The Synthesis and Efficient One-Pot Catalytic "Self-Breeding" of Asymmetrical NC(*sp*³)E-Hybridised Pincer Complexes

Xiang-Yuan Yang,^[a] Wee Shan Tay,^[a] Yongxin Li,^[a] Sumod A. Pullarkat,^[a] Pak-Hing Leung*^[a]

^[a] Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Fax: (+65) 6791 1961; e-mail: pakhing@ntu.edu.sg.

Supporting Information

Table of Contents	S1
General Information	S2
Experimental Section	S2-5
Reference	S5
NMR Spectra	S6-11
2D ¹ H- ¹ H NOESY NMR Spectrum of Complex 4	S12-13
HPLC Spectra	S14-27
Crystallographic Data	S28-33
Selected Bond Lengths and Angles of Complex 4	S34

General Information

All reactions were carried out under a positive pressure of nitrogen using standard Schlenk technique. NMR spectra were recorded on Bruker AV 300, AV 400 and AV 500 spectrometers. Chemical shifts were reported in ppm and referenced to an internal SiMe₄ standard (0 ppm) for ¹H NMR, chloroform-d (77.23 ppm) for ¹³C NMR, and an external 85% H_3PO_4 for ³¹P{¹H} NMR. DCM, DCE, DEE, toluene, acetone, acetonitrile and MeOH were purchased from their respective companies and used as supplied. THF was distilled prior to use. Solvents were degassed when necessary. A Low Temp Pairstirrer PSL-1400 was used for controlling low temperature reactions. Column chromatography was carried out with Silica gel 60 (Merck). Melting points were measured using SRS Optimelt Automated Point System SRS MPA100. Optical rotation were measured with JASCO P-1030 Polarimeter in the specified solvent in a 0.1 dm cell at 22.0°C. The enantioselectivities of the hydrophosphination reactions were determined with Agilent 1200 Series High Performance Liquid Chromatography (HPLC) machine fitted with a Daicel Chiralpak IC column and eluted with a mixture of *n*-hexane/2-propanol.

Figure s1. Molecular structure of pincer catalyst.

The pincer catalyst 1^1 and diene 2^2 were prepared according to literature methods. PdCl₂(NCMe)₂ was prepared by adding PdCl₂ portionwise to boiling acetonitrile under vigorous stirring for 30 mins. The yellow suspension was filtered and the yellow residue (PdCl₂(NCMe)₂) washed with acetonitrile and dried. All other reactants and reagents were used as supplied without further purification unless stated otherwise.

Synthesis of ligand 3a

To a solution of Ph₂PH (93.1 mg, 0.500 mmol, 1.1 equiv) in acetone (25 mL) was added the pincer catalyst **1** (20.7 mg, 0.023 mmol, 5 mol %) and stirred for 10 minutes before cooling to 0°C. Dienone **2** (107.1 mg, 0.455 mmol, 1.0 equiv) was added and the mixture was stirred at 0°C. Upon completion of the reaction as determined by ³¹P{¹H} NMR, the mixture was warmed up to room temperature. S₈ (0.035 g, 0.137 mmol, 0.3 equiv) was added and stirred for 30 min. The crude product was purified by silica gel column chromatography (2 DCM : 1 *n*-hexane) to afford pure white solid of **3a** (181 mg, 0.409 mmol, 90 % yield). [α]_D = -378 (*c* 0.1, DCM). Mp: 95-97°C. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 49.6; ¹H NMR (CDCl₃, 400 MHz): δ 8.66 (d, 1H, ³J = 4.2 Hz, Ar), 8.13-8.07 (m, 2H, Ar), 7.93-7.89 (m, 3H, Ar), 7.78-7.74 (m, 1H, Ar), 7.50-7.38 (m, 7H, Ar), 7.21-7.12 (m, 5H, Ar), 6.29 (dd, 1H, ³J = 15.9 Hz, ⁴J_{HP} = 4.6 Hz, PhCH=CH), 6.16 (ddd, 1H, ³J = 15.8 Hz, ³J_{HP} = 8.7 Hz, ³J = 6.5 Hz, PhCH=CH), 4.50-4.42 (m, 1H, PCHCH₂), 4.11 (ddd, 1H, ²J = 17.7 Hz, ³J_{PH} = 10.5 Hz, ³J =

5.6 Hz, O=CC*H*₂), 3.35 (ddd, 1H, ${}^{2}J$ = 17.6 Hz, ${}^{3}J_{PH}$ = 12.5 Hz, ${}^{3}J$ = 2.3 Hz, O=CC*H*₂); ${}^{13}C$ NMR (CDCl₃, 100 MHz): δ 198.9 (d, 1C, ${}^{3}J_{PC}$ = 15.1 Hz, *C*=O), 152.9 (1C, Ar), 149.1 (1C, Ar), 136.9-122.0 (23C, Ar + *C*=*C*), 40.5 (d, 1C, ${}^{1}J_{PC}$ = 54.9 Hz, P*C*H), 37.5 (1C, O=C*H*₂). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₂₈H₂₅NOPS, 454.1394; found, 454.1396. Anal. Calcd for C₂₈H₂₄NOPS: C, 74.15; H, 5.33; N, 3.09. Found: C, 74.58; H, 5.77; N, 2.66 %. The *ee* was determined on a Daicel Chiralpak IC column with n-hexane/2-propanol = 95/5, flow = 1.0 mL/min, wavelength = 270 nm. Retention times: 23.1 min (major), 28.1 min (minor).

