Supporting Information for

Rotamerism-Driven Large Magnitude Host-Guest Binding Change in a Crown Ether Derivatized Pyridinium-Phenolate Series

Emel Ay, ${ }^{b}$ Nelly Hobeika, ${ }^{a}$ Hélène Chaumeil, ${ }^{b}$ Théophile Tschamber, ${ }^{b}$ Ming Jin, ${ }^{c}$ Davy-Louis Versace, ${ }^{d}$ and Jean-Pierre Malval. ${ }^{*} a$
${ }^{a}$ Institut de Science des Matériaux de Mulhouse CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 680Mulhouse, Mulhouse, France.
E-Mail : jean-pierre.malval@uha.fr
${ }^{b}$ Laboratoire de Chimie Organique et Bioorganique, Université de Haute Alsace, ENSCMu, 3 rue Alfred Werner, 68093, Mulhouse, France.
${ }^{c}$ School of Materials \& Engineering, Tongji University, 4800 CaoAn Road, Shanghai, China.
${ }^{d}$ Institut de Chimie et des Matériaux Paris-Est CNRS-UMR 7182, Paris-Est Créteil Val de Marne, 2-8 rue Henri Dunant, 94320, Thiais, France.

1. Materials and General Characterization Methods.
2. Synthesis of the chromophores.
3. Cyclic voltamogramms (CVs) of the chromophores \qquad Figure S1.
4. Effects of the complexation with K^{+}on the CVs of the ligands \qquad Figure S2.

5. References.

1. Materials and General Characterization Methods.

All reagents for synthesis, $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylguanidine (TMG), potassium thiocyanate (KSCN), tetrabutylammonium tetrafluoroborate $\left(\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBF}_{4}\right)$ were purchased from Aldrich. The solvents for synthesis were dried and purified by standard procedures. THF were freshly distilled from sodium/benzophenone and DMF was dried over $3 \AA$ molecular sieves. The acetonitrile employed for UV-Vis absorption and electrochemistry was Fluka spectroscopic grade.

All melting points were taken on a Kofler bench. IR spectra $\left(\mathrm{cm}^{-1}\right)$ were recorded on a Bruker Vertex 70 spectrometer. ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100.6 MHz) spectra were measured with a Bruker Avance (Serie 400) spectrometer at 295 K. High resolution MS were measured with an Agilent Technologies 6510 (Q-TOF) Spectrometer using a dual ESI source.

The cyclic voltammetry experiments (using a computer-controlled Radiometer Voltalab 6 potentiostat with a three-electrode single-compartment cell; the working electrode was a platinum disk; a saturated calomel electrode (SCE) used as a reference was placed in a separate compartment) were performed at 300 K , in N_{2}-degassed acetonitrile with a constant concentration (0.1 M) of $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{BF}_{4}$. Ferrocene was used as an internal reference.

The absorption measurements were carried out with a Perkin Elmer Lambda 2 double beam UV-Vis spectrophotometers. The linearity of absorbance at $\lambda_{\text {MAX }}$ as a function of concentration was checked to assert that all chromophores do not aggregate for concentration below 0.1 mM in acetonitrile.

The pK_{a} values of the chromophores have been determined by UV-Visible absorption methods. The measurements are performed in aqueous medium (acetonitrile / water: 1v / 1v). A large excess of tetramethyl guanidine base $(0.02 \mathrm{M})$ is initially added in the solution containing the chromophore. Aliquots of a concentrated solution of hydrochloric acid (0.2 M) are gradually added to decrease the pH . A typical evolution of the absorption spectrum of T-C as function of the pH is illustrated in the Figure 1.

