Supporting Information

White Light Emissive Molecular Siblings

Samir KumarSarkar, George Rajendra kumar and Pakkirisamy Thilagar*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore–560012, India. Fax: +91-80-2360-1552; Tel: +91-80-2293-3352; E-mail: thilagar@ipc.iisc.ernet.in

Table of Contents:

Page S2-S3:

Experimental Section

Page S4-S9:

Page S9-S14:

NMR & Mass Characterizations data

Photo-physical data

Experimental Section

Materials and general methods:

BF₃.Et₂O, DDQ, Magnesium, anhydrous calcium hydride (CaH₂) were purchased from Sigma-Aldrich (USA).Pyrrole, 2-Bromothiophene, triethylamine, TFA, DMF were purchased from SD Fine Chemicals (India). CDCl₃ was purchased from Merck (Germany). Standard Schlenk technique was used for reactions requiring inert nitrogen atmosphere.CH₂Cl₂ was dried over CaH₂ and distilled under N₂ atmosphere. DMF was dried over Na₂SO₄ for overnight and distilled out at reduced pressure and stored over 3Å molecular sieves. THF and Et₂O were dried over sodium. Triethylamine was refluxed over sodium for 24 hours and distilled out at N₂ atmosphere and stored in an air tight stored round bottom flask.Bithiophene, 5-formyl-2,2'-bithiophene were synthesis according literature procedure^{1,2}. All 400MHz ¹H NMR, 125.7 ¹³C NMR Spectra were recorded by a Bruker Advance 400MHz NMR Spectrometer. Solution ¹H NMR and ¹³C NMR Spectra were referenced internally to the solvent signals. High resolution mass spectra were obtained from Q-TOF instrument by electrospray ionization (ESI). Electronic absorption spectra were recorded on a Perkin Elmer LAMBDA 750 UV/visible spectrophotometer. Solution were prepared using a microbalance $(\pm 0.1 \text{mg})$ and volumetric glassware and then charged in quartz cuvettes with sealing screw caps. Fluorescence emission studies were carried out on a Horiba JOBIN YVON Fluoromax-4 spectrometer.

Synthesis of 2

2-methyl-pyrrole (0.3 mL, 3.59 mmol) and borane-bithiophene-aldehyde (0.5 g, 1.13 mmol) were stirred at room temperature under nitrogen atmosphere for 30 min, then one drop BF₃.OEt₂ was added. The resultant mixture was stirred for another 6 h at room temperature and then DDQ (0.31 gm, 1.37 mmol) was added and stirred for additional 6 hours at room temperature. Then, Et₃N (1.6 ml, 11.46 mmol) was added and stirring was continued for another 1 hour. The resultant product was allowed to react with BF₃•OEt₂ (1.6 ml, 13 mmol) and the resultant mixture was stirred for 12 h. The crude product was extracted with dichloromethane and purified using column chromatography (ethyl acetate and petroleum ether (10:90)). Red color solid, Yield: 0.250 g, 35%. ¹H NMR (400 MHz, CDCl₃, δ in ppm) 7.39 (d, *J* = 8 Hz, 2H, thiophene C-H), 7.34 (2H, thiophene C-H), 7.10 (d, *J* = 4 Hz, 2H, BODIPY C-H), 6.85 (s, 4H,

Ar C-H), 6.31 (d, J = 4 Hz, 2H, BODIPY C-H), 2.65 (s, 6H, -CH₃), 2.32 (s, 6H, Mesitylene -CH₃), 2.15 (s, 12H, Mesityl -CH₃).¹³CNMR (100.00 MHz, CDCl₃, δ in ppm) 158.2 (BODIPY-C), 148.4 (Thiophene-C), 142.2 (Ar-C), 141.7 (Ar-C), 141.3 (Ar-C), 139.3 (BODIPY-C), 138.2 4 (Thiophene-C), 134.9 4 (Thiophene-C), 134.2 4 (Thiophene-C), 133.1 (BODIPY-C), 130.5 (Thiophene-C), 128.7 (BODIPY-C), 127.3 (Ar-C), 127.2 (Thiophene-C), 125.7 (BODIPY-C), 119.9 (BODIPY-C),23.9 (Mesitylene-CH₃-C), 21.7 (Mesitylene-CH₃-C), 15.5 (BODIPY-CH₃-C).¹⁹F NMR (376 MHz, CDCl₃, δ in ppm) -147.5 (q, J = 31.96 Hz). MALDI-Mass: M/Z= 631.282 [M] (28.2%), 613. 274 [M-F] (100%).