Synthesis of ligand 3b

The preparation is similar to that of compound **3a** but aq. H_2O_2 (31% w/w, 0.2 mL) was used instead of S₈. Purification by silica gel column chromatography (3 DCM : 1 EA) afforded the pure white solid of **3b** (171 mg, 0.391 mmol, 86% yield). $[\alpha]_D = -429$ (*c* 0.1, DCM). Mp: 191-193°C (dec.). ³¹P{¹H} NMR (CDCl₃, 121 MHz): δ 34.2; ¹H NMR (CDCl₃, 400 MHz): δ 8.65 (d, 1H, ³*J* = 4.2 Hz, Ar), 7.96-7.92 (m, 3H, Ar), 7.84-7.74 (m, 3H, Ar), 7.50-7.41 (m, 7H, Ar), 7.22-7.13 (m, 5H, Ar), 6.35 (dd, 1H, ³*J* = 16.0 Hz, ⁴*J*_{HP} = 4.3 Hz, PhC*H*=CH), 6.12 (ddd, 1H, ³*J* = 15.9 Hz, ³*J*_{HP} = 8.8 Hz, ³*J* = 5.9 Hz, PhCH=C*H*), 4.19-4.13 (m, 1H, PC*H*CH₂), 4.03 (ddd, 1H, ²*J* = 17.6 Hz, ³*J*_{HP} = 10.7 Hz, ³*J* = 5.2 Hz, O=CC*H*₂), 3.47 (ddd, 1H, ²*J* = 17.4 Hz, ³*J*_{HP} = 10.9 Hz, ³*J* = 2.4 Hz, O=CC*H*₂); ¹³C NMR (CDCl₃, 100 MHz): δ 198.9 (d, 1C, ³*J*_{PC} = 13.2 Hz, *C*=O), 152.9 (1C, Ar), 149.0 (1C, Ar), 136.8-121.9 (23C, Ar + *C*=*C*), 39.6 (d, 1C, ¹*J*_{PC} = 69.6 Hz, PCH), 36.4 (1C, O=CC*H*₂). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₂₈H₂₅NO₂P, 438.1623; found, 438.1625. Anal. Calcd for C₂₈H₂₄NO₂P: C, 76.87; H, 5.53; N, 3.20. Found: C, 76.37; H, 5.89; N, 2.79 %. The *ee* was determined on a Daicel Chiralpak IC column with n-hexane/2-propanol = 85/15, flow = 1.0 mL/min, wavelength = 260 nm. Retention times: 70.5 min (major), 79.3 min (minor).

Synthesis of pincer complex 4a

A mixture of PdCl₂ (3.90 mg, 22.0 µmol, 1.0 equiv) and LiCl (3.73 mg, 88.0 µmol, 4.0 equiv) in MeOH (10 mL) was stirred for 30 mins. The ligand **3a** (9.99 mg, 22.0 µmol, 1.0 equiv.) was added to the mixture and stirred. Monitoring of the reaction completion was done by thin-layer chromatography (DCM) and confirmed by ${}^{31}P{}^{1}H$ NMR spectroscopy. The crude product was purified by silica gel column chromatography (2 EA : 1 *n*-hexane) to afford white solid of complex **4a** (9.80 mg, 16.9 µmol, 77% yield). [α]_D = -180 (*c* 0.1, DCM). Mp: 226-228°C (dec.). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 121 MHz): δ 67.2; ${}^{1}H$ NMR (CDCl₃, 300 MHz): δ 9.16 (d, 1H, ${}^{3}J$ = 5.1 Hz, Ar), 8.17-8.11 (m, 2H, Ar), 7.95 (td, 1H, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.4 Hz, Ar), 7.84-7.78 (m, 2H, Ar), 7.71-7.47 (m, 8H, Ar), 7.26-7.17 (m, 5H, Ar), 6.49 (dd, 1H, ${}^{3}J$ = 16.0 Hz, ${}^{4}J_{HP}$ = 5.0 Hz, PhCH=CH), 5.87 (ddd, 1H, ${}^{3}J$ = 15.9, 5.7 Hz, ${}^{3}J_{HP}$ = 8.7 Hz, PhCH=CH), 4.87-4.76 (m, 1H, PCH), 4.45 (dd, 1H, ${}^{3}J_{HP}$ = 9.9 Hz, ${}^{3}J$ = 4.9 Hz, PdCH); ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ 192.9 (d, 1C, ${}^{3}J_{PC}$ = 17.7 Hz, *C*=O), 155.9 (1C, Ar), 148.8 (1C, Ar), 139.6-122.3 (23C, Ar + *C*=C), 55.2 (1C, PdCH), 50.7 (d, 1C, ${}^{1}J_{PC}$ = 62.6 Hz, PCH). HRMS (+ESI) m/z: (M - Cl)⁺ calcd for C₂₈H₂₃NOPPdS, 558.0273; found, 558.0274. Anal. Calcd for C₂₈H₂₃CINOPPdS: C, 56.58; H, 3.90; N, 2.36. Found: C, 56.96; H, 3.46; N, 2.57 %.

