8 2.121.5 7.5 (ppm) 3.27 3.28 3.29	951.42 7.0 (Hz) 1963.9 1967.8 1971.5	6.5 € Height 0.0296 0.0104 0.0330	No. (p 23 3 24 3 25 3	5 5.0 Chemical Shift (p 1.50 2101.9 1.51 2103.8 1.51 2106.0	4.5 4.0 ppm) Height 1 0.0192 0.0083 0.0074	B C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	(Hz) 2220.8 2228.8 4349.7	Height 0.0091 0.0034 0.0121	1.5	1.0	0.5	
0	9, (ppm) 3.24 3.24 3.24 3.24 3.25	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6	0 8.5 Height 0.0035 0.0226 0.0072 0.0107	8.0 No. 12 13 14 15	2.121.5 7.5 (ppm) 3.27 3.28 3.29 3.29	1951.42 1963.9 1967.8 1971.5	6.5 6 Height 0.0296 0.0104 0.0330 0.0041	No. (p 23 3 24 3 25 3 26 3	5 5.0 Chemical Shift (p 1,50 2101.9 1,51 2103.8 1,51 2106.0 1,51 2107.7	4.5 4.0 ppm) Height 1 0.0192 0.0063 0.0074 0.0225	S S	(Hz) 2220.8 2228.8 4349.7 4354.9	Height 0.0091 0.0034 0.0121 0.0626	1.5	1.0	0.5	
0	(ppm) 3.24 3.24 3.24 3.24 3.25 3.25	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6 1949.5	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112	8.0 No. 12 13 14 15 16	2.121.9 7.5 (ppm) 3.27 3.28 3.29 3.29 3.29 3.47	5 1.42 7.0 (Hz) 1967.8 1971.5 1974.9 2084.3	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0047	No. (p 23 3 24 3 26 3 27 3	.5 5.0 Chemical Shift (p pm) (Hz) 1.50 2101.9 1.51 2103.8 1.51 2106.0 1.51 2107.7 1.52 2110.9	1 4.5 4.0 spm) Height 7 0.0192 0.0083 0.0074 0.0225 0.0135	S E	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1	Height 0.0091 0.0034 0.0121 0.0626 0.0284	1.5	1.0	0.5	
0	(ppm) 3.24 3.24 3.24 3.25 3.25 3.25	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6 1949.5 1951.0	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112 0.0230	8.0 No. 12 13 14 15 16 17	8 2.121.9 7.5 (ppm) 3.27 3.28 3.29 3.29 3.47 3.48	1961.42 (Hz) 1963.9 1967.8 1971.5 1974.9 2084.3 2087.0	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0047 0.0283	No. (p 23 3 24 3 25 3 26 3 27 3 28 3	.5 5.0 Chemical Shift (p pm) (Hz) 1.50 2101.9 1.51 2103.8 1.51 2106.0 1.51 2107.7 1.52 2110.9 1.52 2113.1	1 4.5 4.0 ppm) Height 7 0.0192 0.0063 0.0074 0.0225 0.0135 0.0094	B C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4	Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173	1.5	1.0	0.5	T
0	9. (ppm) 3.24 3.24 3.24 3.25 3.25 3.25 3.26	(Hz) 1940.7 1943.9 1945.9 1947.6 1949.5 1951.0 1952.7	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112 0.0230 0.0072	8.0 No. 12 13 14 15 16 17 18	2,12,1,5 (ppm) 3,27 3,28 3,29 3,29 3,48 3,49	6 1.42 1963.9 1967.9 1971.5 1977.9 2087.0 2090.9	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0047 0.0283 0.0099	No. (p 23 3 24 3 25 3 26 3 27 3 28 3 29 3	.5 5.0 Chemical Shift (p. .150 2101.9 .151 2103.8 .151 2106.0 .151 2106.0 .151 2107.7 .152 2110.9 .152 2113.1 .153 2116.3	1 4.5 4.0 ppm) Height 1 0.0192 0.0063 0.0074 0.0225 0.0135 0.0094 0.0231	S S S 0 1.97 1.90 3.5 3.70 34 3.70 35 3.72 36 7.25 37 7.26 38 7.26 39 7.28 40 7.30	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4 4381.2	Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173 0.0351	1.5	1.0	0.5	