Figure 1. pH dependence of the absorption spectrum of T-C.
(solvent : ACN/Water 1v/lv)

2. Synthesis of the chromophores.

The detailed synthesis and characterization of model chromophores $\mathbf{P}-\mathbf{M}$ and $\mathbf{T}-\mathbf{M}$ have been previously reported in ref. ${ }^{1}$. The synthetic route for the synthesis of crown ether derivatives is depicted in the following scheme:

P-C, T-C
(a) $\mathrm{I}_{2}, \mathrm{Ag}_{2} \mathrm{CO}_{2} \mathrm{CF}_{3}, \mathrm{CHCl}_{3}$, r.t., overnight, 90%. (b) $\mathrm{PdP}\left(\mathrm{Ph}_{3}\right)_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{THF}$, reflux, overnight, $70.5 \%(\mathbf{P}-3)$ and 55.5% (T-3) . (c) EtSH, NaH, DMF, $100^{\circ} \mathrm{C}$, overnight, 78% (P-4) and 64% (T-4). (d) MeI, acetone, reflux, overnight, 95% (P-5) and 63.5% (T-5). (e) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{MeOH}$, r.t., $72 \%(\mathbf{P}-\mathrm{C})$ and $66 \%(\mathbf{T}-\mathbf{C})$.

The intermediate compounds, namely 2^{\prime} 'methoxy- 1 ', 3 '-xylyl-18-crown- $5,{ }^{2}$ tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine ${ }^{3}$ and 3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine ${ }^{4}$ were prepared using previously reported procedures ${ }^{2-4} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was prepared according to reference ${ }^{5}$ and used directly or within three months at longest while stored under N_{2} at $-30^{\circ} \mathrm{C}$.

The known 2'-methoxy-1', 3'-xylyl-18-crown-5 was first para iodinated by treatment with iodine in dichloromethane in presence of silver trifluoroacetate (step a in scheme). Then, the following four step, namely the cross-coupling reactions, the oxygen deprotections of biaryls, the quaternizations of pyridine and the deprotonations were performed under the previously described conditions ${ }^{4}$.

5-Iodo-2-methoxy-1,3-xylyl-18-crown-5 (1).

To a solution of $100 \mathrm{mg}(0.3 \mathrm{mmol})$ of 2'-methoxy-1',3'-xylyl-18-crown-5 in chloroform (3.6 mL) were added, under Ar , first $\mathrm{AgCO}_{2} \mathrm{CF}_{3}\left(81 \mathrm{mg}, 1.2\right.$ equiv), then, a solution of I_{2} (93.3 $\mathrm{mg}, 1.2$ equiv) in chloroform (3.6 mL). The reaction mixture was stirred at room temperature overnight. The suspended silver salts were then filtered off. The filtrate was successively washed with aqueous saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and water. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure Purification by column chromatography (cyclohexane/AcOEt 1:9 then AcOEt/MeOH 9:1) afforded pure $\mathbf{1}$ as a colourless solid (125 $\mathrm{mg}, 90 \%$). M.P. $96{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.38-3.52(\mathrm{~m}, 8 \mathrm{H}), 3.54-3.70(\mathrm{~m}$, 8 H), $4.11(\mathrm{~s} \mathrm{3H}), 4.50(\mathrm{~s}, 4 \mathrm{H}), 7.58(\mathrm{~s} 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=65.2$ (1C), 68.4 (2C), 68.7 (2C), 70.2 (4C), 70.8 (2C), 86.4 (1C), 134.5 (2C), 140.6 (2C), 159.6 (1C) ppm. IR (KBr): $v=781,848,868,946,990,1024,1098,1223,1241,1268,1349,1429,1469,2867$ cm^{-1}. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NNO}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 470.1034$; found 470.1033 .

Suzuki-Miyaura cross-coupling reaction.

Under an atmosphere of Ar, to a solution of $\mathbf{1}$ (1 equiv.) in anhydrous THF (50 mL per mmol of $\mathbf{1}$) were successively added, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.2 equiv.), boronic ester P-2 or T-2 (1.2 equiv.), and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.08 equiv.) were. The reaction mixture was refluxed overnight. The suspension was then filtered through Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated under reduced pressure and the residue was purified by chromatography on silicagel to afford pure $\mathbf{P - 3}$ and T-3.

5-(Pyridin-4'-yl)-2-methoxyl-1,3-xylyl-18-crown-5 (P-3).