Synthesis of pincer complex 4b

A mixture of PdCl₂(NCMe)₂ (5.71 mg, 22.0 µmol, 1.0 equiv), NaOAc (1.81 mg, 22.0 µmol, 1.0 equiv) and ligand 3b (9.62 mg, 22.0 µmol, 1.0 equiv.) in DCM (10 mL) was stirred in a one-neck RBF. Monitoring of the reaction completion was done by thin-layer chromatography (1 DCM : 1 EA) and confirmed by ${}^{31}P{}^{1}H{}$ NMR spectroscopy. The crude product was purified by silica gel column chromatography (10 DCM : 1 EA to 8 DCM : 1 EA) to afford pure yellow solid of **4b** (10.8 mg, 18.7 μ mol, 85% yield). [α]_D = -446 (c 0.1, DCM). Mp: 170-171°C (dec.). ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 74.9; ¹H NMR (CDCl₃, 400 MHz): δ 9.07 (d, 1H, ${}^{3}J$ = 5.1 Hz, Ar), 8.12-8.08 (m, 2H, Ar), 7.95 (td, 1H, ${}^{3}J$ = 7.8 Hz, ⁴*J* = 1.4 Hz, Ar), 7.86-7.81 (m, 2H, Ar), 7.70-7.58 (m, 5H, Ar), 7.54-7.49 (m, 2H, Ar), 7.45-7-42 (m, 1H, Ar), 7.30-7.20 (m, 5H, Ar), 6.59 (dd, 1H, ${}^{3}J = 15.8$ Hz, ${}^{4}J_{HP} = 4.5$ Hz, PhC*H*=CH), 5.85 (ddd, 1H, ${}^{3}J$ = 15.8, 5.6 Hz, ${}^{3}J_{HP}$ = 8.5 Hz, PhCH=C*H*), 4.76 (dd, 1H, ${}^{3}J_{HP}$ = 10.4 Hz, ${}^{3}J = 2.2$ Hz, PdCH), 4.71-4.62 (m, 1H, PCH); ${}^{13}C$ NMR (CDCl₃, 100 MHz): δ 193.0 (d, 1C, ${}^{3}J_{PC} = 15.5$ Hz, C=O), 157.4 (1C, Ar), 151.5 (1C, Ar), 139.6-121.6 (23C, Ar + C=C), 55.6 (1C, PdCH), 46.3 (d, 1C, ${}^{1}J_{PC} = 75.6$ Hz, PCH). HRMS (+ESI) m/z: (M - Cl)⁺ calcd for C₂₈H₂₃NO₂PPd, 542.0501; found, 542.0500. Anal. Calcd for C₂₈H₂₃ClNO₂PPd: C, 58.15; H, 4.01; N, 2.42. Found: C, 58.39; H, 3.84; N, 2.16 %.

General procedure for the asymmetric hydrophosphination reaction

A Schlenk tube was charged with HPPh₂ (12.1 mg, 65.0 µmol, 1.5 equiv), complex **4a/b** (2.2 µmol, 5 mol%), base (8.7 µmol, 20 mol%) and diene **2** (10.2 mg, 43.3 µmol, 1.0 equiv) in the stated solvent (2.5 mL) and where specified, H₂O (0.25 mL) was added and stirred at RT for 24h. Subsequently, aq. H₂O₂ (31% w/w, 0.1 mL) or S₈ (3.33 mg, 13.0 µmol, 0.3 equiv.) was introduced to the mixture. The volatiles were removed and the crude product loaded directly onto silica gel column (3 DCM : 1 EA or 2 DCM : 1 *n*-hexane) to afford pure white solid of **3b** or **3a** respectively.

General procedure for recycling of pincer complex 4a

A Schlenk tube was charged with HPPh₂ (37.2 mg, 200 µmol, 1.5 equiv), complex **4a** (7.91 mg, 13.3 µmol, 10 mol%), KOAc (5.22 mg, 53.2 µmol, 40 mol%) and diene **2** (31.3 mg, 133 µmol, 1.0 equiv) in THF/H₂O (8 mL/0.8 mL). The mixture was stirred at RT for 24h. LiCl (56.4 mg, 1.33 mmol, 10.0 equiv.) was introduced to the mixture and stirred for 6 h at RT. Subsequently, the mixture was treated with aq. H₂O₂ (31% w/w, 0.3 mL), the volatiles were removed and the residue loaded directly onto silica gel column (1 *n*-hexane : 1 EA to 1 *n*-hexane : 2 EA) to afford pure white solid of **3b** and **4a**. The *ee* of compound **3b** was determined on a Daicel Chiralpak IC column with n-hexane/2-propanol = 85/15, flow = 1.0 mL/min, wavelength = 260 nm. Retention times: 70.5 min (major), 79.3 min (minor). The recovered complex **4a** was used in the second run in 10 mol% loading with the same procedure as above [**4a** (4.11 mg, 6.92 µmol, 10 mol%), KOAc (2.72 mg, 27.7 µmol, 40 mol%), HPPh₂ (19.3 mg, 104 µmol, 1.5 equiv), diene **2** (16.3 mg, 69.2 µmol, 1.0 equiv), THF (4 mL), H₂O (0.4 mL), LiCl (29.3 mg, 692 µmol, 10.0 equiv), aq. H₂O₂ (31% w/w, 0.2 mL)]. The recovered complex **4a** was again reused in the third run in 10 mol% loading [**4a** (1.85