0	9, (ppm) 3.24 3.24 3.25 3.25 3.25 3.25 3.26	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6 1949.5 1951.0 1952.7 1955.1	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112 0.0230 0.0072 0.0072	8.0 No. 12 13 14 15 16 17 18 19	2.121.9 7.5 (ppm) 3.27 3.28 3.29 3.29 3.29 3.47 3.49 3.49	51.42 7.0 (Hz) 1967.8 1971.5 1974.9 2084.3 2087.0 2090.9 2093.1	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0283 0.0047 0.0283 0.0099 0.0139	No. (p 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3	5 5.0 Chemical Shift (p. ipm) (Hz) 1.50 2101.9 1.51 2103.8 1.51 2106.0 1.51 2107.7 1.52 2110.9 1.52 2110.1 1.53 2116.3 1.53 2120.4	1 4.5 4.0 ppm) Height 1 0.0192 0.0063 0.0074 0.0225 0.0135 0.0094 0.0231 0.0031	S E <the< th=""> <the< th=""> <the< th=""> <the< th=""></the<></the<></the<></the<>	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4 4381.2 4388.8	Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173 0.0351 0.0586	1.5	1.0	0.5	
0 1 2 3 4 5 6 7 8 9	(ppm) 3.24 3.24 3.24 3.25 3.25 3.25 3.26 3.26 3.26 3.26	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6 1949.5 1951.0 1952.7 1955.1 1955.1	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112 0.0230 0.0072 0.0086 0.0125	8.0 No. 12 13 14 15 16 17 18 19 20	2.121.9 7.5 (ppm) 3.27 3.28 3.29 3.47 3.48 3.49 3.49	51.42 1963.9 1967.8 1971.5 1974.9 2084.3 2087.0 2090.9 2093.5	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0047 0.0283 0.0047 0.0283 0.0099 0.0139 0.0379	I.0 5.0 No. (p 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3	5 5.0 Chemical Shift (p ppm) (Hz) 150 2101.9 151 2103.9 151 2106.0 151 2107.7 152 2110.9 152 2110.9 152 2113.1 153 2120.4 166 2195.9	4.5 4.0 ppm) Height / / 0.0192 0.0063 0.0074 0.0235 0.0031 0.0031	Str Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4 4381.2 4388.8 4410.8</td><td>Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173 0.0351 0.0586 0.0483</td><td>1.5</td><td>1.0</td><td>0.5</td><td></td></thcontr<></thcontrol<></thcontrol<>	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4 4381.2 4388.8 4410.8	Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173 0.0351 0.0586 0.0483	1.5	1.0	0.5	
0 0. 1 2 3 4 5 5 3 7 7 3	9, (ppm) 3.24 3.24 3.25 3.25 3.25 3.25 3.26	5 9. (Hz) 1940.7 1943.9 1945.9 1947.6 1949.5 1951.0 1952.7 1955.1	0 8.5 Height 0.0035 0.0226 0.0072 0.0107 0.0112 0.0230 0.0072 0.0072	8.0 No. 12 13 14 15 16 17 18 19	2.121.9 7.5 (ppm) 3.27 3.28 3.29 3.29 3.29 3.47 3.49 3.49	51.42 7.0 (Hz) 1967.8 1971.5 1974.9 2084.3 2087.0 2090.9 2093.1	6.5 6 Height 0.0296 0.0104 0.0330 0.0041 0.0283 0.0047 0.0283 0.0099 0.0139	No. (p) 23 3 24 3 25 3 26 3 27 3 28 3 29 3 30 3 31 3 32 3	5 5.0 Chemical Shift (p. ipm) (Hz) 1.50 2101.9 1.51 2103.8 1.51 2106.0 1.51 2107.7 1.52 2110.9 1.52 2110.1 1.53 2116.3 1.53 2120.4	4.5 4.0 ppm) Height 1 0.0192 0.0063 0.0074 0.0225 0.0135 0.0094 0.0031 0.0054 0.0019	S E <the< th=""> <the< th=""> <the< th=""> <the< th=""></the<></the<></the<></the<>	(Hz) 2220.8 2228.8 4349.7 4354.9 4357.1 4364.4 4381.2 4388.8	Height 0.0091 0.0034 0.0121 0.0626 0.0284 0.0173 0.0351 0.0586	1.5	1.0	0.5	