After purification by chromatography on silicagel (cyclohexane/AcOEt, 1:9 then $\mathrm{AcOEt} / \mathrm{MeOH}, 9: 1$), compound $\mathbf{P - 3}(125 \mathrm{mg}, 70 \%)$ was obtained as colourless crystals from 1 ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.43-3.54(\mathrm{~m}, 8 \mathrm{H})$, 3.57-3.70 (m, $8 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 4 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H}), 7.64\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta=65.3(1 \mathrm{C}), 68.8(2 \mathrm{C}), 69.2(2 \mathrm{C}), 70.2(2 \mathrm{C})$, 70.25 (2C), 70.8 (2C), 121.5 (2C), 130.6 (2C), 132.7(1C), 132.8 (2C), 147.8 (1C), 150.0 (2C), 160.7 (1C) ppm. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 421.2333$; found 421.2330 .

5-[2',6'-Dimethyl-(pyridin-4'-yl)]-2-methoxyl-1,3-xylyl-18-crown-5 (T-3).

After purification by chromatography on silicagel (cyclohexane/AcOEt, 1:9 then AcOEt/MeOH, 9:1), compound T-3 ($352 \mathrm{mg}, 55.5 \%$) was obtained as colourless crystals from $1(667 \mathrm{mg}, 1.5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.07(\mathrm{~s}, 6 \mathrm{H}), 3.45-3.60(\mathrm{~m}, 8 \mathrm{H})$, 3.60-3.70 (m, 8H), $4.19(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{sl}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=17.6$ (2C), 65.1 (1C), 68.6 (2C), 69.2 (2C), 70.3 (4C), 70.8 (2C), 131.1 (2C), 131.7 (2C), 132.4 (2C), 132.6 (1C), 148.3 (2C), 148.6 (1C), 158.9 (1C) ppm.HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 449.2646$; found 449.2657.

Phenols deprotection.

Under an atmosphere of Ar, EtSH (7 equiv.) was added dropwise to NaH (8 equiv.) suspended in DMF (14 mL per mmol of $\mathbf{P}-\mathbf{3}$ or T-3). On completion of the H_{2} emission, $\mathbf{P}-\mathbf{3}$ or T-3 (1 equiv.) was introduced in the reaction mixture. After an overnight stirring at $100{ }^{\circ} \mathrm{C}$, $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL}$ per mmol of $\mathbf{P}-3$ or T-3), aqueous $\mathrm{HCl}(1 \mathrm{M}, 8 \mathrm{~mL}$ per mmol of $\mathbf{P}-\mathbf{3}$ or $\mathbf{T}-3)$, and a phosphate buffer $(0.5 \mathrm{M}, \mathrm{pH}=2)$ were successively added. The aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers ($\mathrm{pH}=6.5$) were extracted twice with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. The solution was concentrated under reduced pressure and the residue was purified by chromatography on silicagel (cyclohexane/AcOEt) to afford pure P-4 or T-4.

5-(Pyridin-4'-yl)-2-hydroxy-1,3-xylyl-18-crown-5 (P-4).

After purification by chromatography on silicagel (cyclohexane/AcOEt, 1:9), compound P-4 ($24 \mathrm{mg}, 78 \%$) was obtained as colourless crystals from $\mathbf{P}-3(32 \mathrm{mg}, 0.08 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.63-3.81(\mathrm{~m}, 16 \mathrm{H}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 7.45(\mathrm{~s}, 2 \mathrm{H}), 7.48\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.59\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right) \quad$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=69.4$ (2C), 70.1 (2C), 70.3 (2C), 70.38 (2C), 70.7 (2C), 121.0 (2C), 125.6 (2C), 128.2 (2C), 129.0 (1C), 147.8 (1C), 150.0 (2C), 157.0 (1C) ppm. HRMS (ESI-QTof) : calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 412.1731$; found 412.1736 .

5-[2',6'-Dimethyl-(pyridin-4'-yl)]-2-hydroxy-1,3-xylyl-18-crown-5 (T-4).

