Supporting Information

Photoactive WS₂ nanosheets bearing plasmonic nanoparticles for visible light-driven reduction of nitrophenol

Hye-Rim Lee,^a Jung Hyun Park,^a Faizan Raza,^a DaBin Yim,^a Su-Ji Jeon,^a Hye-In Kim,^a Ki Wan Bong^{*b} and Jong-Ho Kim^{*a}

^a Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea

^b Department of Chemical & Biological Engineering, Korea University, Seoul 136-713, Republic of Korea

* To whom correspondence should be addressed: kjh75@hanyang.ac.kr and bong98@korea.ac.kr

The content of supporting information:

1. Materials		S2
2. Instruments		S2
3. Experimental method		S2
A. Preparation of WS ₂ na	nosheets	
B. Synthesis of AgNP@W	VS ₂ nanohybrids	
C. Synthesis of AgNP col	loid	
D. Photocatalytic reduction	on of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP)	
4. Supplementary figures		S5
5. References -		S10

1. Materials

All reagents and solvents were obtained commercially and used without further purification. Tungsten (IV) sulfide (WS₂), silver nitrate (AgNO₃), polyvinylpyrrolidone (PVP), octylamine (OA), 4-nitrophenol (4-NP), and sodium borohydride (NaBH₄) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethylene glycol (EG), ethanol (EtOH) and *N*-methyl-2pyrrolidone (NMP) were purchased from Dae-Jung Chemicals (Busan, Korea).

2. Instruments

The UV-vis absorption spectra of WS₂, AgNPs and AgNP@WS₂ hybrids were measured using a UV-vis spectrometer (Mega-2100, Scinco, Korea). The photoluminescence spectrum was obtained by a spectrofluorometer (Nano Log®, Horiba Scientific, Japan). The images of WS₂, AgNPs and AgNP@WS₂ were acquired by field emission transmission electron microscope (FE-TEM 200kV with EDS, JEM-2100F, JEOL, Japan). X-ray photoelectron spectroscopy (XPS) spectra were obtained using X-ray photoelectron spectrometer (AXIS Nova, Kratos Analytical, UK) with a monochromatic Al-Kα X-ray source.

3. Experimental method

A. Preparation of WS₂ nanosheets

A modified liquid exfoliation method was used for the preparation of WS_2 nanosheets. A 120 mg portion of bulk WS_2 powder was added to 120 mL of NMP. Then, the mixture was sonicated in an ice bath for 90 min using an ultrasonic probe sonicator (100 W power). The

resulting dispersion was finally centrifuged at 300 g for 1 h to collect exfoliated WS_2 nanosheets. The NMP solvent was then exchanged to EG for the synthesis of AgNP@WS₂ nanohybrids by a centrifugation (20,000 g, 30 min) and redispersion method.

B. Synthesis of AgNP@WS2 nanohybrids

In order to introduce a large size of AgNPs on the surface of WS₂ nanosheets (LAgNP@WS₂), 15 mL of WS₂/EG solution (0.36 mM) was added to a 50 mL round-bottom flask with stirring. After 1 min, 1.5 mg of PVP and 2.31 mg of AgNO₃ were added to the as-prepared WS₂/EG solution (0.36 mM, 15 mL) with stirring, followed by the addition of 11.24 μ L of OA (d: 0.782 g/mL). The reaction mixture was then sufficiently stirred for 30 min at 25 °C. The final product was washed with EtOH by centrifugation (10,000 g, 20 min, three times), and it was stored in EtOH for further use.

For the preparation of sAgNP@WS₂ nanohybrids, 15 mg of PVP and 0.58 mg of AgNO₃ were added to the WS₂/EG solution (0.36 mM, 15 mL), and the rest of the procedures was same with that for LAgNP@WS₂. The flowchart depicting the procedures for the preparation of both AgNP@WS₂ nanohybrids is shown below.

C. Synthesis of AgNP colloid

In order to synthesize a AgNP colloid, 1.5 mg of PVP and 2.31 mg of AgNO₃ were added to the 15 mL of EG, followed by the addition of 11.24 μ L of OA (d: 0.782 g/mL). The reaction mixture was then sufficiently stirred for 30 min at 25 °C. The final product was washed with EtOH three times by centrifugation (15,000 g, 20 min).

D. Photocatalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP)

A 1.82 μ g of LAgNP@WS₂ (5 mol% silver) and 34.8 μ g of 4-NP were added to 2.5 mL of deionized water (H₂O). In case of sAgNP@WS₂, a 2.78 μ g of catalyst (5 mol% silver) and 34.8 μ g of 4-NP were added to 2.5 mL of deionized H₂O. A 0.5 mL portion of NaBH₄ aqueous solution (16.7 mM) was added to the reaction solution, and the reaction mixture was irradiated by a 300 W Xe lamp with 400 or 600 nm long-pass filter. Then, the reaction progress was monitored at every 10 min using a UV-vis spectrometer. In order to investigate the effect of light power density and wavelength on the catalytic activity in the reduction reaction of 4-NP, a 2.5 mol% of LAgNP@WS₂ catalyst was used under the same conditions.

In order to evaluate the catalytic activity of an AgNP colloid, a 1.34 μ g of as-synthesized AgNPs (5 mol% silver) were employed as a catalyst under the same reaction conditions as mentioned above. A 3.1 μ g of WS₂ nanosheets (5 mol% tungsten disulfide) were also used to evaluate their catalytic activity under the same reaction conditions.

4. Supplementary figures

Figure S1. TEM images of (a) exfoliated WS_2 nanosheets (insest: FFT pattern of WS_2 nanosheets), and (b) their absorption and photoluminescence (PL) spectra.

Figure S2. TEM images of (a) sAgNP@WS₂ and (b) LAgNP@WS₂ nanohybrids.

Figure S3. The UV-vis absorption spectra of WS_2 nanosheets, $sAgNP@WS_2$, and $LAgNP@WS_2$ nanohybrids.

Figure S4. X-ray photoelectron spectroscopy (XPS) spectra of W 4f for (a) sAgNP@WS₂ and (b) LAgNP@WS₂ nanohybrids. The peaks appearing at 32.7 and 34.8 eV are responsible for W 4f_{7/2} and 4f_{5/2} of 2H-WS₂, respectively.

Figure S5. (a) TEM images of synthesized silver nanoparticles (AgNPs), and (b) their plasmonic absorption spectrum.

Figure S6. Comparison for the photocatalytic activity of LAgNP@WS₂ nanohybrids against WS₂ nanosheets, and AgNP colloid in the reduction of 4-NP under light irradiation. Conditions: $[4-NP] = 8.33 \times 10^{-5}$ M, $[NaBH_4] = 1.67 \times 10^{-4}$ M, 5 mol% catalyst. Visible light was irradiated to the reactor (>400 nm, 30 mW/cm²).

Figure S7. (a) TEM image and (b-d) atomic mapping of xLAgNP@WS₂ nanohybrid.

Figure S8. Comparison for the photocatalytic activity of LAgNP@WS₂ nanohybrids against xLAgNP@WS₂ in the reduction of 4-NP under light irradiation. Conditions: $[4-NP] = 8.33 \times 10^{-5}$ M, $[NaBH_4] = 1.67 \times 10^{-4}$ M, 5 mol% catalyst. Visible light was irradiated to the reactor (>400 nm, 30 mW/cm²).

Figure S9. Solution temperature change as a function of reaction time in the reduction of 4-NP using LAg@WS₂ as a catalyst.

Catalyst	Amount _{cat}	NaBH4	k _{app}	TOF	Reference
	[wt%]	[equiv.]	[min ⁻¹]	[µmol g ⁻¹ s ⁻¹]	
CdS	1667	-	0.0073	0.053	1
ZnS-Bipy	1667	-	0.031	0.223	2
ZnS-MPA	N/A	N/A	0.096	N/A	3
		(2 mM)			
Au-Cu	149.5	100	0.312	25	4
Ag-TiO ₂	4000	1111	1.500	4.5	5
LAgNP@WS ₂	5.23	200	0.178	408	this work

Table S1. Comparison of photocatalytic activity among various photocatalysts.

All reactions were conducted at room temperature. N/A: not applicable. "-": nonuse.

5. References

- 1 A. Hernandez-Gordillo, A. G. Romero, F. Tzompantzi, S. Oros-Ruiz and R. Gomez, J. *Photochem. Photobiol.*, A, 2013, **257**, 44.
- 2 S. Ramirez-Rave, A. Hernandez-Gordillo, H. A. Calderon, A. Galano, C. Garcia-Mendoza and R. Gomez, *New J. Chem.*, 2015, **39**, 2188.
- 3 S. Sarkar, A. K. Guria and N. Pradhan, Chem. Commun., 2013, 49, 6018.
- 4 M. Hajfathalian, K. D. Gilroy, A. Yaghoubzade, A. Sundar, T. Tan, R. A. Hughes and S. Neretina, *J. Phys. Chem. C*, 2015, **119**, 17308.
- 5 M. M. Mohamed and M. S. Al-Sharif, *Appl. Catal.*, *B*, 2013, **142**, 432.