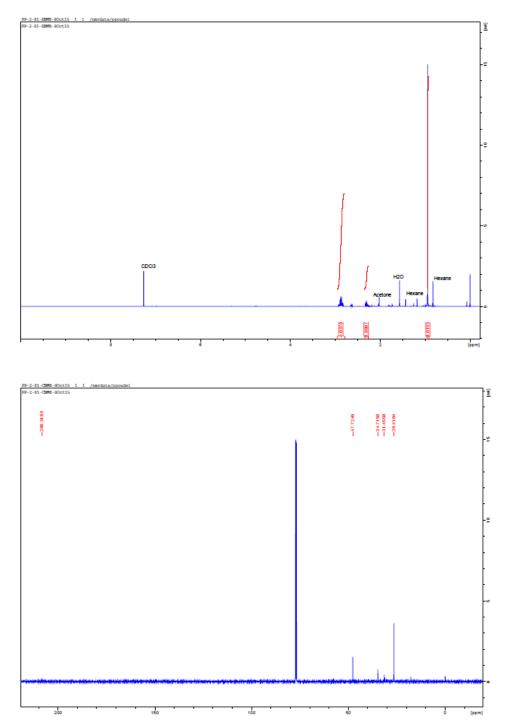


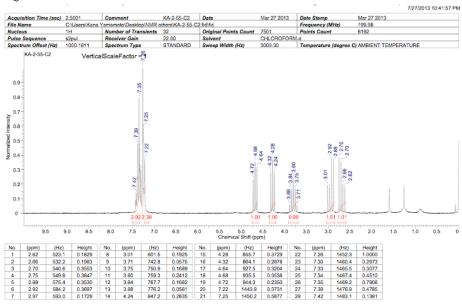
Avance600\nmrdata\kanay\KY-2-27\KY-2-27_001000fid

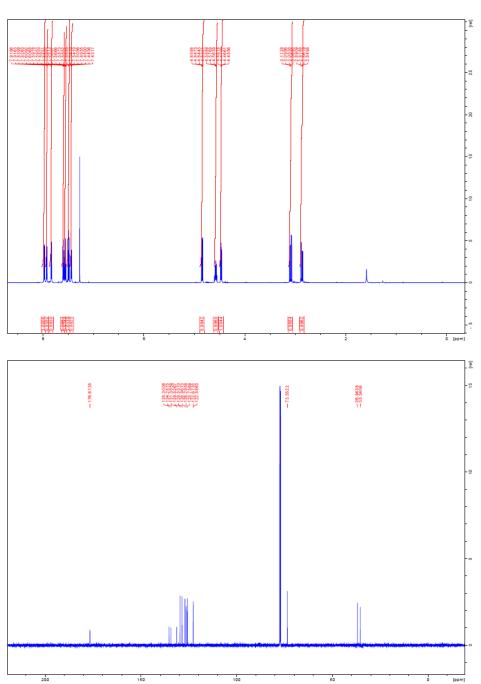

Benzyl-3-oxocyclobutanoate (13)