mg, $3.11 \mu mol$, 10 mol%), KOAc (1.22 mg, $12.4 \mu mol$, 40 mol%), HPPh₂ (8.69 mg, 46.7 μmol , 1.5 equiv), diene **2** (7.32 mg, 31.1 μmol , 1.0 equiv), THF (2 mL), H₂O (0.2 mL), LiCl (13.2 mg, 311 μmol , 10.0 equiv), aq. H₂O₂ (31% w/w, 0.1 mL)].

Reference

[1] X.-Y. Yang, J. H. Gan, Y. Li, S. A. Pullarkat and P.-H. Leung, *Dalton Trans.* **2015**, *44*, 1258.

[2] a) X.-Y. Yang, W. S. Tay, Y. Li, S. A. Pullarkat and P.-H. Leung, *Organometallics* **2015**, *34*, 5196; b) N. Molleti, N. K. Rana and V. K. Singh, *Org. Lett.* **2012**, *14*, 4322.

[3] J. L. Bookham and W. McFarlane, J. Chem. Soc., Chem. Commun. 1993, 1352.

NMR Spectra

Figure s2. ${}^{31}P{}^{1}H$ NMR spectrum of compound **3a**.

Figure s4. ¹³C NMR spectrum of compound **3a**.

Figure s5. ${}^{31}P{}^{1}H$ NMR spectrum of compound **3b**.

Figure s6. ¹H NMR spectrum of compound **3b**.

Figure s7. ¹³C NMR spectrum of compound **3b**.

Figure s8.³¹P $\{^{1}H\}$ NMR spectrum of compound **4a**.

Figure s9. ¹H NMR spectrum of compound **4a**.

Figure s10. ¹³C NMR spectrum of compound **4a**.

Figure s12. ¹H NMR spectrum of compound **4b**.

Figure s13. ¹³C NMR spectrum of compound **4b**.

2D ¹H-¹H NOESY NMR Spectrum of Complex 4

Figure s14. 2D ¹H-¹H NOESY NMR spectrum of complex **4a**.

A detailed analysis of the ¹H-¹H NOESY NMR spectrum of complex **4a** revealed the presence of the expected H(8)-Ph_(eq) (A) and H(1)-Ph_(ax) (B) NOE interactions arising from the S-P-C-C-Pd chelate ring with the δ -conformation, as observed in the solid state. If this chiral five-membered ring undergoes a facile δ - λ dynamic transformation, the H(8)-Ph_(ax) and H(1)-Ph_(eq) NOE interactions would be observed.³ The absence of these NOE signals in the 2-D NMR spectrum indicated that the S-P-C-C-Pd chelate ring is locked in the δ -conformation in solution.

Figure s15. 2D ¹H-¹H NOESY NMR spectrum of complex **4b**.

From the spectrum, NOE interactions of $H(2)-Ph_{(eq)}$ (A) and $H(1)-Ph_{(ax)}$ (B) were observed. In conjunction with the absence of NOE signals arising from $H(2)-Ph_{(ax)}$ and $H(1)-Ph_{(eq)}$, this conclusively imply that the O-P-C-C-Pd chelate ring is locked in the δ -conformation in solution.

HPLC Spectra

THE CALENCE	+ype	10.000	714 C G	nergne	
[min]		[min]	[mAU*s]	[mAU]	8
70.481	MM	3.4333	4278.65137	20.77064	50.5104
79.323	MM	3.9447	4192.18311	17.71251	49.4896
	[min] 70.481 79.323	[min] 70.481 MM 79.323 MM	[min] [min] 70.481 MM 3.4333 79.323 MM 3.9447	[min] [min] [mAU*s] 70.481 MM 3.4333 4278.65137 79.323 MM 3.9447 4192.18311	Match Match Match Match [min] [min] [mAU] 70.481 MM 3.4333 4278.65137 20.77064 79.323 MM 3.9447 4192.18311 17.71251

Figure s16. HPLC spectra of racemic **3b**.

Figure s17. HPLC spectra of chiral **3b** in Table 3 Entry 1.

Figure s18. HPLC spectra of chiral **3b** in Table 3 Entry 2.

Figure s19. HPLC spectra of chiral **3b** in Table 3 Entry 3.

Figure s20. HPLC spectra of chiral **3b** in Table 3 Entry 4.

Figure s21. HPLC spectra of chiral **3b** in Table 3 Entry 5.

Figure s22. HPLC spectra of chiral **3b** in Table 3 Entry 6.

Figure s23. HPLC spectra of chiral **3b** in Table 3 Entry 7.

Figure s24. HPLC spectra of chiral **3b** in Table 3 Entry 8.