After purification by chromatography on silicagel (cyclohexane/AcOEt, 1:9), compound T-4 (68 mg, 64%) was obtained as colourless crystals from T-3 ($109 \mathrm{mg}, 0.25 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.90-20.5(\mathrm{sl}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.80(\mathrm{~m}, 16 \mathrm{H}), 4.69(\mathrm{~s}, 4 \mathrm{H})$, $6.87(\mathrm{~s}, 2 \mathrm{H}), 8.25(\mathrm{sl}, 1 \mathrm{H}), 8.31(\mathrm{sl}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.5(2 \mathrm{C})$, 69.3 (2C), 70.1 (2C), 70.4 (2C), 70.5 (2C), 70.7 (2C), 125.2 (2C), 128.7 (1C), 129.3 (2C), 129.8 (1C), 131.4 (1C), 148.2 (2C), 149.1 (1C), 155.3 (1C) ppm. IR (KBr): $v=879,1023$, 1160, 1247, 1263, 1354, 1469, 2865, $3363 \mathrm{~cm}^{-1}$. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NaO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+} 440.2044$; found 440.2046 .

Alkylation of pyridine.

Under an atmosphere of Ar, to a suspension of the biaryl compounds P-4 or T-4 (1 equiv.) in acetone (16 mL per mmol of P-4 or T-4), iodomethane (4 equiv.) was added dropwise. The reaction mixture was refluxed overnight. The solvent was then removed under reduced pressure. The residue was washed first with $\mathrm{Et}_{2} \mathrm{O}$ then with AcOEt . The crude iodides $\mathbf{P}-5$ or T-5 were not further purified.

4-[17'-Hydroxy-2', $5^{\prime}, 8^{\prime}, 11$ ', 14 '-pentaoxa<15>metacyclophanyl]pyridinium iodide (P-5).
Compound P-5 (32 mg, 98%) was obtained as colourless crystals from P-4 ($24 \mathrm{mg}, 0.06$ mmol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.69(\mathrm{~s}, 8 \mathrm{H}), 3.73-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 4 \mathrm{H})$, $4.29(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{~s}, 4 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 8.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right.$, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.8$ (1C), 69.8 (4C), 69.9 (2C), 70.4 (2C),
70.5 (2C), 123.5 (2C), 123.7 (2C), 126.3 (1C), 130.2 (2C), 144.7 (2C), 153.8 (1C), 160.4 (1C) ppm. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{6}\left[\mathrm{M}^{*}\right]^{+} 404.2068$; found 404.2067.

3,5-Dimethyl-4-[17'-hydroxy-2',5', $8^{\prime}, 11$ ',14'-pentaoxa<15>metacyclophanyl]pyridinium iodide (T-5).

Compound T-5 ($17 \mathrm{mg}, 63.5 \%$) was obtained as colourless hygroscopic crystals from T-4 ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29(\mathrm{~s}, 6 \mathrm{H}), 3.55-3.82(\mathrm{~m}, 16 \mathrm{H}), 4.58$ $(\mathrm{s}, 3 \mathrm{H}), 4.72(\mathrm{~s}, 4 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 8.41(\mathrm{sl}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , CDCl_{3}): $\delta=18.3$ (2C), 48.4 (1C), 69.5 (2C), $70.0(2 \mathrm{C}), 70.1$ (2C), 70.4 (2C), 70.7 (2C), 124.4 (1C), 126.2 (2C), 128.1 (2C), 138.0 (2C), 142.4 (2C), 157.0 (1C), 159.0 (1C) ppm.

Deprotonation.

$\mathrm{Ag}_{2} \mathrm{O}$ (2 equiv.) was added to a solution of $\mathbf{P}-\mathbf{5}$ or $\mathbf{T} \mathbf{- 5}$ in MeOH (11 mL per mmol of $\mathbf{5 a - b}$). After 10 min stirring, excesses of both $\mathrm{Ag}_{2} \mathrm{O}$ and AgI precipitated. The suspension was then centrifugated. The supernatant organic phase was centrifugated once more and was then evaporated under reduced pressure to afford the pure pyridinium phenolates $\mathbf{P}-\mathbf{C}$ or $\mathbf{T} \mathbf{- C}$.