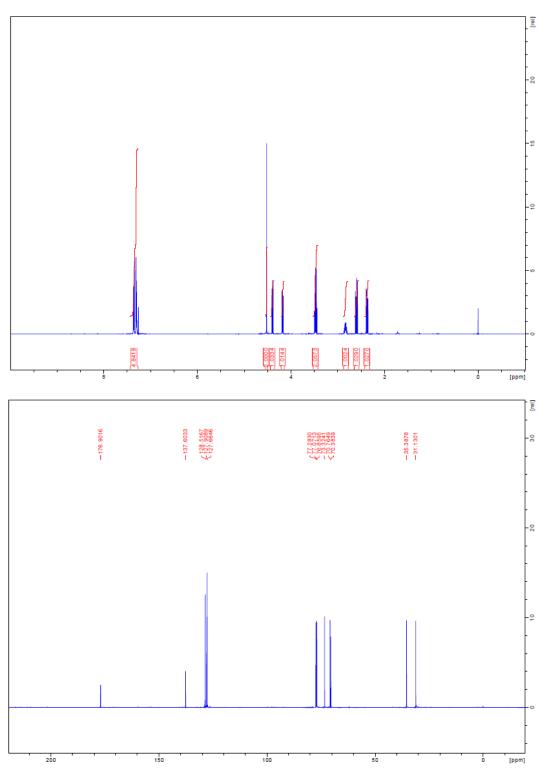


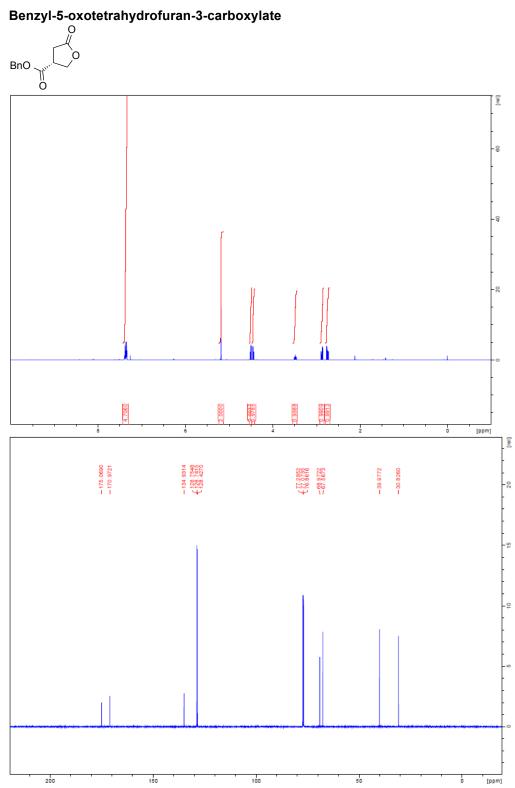



3-cyclohexylcyclobutanone (15)