Figure s25. HPLC spectra of chiral **3b** in Table 3 Entry 8 after a single recrystallization.

Figure s26. HPLC spectra of chiral **3b** in Table 3 Entry 9.

Figure s27. HPLC spectra of chiral **3b** in Table 3 Entry 10.

Figure s28. HPLC spectra of chiral **3b** in Table 3 Entry 11.

Figure s29. HPLC spectra of chiral **3b** in Table 3 Entry 12.

Figure s30. HPLC spectra of chiral **3b** in Table 3 Entry 13.

Figure s31. HPLC spectra of racemic 3a.

Figure s32. HPLC spectra of chiral **3a** in Table 3 Entry 14.

Figure s33. HPLC spectra of chiral **3a** in Table 3 Entry 14 after a single recrystallization.

Figure s34. HPLC spectra of chiral **3b** in Table 3 Entry 15.

Figure s35. HPLC spectra of chiral **3a** in Table 3 Entry 16.

Figure s36. HPLC spectra of chiral **3b** in Table 4 Entry 1.

Figure s37. HPLC spectra of chiral **3b** in Table 4 Entry 1 after a single recrystallization.

Figure s38. HPLC spectra of chiral **3b** in Table 4 Entry 2.

Figure s39. HPLC spectra of chiral **3b** in Table 4 Entry 2 after a single recrystallization.

Figure s40. HPLC spectra of chiral **3b** in Table 4 Entry 3.

Figure s41. HPLC spectra of chiral **3b** in Table 4 Entry 3 after a single recrystallization.

Additional Info : Peak(s)	manually integrated
MWD1H, Sg=27036 Hele3	80100 (XXXXX17112015(1)L)
	10 11
700	T.
800-	
500-	
400-	
300	
300	
200	
100	
A	
1 1	· · . · · · · · · ·
0 5	10 15 20 25 30 mid
	Area Percent Report
Sorted By :	Signal
Dilution:	: 1.0000
Sample Amount:	: 1.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution	Factor with ISTDs
Signal 1: MWD1 H, Sig=270	,16 Ref=360,100
Peak RetTime Type Width	Area Height Area
# [min] [min]	[mAU*s] [mAU] %
1 21.360 BB 0.8256	4.25477#4 764.13892.100.0000
Totals :	4.25477e4 764.13892

Figure s42. HPLC spectra of chiral **3a** (after recrystallization) from catalytic "self-breeding" of complex **4a**.

Crystallographic Data

Figure s43. Single crystal X-ray structure of $NC(sp^3)S$ PdCl complex **4a**.

Table s1. Crystallographic data of $NC(sp^3)S$ PdCl complex **4a**.

Chemical formula	C ₂₈ H ₂₃ ClNOPPdS	
Formula weight	594.35 g/mol	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal size	0.400 x 0.410 x 0.420 mm	
Crystal habit	yellow block	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.3737(3) Å	$\alpha = 90^{\circ}$
	b = 12.3461(4) Å	$\beta = 90^{\circ}$
	c = 23.8575(7) Å	$\gamma = 90^{\circ}$
Volume	2466.45(14) Å ³	
Z	4	
Density (calculated)	1.601 g/cm^3	
Absorption coefficient	1.033 mm^{-1}	
F(000)	1200	
Theta range for data collection	2.94 to 37.90°	
Index ranges	-14<=h<=14, -21<=k<=14,	-40<=l<=40
Reflections collected	36512	
Independent reflections	13283 [R(int) = 0.0435]	
Coverage of independent reflections	99.5%	
Absorption correction	multi-scan	
Max. and min. transmission	0.6830 and 0.6710	
Refinement method	Full-matrix least-squares on	F^2

Refinement program	SHELXL-2014/6 (Sheldrick	, 2014)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	13283 / 651 / 419	
Goodness-of-fit on F ²	1.250	
Δ/σ_{max}	0.001	
Final R indices	12637 data; Ι>2σ(I)	R1 = 0.0520, wR2 = 0.0992
	all data	R1 = 0.0555, wR2 = 0.1002
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +4.5090P] where P=(F_{o}^{2} +2 F_{c}^{2})/3	
Absolute structure parameter	0.0(0)	
Largest diff. peak and hole	1.144 and -2.716 eÅ ⁻³	
R.M.S. deviation from mean	0.149 eÅ ⁻³	

Table s2. Bond lengths (Å) for $NC(sp^3)S$ PdCl complex **4a**.