4-[20'-(17'-Oxydo)-2', $\left.5^{\prime}, 8^{\prime}, 11^{\prime}, 14^{\prime}-p e n t a o x a<15>m e t a c y c l o p h a n y l\right] p y r i d i n i u m ~(P-C)$.

Compound P-C ($17.5 \mathrm{mg}, 72 \%$) was obtained as red-brown crystals from $\mathbf{P - 5}(32 \mathrm{mg}, 0.06$ $\mathrm{mmol})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.38-3.52(\mathrm{~m}, 8 \mathrm{H}), 3.57-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.76$ $(\mathrm{s}, 4 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 4 \mathrm{H}), 7.75(\mathrm{~s}, 2 \mathrm{H}), 7.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=46.3$ (1C), 70.3 (4C), 71.2 (2C), 71.5 (2C), 71.6 (2C), 114.5 (1C), 120.0 (2C), 130.4 (2C), 131.9 (2C), 144.2 (2C), 156.1 (1C), 176.6 (1C) ppm. IR (KBr): $v=495,529,827,1017,1074,1090,1103,1186,1312,1381$, 1454, 1482, 1590, 2862, 3272, 3272, $3499 \mathrm{~cm}^{-1}$. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]+426.1887$; found 426.1885 .

3,5-Dimethyl-4-[20'-(17'-oxydoy)-2',5', $8^{\prime}, 11$ ',14'-pentaoxa<15>metacyclophanyllpyridinium (T-C).

Compound T-C ($10 \mathrm{mg}, 65 \%$) was obtained as red crystals from T-5 ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.33$ (s, 6H), 3.49 (s, 8H), 3.53-3.63 (m, 4H), 3.64-3.78 (m, $4 \mathrm{H}), 4.25(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{~s}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=18.8$ (2C), 47.7 (1C), $70.0(2 \mathrm{C}), 70.4$ (2C), 71.5 (4C), 71.6 (2C), 118.9 (1C),
128.6 (2C), 131.3 (2C), 138.6 (2C), 143.7 (2C), 161.5 (1C), 167.2 (1C) ppm. IR (KBr): $v \square=$ 1015, 1106, 1178, 1307, 1335, 1354, 1415, 1468, 1596, 1641, 2868, $3487 \mathrm{~cm}^{-1}$. HRMS (ESI-Q-Tof) : calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 432.2380$; found 432.2382 .

3. Cyclic voltamogramms of the chromophores.

Figure S1. Cyclic voltamogramms of chromophores in acetonitrile $+\left(\mathrm{nBu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})\right.$ on platinum electrode at $100 \mathrm{mV} \mathrm{s}^{-1}$ (concentration of chromophores: $10^{-3} \mathrm{M}$).
4. Effects of the complexation with K^{+}on the CVs of the ligands.

Figure S2. Experimental CVs for acetonitrile solutions of ligands in presence of KSCN. ($\mathrm{v}=100 \mathrm{mV} \mathrm{s}^{-1}$ and concentration of ligands : $10^{-3} \mathrm{M}$).

5. References.

1. V. Diemer, H. Chaumeil, A. Defoin, A. Fort, A. Boeglin and C. Carré, Eur. J. Org. Chem., 2006, 2006, 2727-2738.
2. C. M. Browne, G. Ferguson, M. A. McKervey, D. L. Mulholland, T. O'Connor and M. Parvez, J. Am. Chem. Soc., 1985, 107, 2703-2712.
3. C. Coudret, Synth. Commun., 1996, 26, 3543-3547.
4. E. Ay, H. Chaumeil and A. Barsella, Tetrahedron, 2012, 68, 628-635.
5. F. A. Cotton, Inorg. Synth., 1972, 13, 121-124.