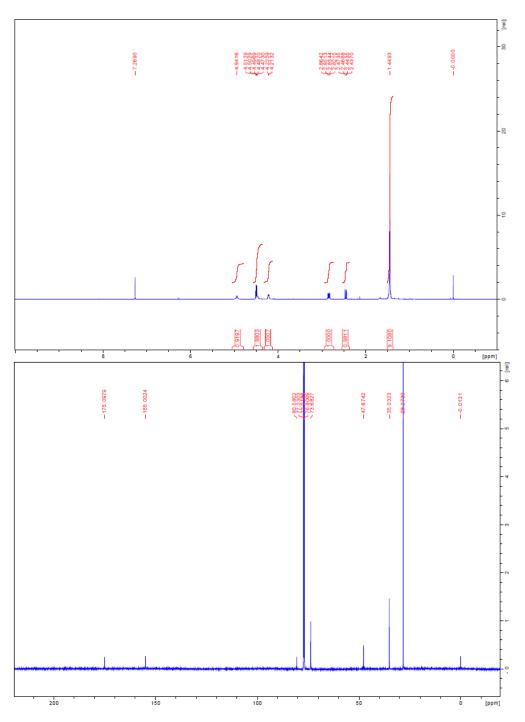


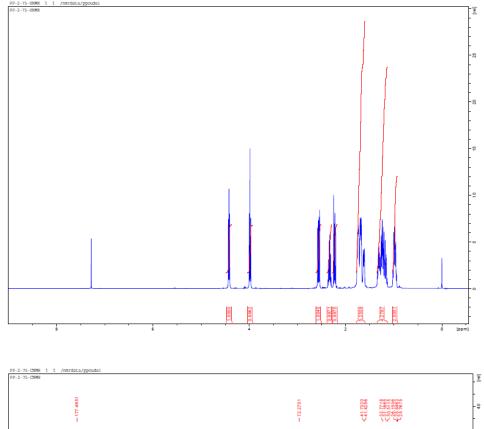

4-phenyldihydrofuran-2(3H)-one

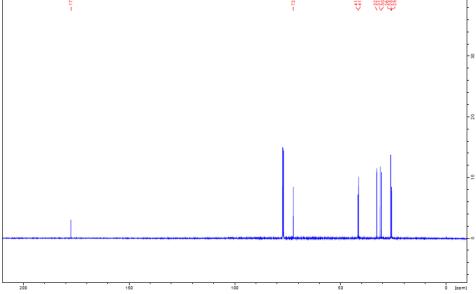

4-(naphthalen-1-yl)dihydrofuran-2(3*H*)-one



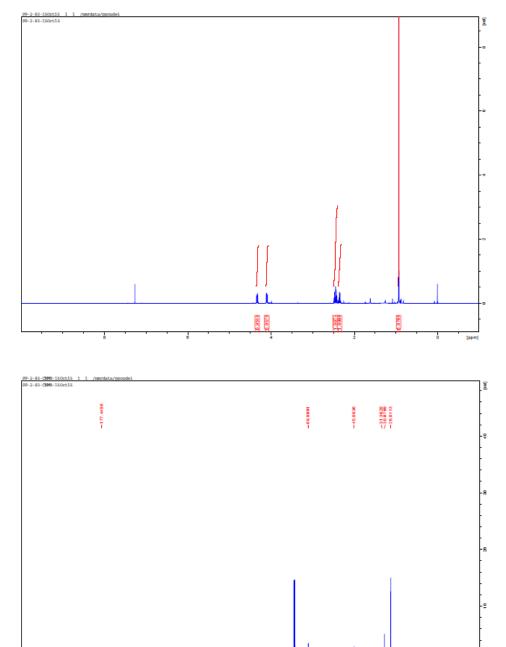
3-(benzyloxymethyl)-γ-butyrolactone




tert-butyl-(5-oxotetrahydrofuran-3-yl)carbamate

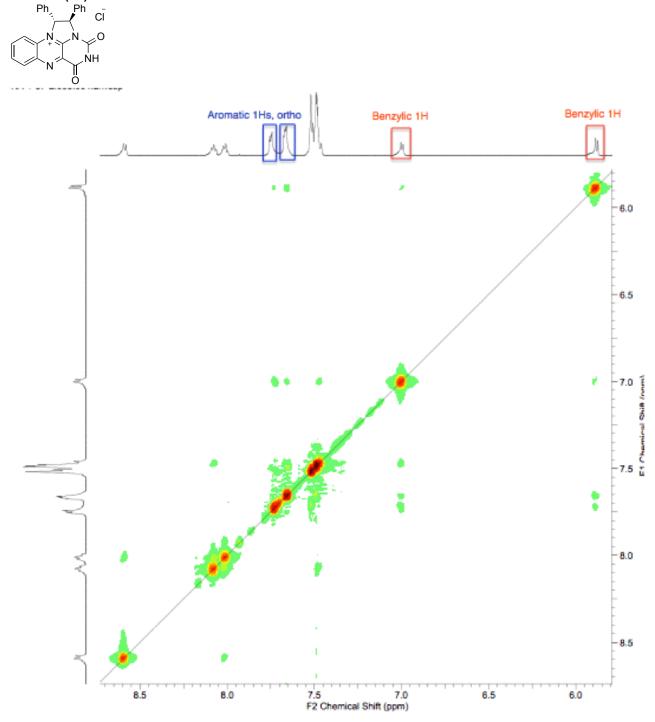


3-cyclohexyl-γ-butyrolactone



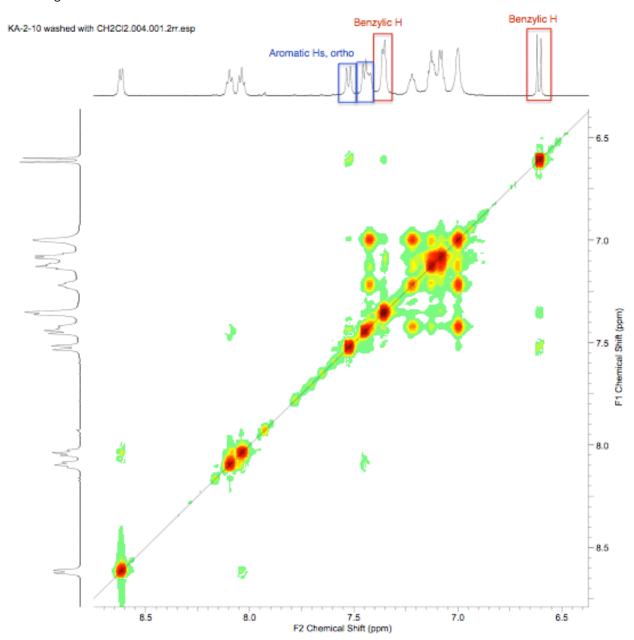
200

150

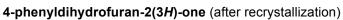


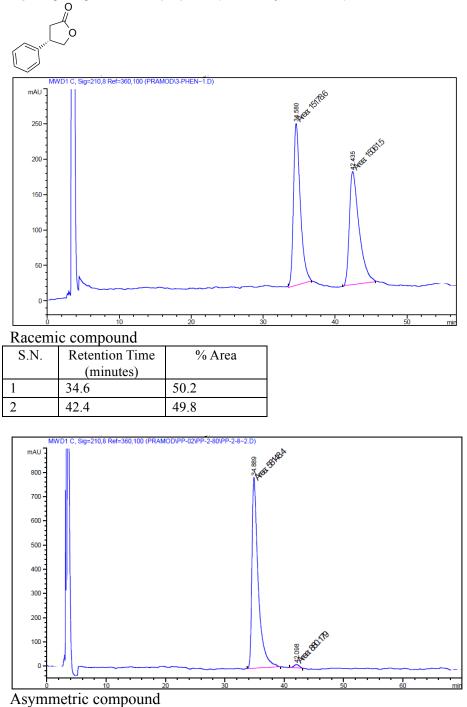
tée so

[ppm]


NOESY spectra of 3a and 4a and determination of relative configuration.