Pd1-C1	2.049(4)	C18-C19	1.391(5)	C11-C12	1.387(12)
Pd1-S1	2.2884(9)	C20-C21	1.389(7)	C12-C13	1.365(14)
C1-C2	1.497(6)	C23-C24	1.403(12)	C14-C15	1.392(17)
C1-C8A	1.548(14)	C23-P1	1.851(11)	C8A-C9A	1.560(17)
C2-C3	1.512(5)	C25-C26	1.365(16)	C9A-C10A	1.302(13)
C3-C4	1.385(6)	C27-C28	1.393(16)	C11A-C12A	1.39
C5-C6	1.383(7)	C23A-C28A	1.39	C12A-C13A	1.39
C7-N1	1.339(5)	C24A-C25A	1.39	C14A-C15A	1.39
C8-P1	1.811(14)	C26A-C27A	1.39	C17-C22	1.389(5)
C10-C11	1.479(11)	P1-S1	2.0098(13)	C17-P1	1.795(3)
C11-C16	1.415(13)	Pd1-N1	2.051(3)	C19-C20	1.388(6)
C13-C14	1.398(18)	Pd1-Cl1	2.3900(10)	C21-C22	1.385(5)
C15-C16	1.391(15)	C1-C8	1.535(14)	C23-C28	1.410(15)
C8A-P1	1.831(14)	C2-O1	1.211(5)	C24-C25	1.384(16)
C10A-C11A	1.500(10)	C3-N1	1.344(5)	C26-C27	1.366(15)
C11A-C16A	1.39	C4-C5	1.388(6)	C23A-C24A	1.39
C13A-C14A	1.39	C6-C7	1.392(6)	C23A-P1	1.755(10)
C15A-C16A	1.39	C8-C9	1.483(17)	C25A-C26A	1.39
C17-C18	1.398(5)	C9-C10	1.326(11)	C27A-C28A	1.39

Table s3. Bond angles (°) for $NC(sp^3)S$ PdCl complex **4a**.

C1-Pd1-N1	81.84(14)	C1-Pd1-S1	91.97(11)
N1-Pd1-S1	170.95(10)	C1-Pd1-Cl1	174.66(12)
N1-Pd1-Cl1	95.24(10)	S1-Pd1-Cl1	91.43(3)
C2-C1-C8	114.9(7)	C2-C1-C8A	110.5(7)
C2-C1-Pd1	103.3(2)	C8-C1-Pd1	122.8(6)

C8A-C1-Pd1	117.3(6)	O1-C2-C1	125.7(4)
O1-C2-C3	121.4(4)	C1-C2-C3	112.8(3)
N1-C3-C4	122.2(3)	N1-C3-C2	114.2(3)
C4-C3-C2	123.6(4)	C3-C4-C5	118.6(4)
C6-C5-C4	118.9(4)	C5-C6-C7	119.6(4)
N1-C7-C6	121.0(4)	C9-C8-C1	111.5(10)
C9-C8-P1	113.7(10)	C1-C8-P1	104.6(9)
C10-C9-C8	122.7(10)	C9-C10-C11	125.7(8)
C12-C11-C16	117.1(8)	C12-C11-C10	119.5(8)
C16-C11-C10	123.3(8)	C13-C12-C11	122.5(10)
C12-C13-C14	120.2(11)	C15-C14-C13	119.2(12)
C16-C15-C14	119.8(12)	C15-C16-C11	121.0(10)
C1-C8A-C9A	113.8(10)	C1-C8A-P1	103.1(8)
C9A-C8A-P1	116.9(10)	C10A-C9A-C8A	125.1(10)
C9A-C10A-C11A	126.4(8)	C12A-C11A-C16A	120.0
C12A-C11A-C10A	122.1(6)	C16A-C11A-C10A	117.9(6)
C13A-C12A-C11A	120.0	C12A-C13A-C14A	120.0
C15A-C14A-C13A	120.0	C14A-C15A-C16A	120.0
C15A-C16A-C11A	120.0	C22-C17-C18	120.3(3)
C22-C17-P1	123.3(3)	C18-C17-P1	116.4(3)
C19-C18-C17	119.2(4)	C20-C19-C18	120.3(4)
C19-C20-C21	120.1(4)	C22-C21-C20	120.0(4)
C21-C22-C17	120.0(4)	C24-C23-C28	117.0(10)
C24-C23-P1	120.5(10)	C28-C23-P1	122.5(10)
C25-C24-C23	121.6(10)	C26-C25-C24	119.5(10)
C25-C26-C27	121.3(10)	C26-C27-C28	119.7(11)
C27-C28-C23	120.7(10)	C24A-C23A-C28A	120.0
C24A-C23A-P1	120.1(9)	C28A-C23A-P1	119.5(8)
C23A-C24A-C25A	120.0	C26A-C25A-C24A	120.0
C27A-C26A-C25A	120.0	C26A-C27A-C28A	120.0
C27A-C28A-C23A	120.0	C7-N1-C3	119.6(4)
C7-N1-Pd1	127.0(3)	C3-N1-Pd1	112.2(2)
C23A-P1-C17	105.7(6)	C17-P1-C8	114.4(5)
C23A-P1-C8A	108.5(8)	C17-P1-C8A	112.2(5)
C17-P1-C23	103.5(6)	C8-P1-C23	108.1(8)
C23A-P1-S1	115.9(5)	C17-P1-S1	110.68(15)
C8-P1-S1	110.0(5)	C8A-P1-S1	104.0(5)
C23-P1-S1	109.9(5)	P1-S1-Pd1	96.87(5)

Figure s44. Single crystal X-ray structure of NC(*sp*³)S PdCl complex **4b**.

Table s4. Crystallographic data of NC(*sp*³)S PdCl complex **4b**.