Synthesis of 3

Compound 3 was prepared following a procedure similar to that of 2. The quantities involved and characterization data are as follows: borane-bithiophene-aldehyde (1.0g, 2.26 mmol), 2,4-dimethyl-pyrrole (0.52 ml, 4.97 mmol), DDQ (0.62 g, 2.71 mmol), Et3N (3.2 ml, 22.6 mmol), BF3•OEt₂ (3.2 ml, 26 mmol. Red color solid. Yield: 550 mg, 37%. 1H NMR (400 MHz, CDCl3, δ in ppm) 7.38 (d, J = 3.6 Hz, 2H, thiophene C-H), 7.33 (d, J = 3.6 Hz, 2H, thiophene C-H), 7.33 (d, J = 3.6 Hz, 2H, thiophene C-H), 6.89 (d, J = 3.6 Hz, 2H, thiophene C-H), 6.84 (s, 4H, Ar C-H), 6.01 (s, 2H, BODIPY C-H), 2.55 (s, 6H, -CH3), 2.31 (s, 6H, Mesitylene -CH3), 2.16 (s, 12H, Mesitylene -CH3), 1.72 (s, 6H, -CH3). 13CNMR (100.00 MHz, CDCl3, δ in ppm) 156.8, 150.1, 148.9, 143.8, 141.8, 141.2, 140.0, 139.1, 135.0, 133.2, 132.7, 129.4, 128.6, 126.8, 125.4, 122.0, 23.9, 21.6, 15.1, 14.4.19F NMR (376 MHz, CDCl3, δ in ppm) -146.2 (q, J = 32.33 Hz). MALDI-Mass: M/Z= 660.246 [M] (47.8%), 641.213 [M-F] (85.4%).

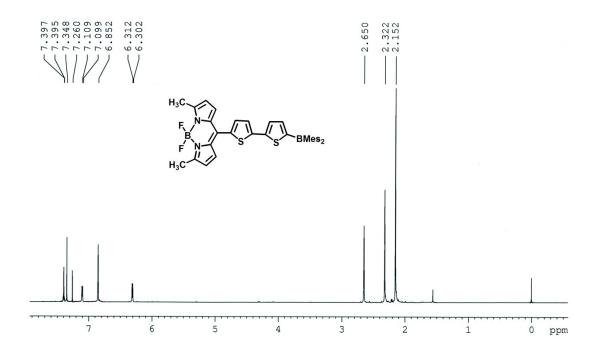


Figure S1:¹H NMR of 2

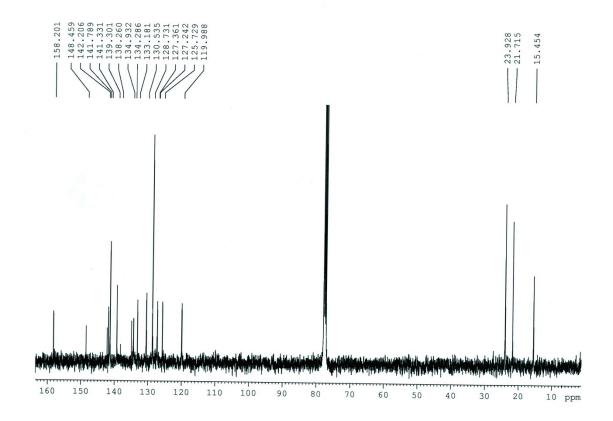


Figure S2:¹³C NMR of 2



Figure S3:¹¹B NMR of 2. ¹¹B resonance of tricoordinated boron center could not be observed