(1*R*,2*R*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (3a)




(1*R*,2*S*)-1,2-Diphenyl-1,2-dihydro-4,6(3*H*,5*H*)-dioxo-benzo[*g*]imidazo[1,2,3-*i*,*j*]pteridin-12-ium chloride (4a)

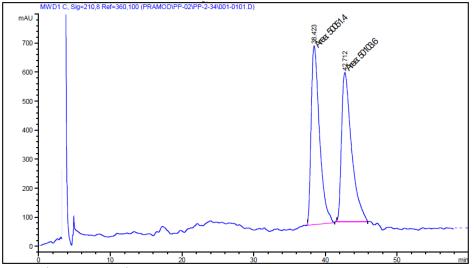
6. HPLC data for γ -lactone products:

S.N.	Retention Time (minutes)	% Area
1	34.9	98.5
2	42.1	1.5

4-(naphthalen-1-yl)dihydrofuran-2(3H)-one WD1 C, Sig=210,8 Ref=360,100 (PRAMOD\PP-02\SIG10004.D) A heat BATP 33.724 BARE mAU⁻ 2000 -1500 1000 -500 -0. 50 40 60 70 Racemic compound Retention Time S.N. % Area (minutes) 43.7 49.7 1 53.6 2 50.3 MWD1 C, Sig=210,8 Ref=360,100 (PRAMOD\PP-02\SIG10005.D) Mer 3455 mAU 2500 • 2000 1500 1000