Chemical formula	$C_{28}H_{23}ClNO_2PPd$	
Formula weight	578.29 g/mol	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal size	0.320 x 0.400 x 0.420 mm	
Crystal habit	yellow block	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 8.4079(4) Å	$\alpha = 90^{\circ}$
	b = 12.0255(6) Å	$\beta = 90.682(3)^{\circ}$
	c = 23.7756(12) Å	$\gamma = 90^{\circ}$
Volume	2403.8(2) Å ³	
Z	4	
Density (calculated)	1.598 g/cm^3	
Absorption coefficient	0.977 mm^{-1}	
F(000)	1168	
Theta range for data collection	2.41 to 33.84°	
Index ranges	-13<=h<=13, -18<=k<=18, -	36<=l<=37
Reflections collected	74249	
Independent reflections	18919 [R(int) = 0.1015]	
Coverage of independent reflections	99.1%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7450 and 0.6840	
Structure solution technique	direct methods	
Structure solution program	XT, VERSION 2014/4	

Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)			
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Data / restraints / parameters	18919 / 1 / 613			
Goodness-of-fit on F ²	1.074			
Δ/σ_{max}	0.001			
Final R indices	16986 data; R1 = 0.0582, wR2 = 0.1223 I> $2\sigma(I)$			
	all data $R1 = 0.0661$, $wR2 = 0.1257$			
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0284P)^{2}+4.7783P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3			
Absolute structure parameter	0.0(0)			
Largest diff. peak and hole	2.079 and -2.125 eÅ ⁻³			
R.M.S. deviation from mean	0.154 eÅ ⁻³			

Table s5. Bond lengths (Å) for $NC(sp^3)S$ PdCl complex **4b**.

Pd1-N1	2.002(5)	Pd1-C1	2.031(6)	C26-C27	1.384(10)	C27-C28	1.381(9)
Pd1-O1	2.073(4)	Pd1-Cl1	2.4050(15)	C28-N1	1.358(8)	C29-C51	1.489(8)
Pd1-P1	2.9546(15)	Pd2-C29	2.023(5)	C29-C30	1.541(8)	C30-C31	1.508(8)
Pd2-N2	2.024(5)	Pd2-O3	2.068(4)	C30-P2	1.822(6)	C31-C32	1.320(9)
Pd2-Cl2	2.4057(14)	C1-C23	1.485(9)	C32-C33	1.476(9)	C33-C34	1.395(10)
C1-C2	1.536(9)	C2-C3	1.520(9)	C33-C38	1.408(10)	C34-C35	1.370(10)
C2-P1	1.830(6)	C3-C4	1.326(10)	C35-C36	1.395(12)	C36-C37	1.399(11)
C4-C5	1.462(9)	C5-C10	1.386(10)	C37-C38	1.400(9)	C39-C40	1.389(8)
C5-C6	1.403(10)	C6-C7	1.394(11)	C39-C44	1.401(8)	C39-P2	1.797(6)
C7-C8	1.387(11)	C8-C9	1.387(11)	C40-C41	1.396(8)	C41-C42	1.377(9)
C9-C10	1.377(9)	C11-C16	1.392(9)	C42-C43	1.392(9)	C43-C44	1.394(9)
C11-C12	1.395(9)	C11-P1	1.797(6)	C45-C50	1.390(9)	C45-C46	1.403(9)
C12-C13	1.397(8)	C13-C14	1.382(10)	C45-P2	1.797(6)	C46-C47	1.393(10)
C14-C15	1.390(10)	C15-C16	1.385(9)	C47-C48	1.382(11)	C48-C49	1.382(11)
C17-C18	1.384(9)	C17-C22	1.409(9)	C49-C50	1.403(10)	C51-O4	1.209(7)
C17-P1	1.799(6)	C18-C19	1.381(10)	C51-C52	1.497(8)	C52-N2	1.365(8)
C19-C20	1.358(12)	C20-C21	1.413(11)	C52-C53	1.388(9)	C53-C54	1.381(9)
C21-C22	1.399(10)	C23-O2	1.225(7)	C54-C55	1.369(10)	C55-C56	1.384(9)
C23-C24	1.512(8)	C24-N1	1.344(8)	C56-N2	1.337(8)	O1-P1	1.528(4)
C24-C25	1.391(9)	C25-C26	1.391(10)	O3-P2	1.531(4)		

Table s6. Bond angles (°) for $NC(sp^3)S$ PdCl complex **4b**.

N1-Pd1-C1	82.4(2)	C46-C45-P2	121.3(5)	C19-C18-C17	120.2(7)
C1-Pd1-O1	87.5(2)	C48-C47-C46	120.0(7)	C19-C20-C21	120.9(7)