Figure S4:¹⁹F NMR of 2

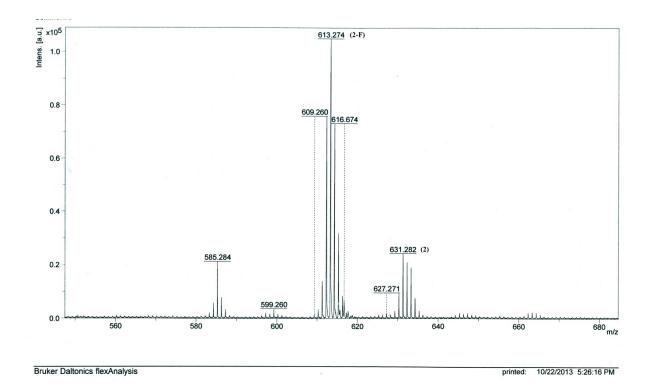


Figure S5:MALDI-Mass of spectrum of 2

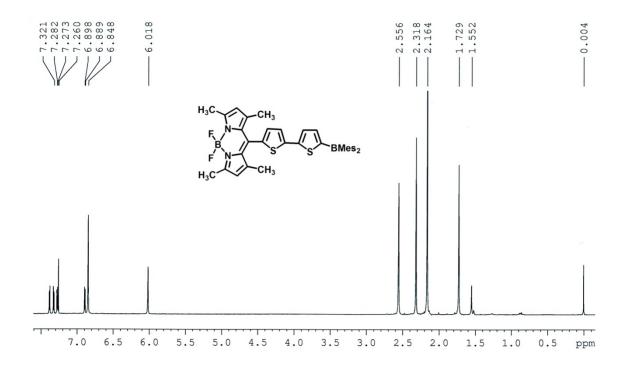


Figure S6:¹H NMR of 3

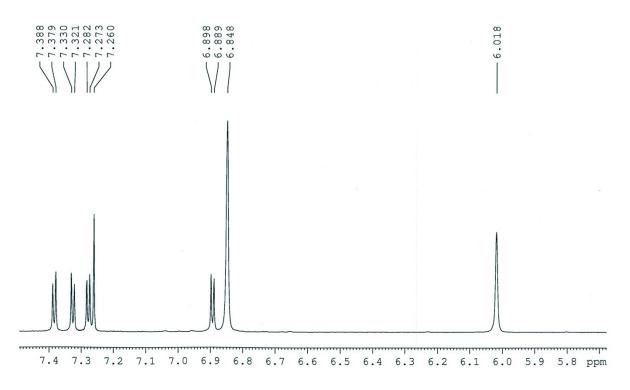


Figure S7:¹H of 3 (enlarge view of aromatic region)

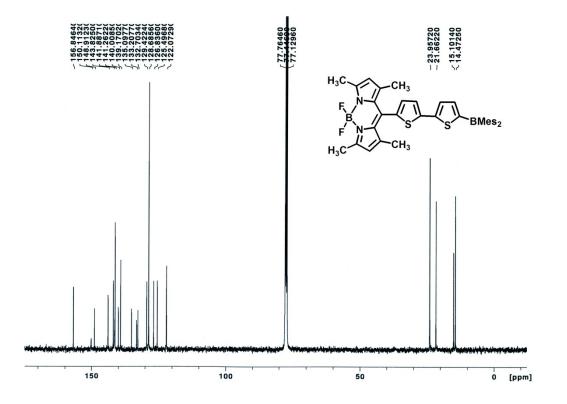


Figure S8:¹³C NMR of 3

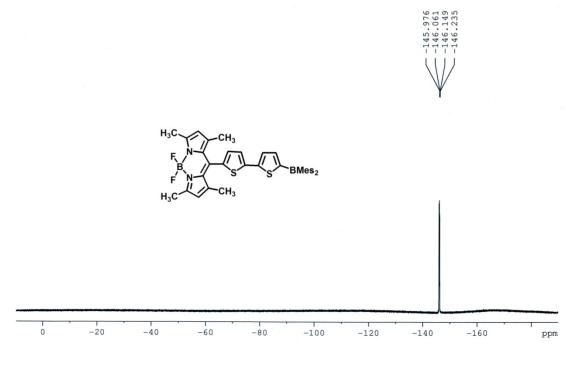


Figure S9:¹¹F NMR of 3

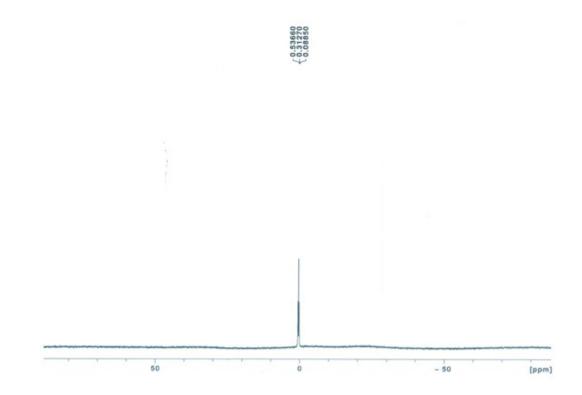


Figure S10:¹¹B NMR of 3

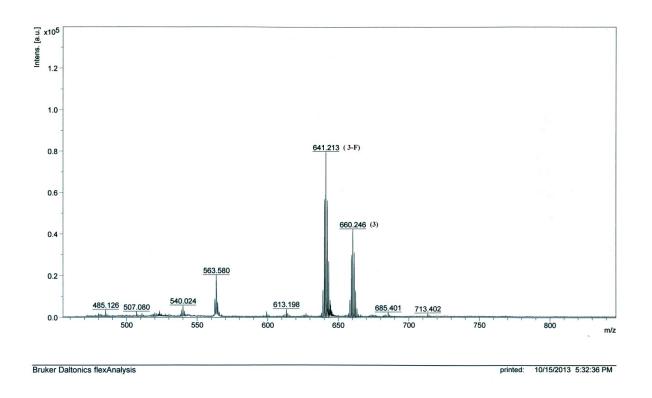


Figure S11:MALDI-Mass of spectra 3

Figure S12: Excitation spectra of 2 (left) (λ_{em} 525 nm) and 3 (right) (λ_{em} 600 nm) in DCM