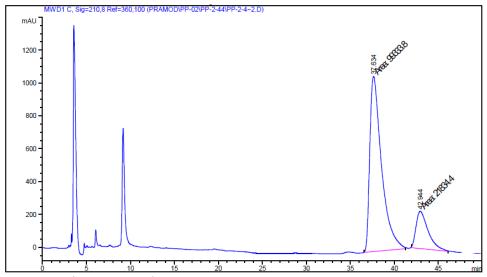
to heat 1082

Asymmetric compound


500

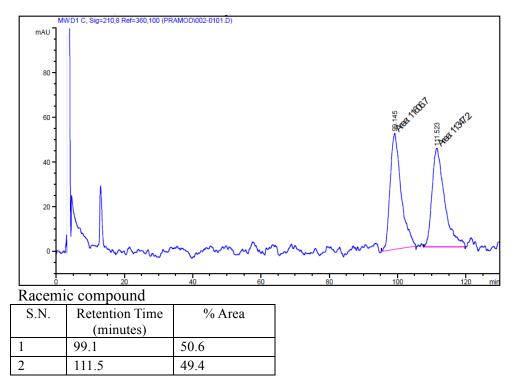
0

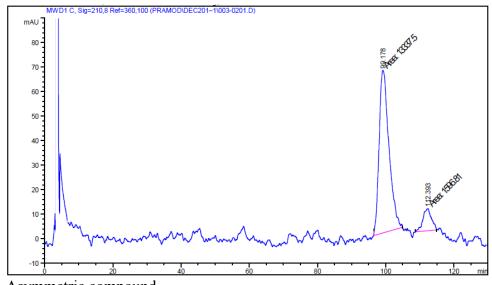
S.N.	Retention Time (minutes)	% Area
1	44.4	96.9
2	54.1	3.1


3-(benzyloxymethyl)-γ-butyrolactone

Racemic compound

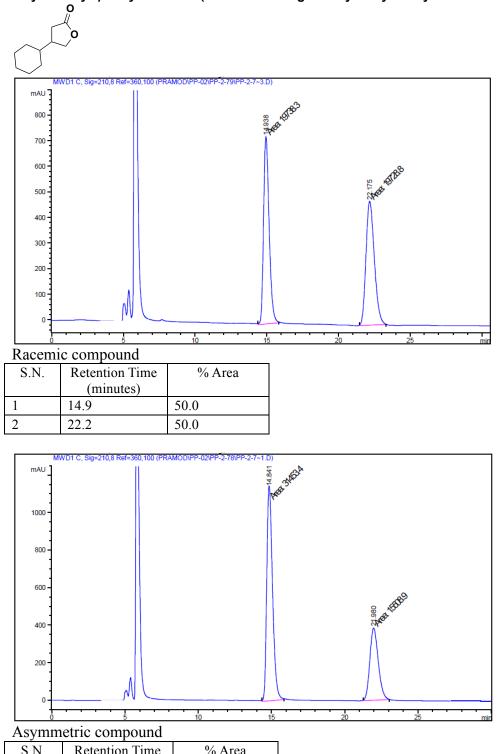
S.N.	Retention Time (minutes)	% Area
1	38.4	50.0
2	42.7	50.0




Asymn	netric	compound	

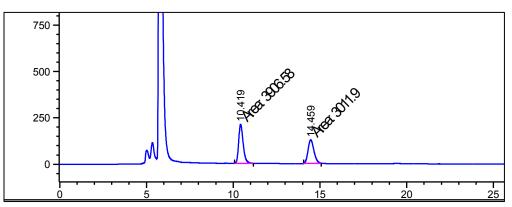
S.N.	Retention Time	% Area
	(minutes)	
1	37.6	82.0
2	42.9	18.0

Benzyl-5-oxotetrahydrofuran-3-carboxylate



Asymmetric compound	l
---------------------	---

S.N.	Retention Time	% Area
	(minutes)	
1	99.2	89.3
2	112.4	10.7



3-cyclohexyl-γ-butyrolactone (after converting into hydroxy benzylamide derivative⁹)

S.N.	Retention Time	% Area
	(minutes)	
1	14.8	67.0
2	22.0	33.0

4-*t*-butyldihydrofuran-2(3*H*)-one² ((after converting into hydroxy benzylamide derivative⁹))

Asymmetric compound

S.N.	Retention Time	% Area
	(minutes)	
1	10.4	56.6
2	14.5	43.4