C1-Pd1-Cl1	174.65(17)	C48-C49-C50	120.2(7)	C21-C22-C17	118.6(6)
N1-Pd1-P1	141.68(15)	O4-C51-C29	126.5(5)	O2-C23-C24	121.2(6)
O1-Pd1-P1	29.22(12)	C29-C51-C52	112.0(5)	N1-C24-C25	122.7(6)
C29-Pd2-N2	82.4(2)	N2-C52-C51	113.7(5)	C25-C24-C23	124.0(6)
N2-Pd2-O3	168.21(18)	C54-C53-C52	118.9(6)	C27-C26-C25	118.4(6)
N2-Pd2-Cl2	95.67(15)	C54-C55-C56	119.7(6)	N1-C28-C27	121.5(6)
C23-C1-C2	115.5(5)	C24-N1-C28	118.4(5)	C51-C29-Pd2	104.3(4)
C2-C1-Pd1	114.6(4)	C28-N1-Pd1	126.8(4)	C31-C30-C29	110.5(5)
C3-C2-P1	118.4(5)	C56-N2-Pd2	126.8(4)	C29-C30-P2	102.6(4)
C4-C3-C2	125.7(6)	P1-O1-Pd1	109.3(2)	C31-C32-C33	126.3(6)
C10-C5-C6	117.9(6)	O1-P1-C11	111.6(3)	C34-C33-C32	118.7(6)
C6-C5-C4	123.7(6)	C11-P1-C17	103.3(3)	C35-C34-C33	121.5(7)
C8-C7-C6	119.1(7)	C11-P1-C2	113.7(3)	C35-C36-C37	120.4(6)
C10-C9-C8	121.0(7)	O1-P1-Pd1	41.47(16)	C37-C38-C33	120.9(6)
C16-C11-C12	119.6(6)	C17-P1-Pd1	100.9(2)	C40-C39-P2	121.9(5)
C12-C11-P1	122.4(5)	O3-P2-C39	112.5(2)	C39-C40-C41	119.2(6)
C14-C13-C12	120.0(6)	C39-P2-C45	104.7(3)	C41-C42-C43	121.0(6)
C16-C15-C14	120.1(7)	C39-P2-C30	112.1(3)	C43-C44-C39	119.3(6)
C18-C17-C22	120.5(6)	N1-Pd1-O1	168.63(19)	C50-C45-P2	120.0(5)
C22-C17-P1	118.7(5)	N1-Pd1-Cl1	96.01(15)	C47-C46-C45	120.8(7)
C20-C19-C18	120.4(7)	O1-Pd1-Cl1	94.52(12)	C49-C48-C47	120.0(7)
C22-C21-C20	119.3(7)	C1-Pd1-P1	59.40(17)	C45-C50-C49	120.5(6)
O2-C23-C1	126.5(6)	Cl1-Pd1-P1	121.71(5)	O4-C51-C52	121.5(6)
C1-C23-C24	112.2(5)	C29-Pd2-O3	87.29(19)	N2-C52-C53	120.5(6)
N1-C24-C23	113.2(5)	C29-Pd2-Cl2	174.04(16)	C53-C52-C51	125.7(6)
C24-C25-C26	118.7(6)	O3-Pd2-Cl2	95.13(12)	C55-C54-C53	119.9(6)
C28-C27-C26	120.3(7)	C23-C1-Pd1	104.7(4)	N2-C56-C55	120.9(6)
C51-C29-C30	115.7(5)	C3-C2-C1	115.0(5)	C24-N1-Pd1	114.4(4)
C30-C29-Pd2	116.0(4)	C1-C2-P1	100.7(4)	C56-N2-C52	120.1(5)
C31-C30-P2	115.4(4)	C3-C4-C5	125.9(7)	C52-N2-Pd2	112.6(4)
C32-C31-C30	125.3(6)	C10-C5-C4	118.4(6)	P2-O3-Pd2	111.2(2)
C34-C33-C38	118.3(6)	C7-C6-C5	121.5(7)	O1-P1-C17	111.3(3)
C38-C33-C32	122.9(6)	C7-C8-C9	119.5(6)	O1-P1-C2	107.3(3)
C34-C35-C36	120.0(8)	C9-C10-C5	120.8(7)	C17-P1-C2	109.7(3)
C36-C37-C38	118.9(7)	C16-C11-P1	117.7(5)	C11-P1-Pd1	149.8(2)
C40-C39-C44	120.8(6)	C11-C12-C13	120.0(6)	C2-P1-Pd1	73.9(2)
C44-C39-P2	117.2(4)	C13-C14-C15	120.1(6)	O3-P2-C45	111.0(3)
C42-C41-C40	120.1(6)	C15-C16-C11	120.2(6)	O3-P2-C30	107.8(2)
C42-C43-C44	119.5(6)	C18-C17-P1	120.5(5)	C45-P2-C30	108.7(3)
C50-C45-C46	118.5(6)				

Selected Bond Lengths and Angles of Complex 4

	(<i>R</i> , <i>R</i>)- 4 a	(<i>R</i> , <i>R</i>)- 4b
Pd←N	2.051(3)	2.002(5)
$Pd \leftarrow E (E = S, O)$	2.288(1)	2.073(4)
Pd-Cl	2.390(1)	2.405(2)
$Pd-C(sp^3)$	2.049(4)	2.031(6)
C-Pd←E	91.97(11)	87.50(20)
C-Pd←N	81.84(14)	82.40(20)
C-Pd-Cl	174.66(12)	174.65(17)
Cl-Pd←E	91.43(3)	94.52(12)
Cl-Pd←N	95.24(10)	96.01(15)
N→Pd←E	170.95(10)	168.63(19)

Table s7. Selected bond lengths (Å) and angles (°) of complex 4.