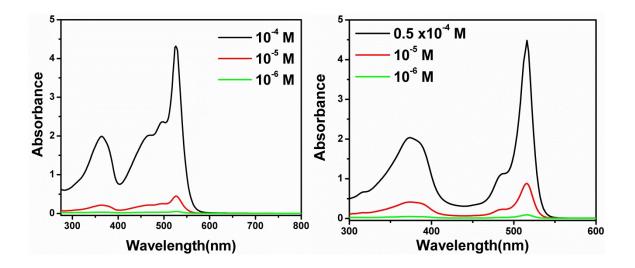
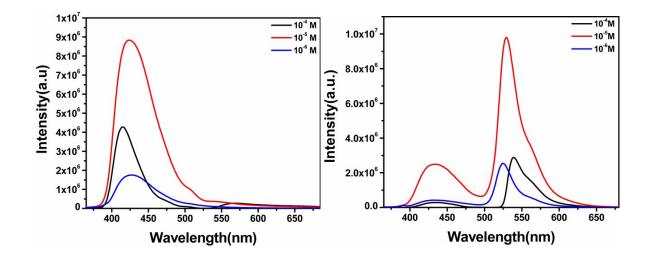



Figure S13: Concentration Variation UV-Vis Spectra of 2 (left) and 3 (right) in DCM

Figure S14: Concentration Variation Emission Spectra of **2** (left) and **3** (right) ($\lambda_{ex} = 350$ nm in DCM)

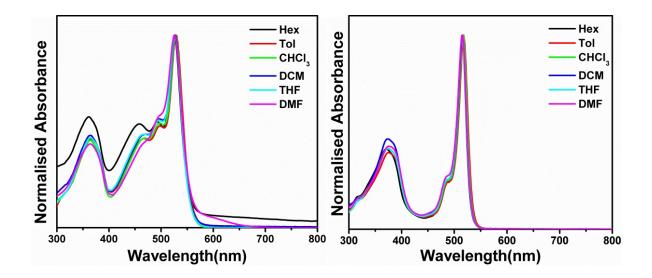


Figure S15: Absorption spectra of 2(left) and 3 (right) in different solvents (10⁻⁵M)

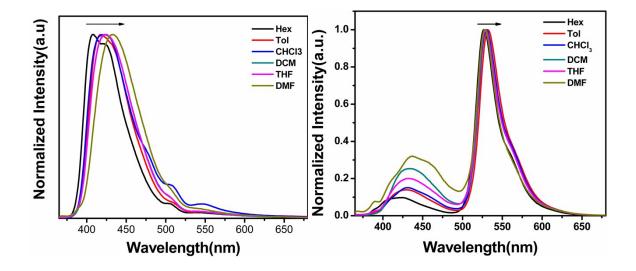


Figure S16: Emission spectra of 2 (left) and 3 (right) in different solvents ($\lambda_{ex} = 350 \text{ nm}, 10^{-5} \text{M}$)

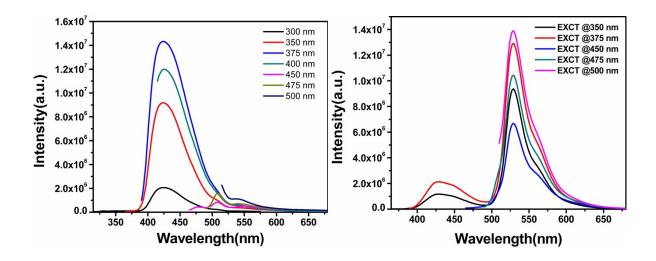


Figure S17: Emission spectra of 2 (left) and 3 (right) on different excitations (10⁻⁵M in DCM)

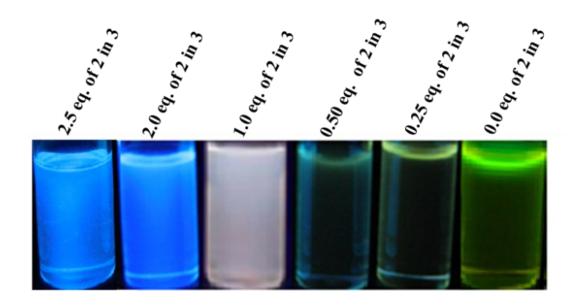


Figure 18. Photographs of different colour emission from different molar ratio of 2 and 3 in CH_2Cl_2 under UV light (365 nm).