Supporting Information

HEPES is not suitable for fluorescence detection of HClO: a novel

probe for HClO in absolute PBS

Panfei Xing,^a Kuo Gao,^b Beng Wang,^a Jian Gao,^b Hui Yan,^a Jia Wen,^a Weisi Li,^a Yongqian Xu,^a Hongjuan Li,^a Jianxin Chen,^{*b} Wei Wang,^{*b} and Shiguo Sun^{*a}

Contents

Contents	.1
Materials and apparatus	.2
Preparation of analyte solution	.2
The calculation of LOD	.3
Synthetic procedures of YDN	.3
The effect of pH for YDN	.4
The effect of solution on YDN	.4
The linear relationship in water	.5
DPV detection of PBS, HEPES and YDN	.5
Dynamics of YDN to HClO	.6
Absorbance response to HClO	.6
Comparison about the detection limits for HClO	.7
Colour changes under natural light and hand-held UV lamp	.7
Fluorescence images of YDN to HClO and other ROS/RNS	.8
Fluorescence response to HClO and other analytes	.8
Cell imaging of YDN	.9
MTT essay of YDN	.9
Characterization1	0
References1	l 1

Materials and apparatus

All solvents and chemical reagents were analytical grade and purchased from commercial suppliers. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 500 MHz AVANCE III spectrometer with chemical shifts reported in ppm at room temperature. Mass spectra were obtained with Thermo Fisher LCQ Fleet mass spectrometer (USA) and a LC/Q-Tof MS spectrometry (USA). Absorption spectra were collected by using a Shimadzu 1750 UV-visible spectrometer (Japan). Fluorescence spectra were measured with a Shimadzu RF-5301 fluorescence spectrometer (Japan). The pH of the testing systems was determined by a PHS-3C pH Meter (China). A three-electrode cell with an Electrochemical Workstation (CHI660D, Shanghai Chenhua Device Company, China), comprised the ITO working electrode, a Pt wire counter electrode and an Ag/AgCl reference electrode were used. The mouse imaging was conducted by a vivo imaging system FX Pro (Kodak In-Vivo imaging system FX Pro, USA).

All of the experiments were performed in compliance with the relevant laws and institutional guidelines, and were approved by Northwest A&F University.

Preparation of analyte solution

ROS and RNS were prepared according to literature report.^{1,2} The solutions of anions were prepared from their sodium salts. Hydroxyl radical (•OH) was obtained from the Fenton reaction of Fe²⁺ and H₂O₂. Nitric oxide was generated from SNP (sodium nitroferricyanide (III) dihydrate). Superoxide solution (O₂⁻) was prepared by adding KO₂ (1.0 mg) to dry dimethylsulfoxide (1.0 mL) and stirring vigorously for 10 min. Single oxygen (¹O₂) was generated by mixing H₂O₂ with NaClO sequentially. ROO• was generated from 2,2'-azobis(2-amidinopropane)dihydrochloride. ONOO⁻ was obtained from the reaction of H₂O₂ and isoamyl nitrite at pH \geq 12.0. The concentration was determined by using an extinction coefficient of 1670 ± 50 cm⁻¹ (mol/L)⁻¹ at 302 nm.

The calculation of LOD

The detection limit was calculated based on the fluorescence titration according to the literature.³⁻⁴ The fluorescence intensity of ten reagent blank samples containing no HClO was measured, and the mean as well as the standard deviation (SD) was calculated.

$LOD = 3\sigma/slope$

Where σ is the standard deviation of the blank solution measured by 10 times; slope comes from the calibration curve.

Synthetic procedures of YDN

21 mg sodium nitrite was dissolved in 1 mL water, then dropwise to a mixture of 174 mg (0.5 mmol) 5-amino fluorescein and 1.5 mL concentrated hydrochloric acid at ice bath, stirring for 20 min. A pre-cooling solution of 65 mg (0.6 mmol) mphenylenediamine in 5 mL methanol was added to the mixture above over 10 min. Then stirred for another 10 h. Filtered and washed with water to afford **YDN**, in 45% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 10.14 (s, 2H), 8.14 (s, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.29 (s, 2H), 7.26 (d, J = 8.2 Hz, 1H), 6.73 – 6.64 (m, 4H), 6.61 – 6.54 (m, 2H), 6.14 (s, 2H), 6.06 (d, J = 8.8 Hz, 1H), 5.89 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 169.19, 159.97, 155.33, 154.61, 152.37, 150.76, 130.20, 129.66, 129.05, 127.92, 125.04, 115.70, 113.11, 110.22, 107.00, 102.73, 96.48, 83.51. HRMS(C₂₆H₁₈N₄O₅) calc. m/z = 466.1277, found m/z = 467.1347, [M+H]⁺.

The effect of pH for YDN

Fig.S1 The effect of pH value on the fluorescence intensity of YDN (5µM).

The effect of solution on YDN

Fig.S2 Fluoresce intensity of **YDN** (5 μ M) in 10 mM HEPES (black, pH = 7.4), 10 mM PBS (red, pH = 7.4) and water (blue, pH = 7.4) with the addition of HClO (0-25 μ M) at room temperature. $\lambda_{ex} = 485$ nm, $\lambda_{em} = 516$ nm.

The linear relationship in water

Fig.S3 The linear relationship between the fluorescent intensity of **YDN** (5 μ M) and HClO concentration in water. All data were collected at 2 min after the addition of HClO. $\lambda_{ex} = 485$ nm, $\lambda_{em} = 516$ nm. Error bars standed for the mean value of three experiments.

DPV detection of PBS, HEPES and YDN

Fig.S4 Differential pulse voltammograms (DPV) of 10 mM PBS (black), 10 mM HEPES (red), 10 mM Tris (blue), and **YDN** (green, in 10 mM PBS). DPV was measured on a CHI 660D instrument using a three-electrode system consisting of a Ag/AgCl as reference electrode, a platinum wire as counter electrode, an ITO plate as working electrode, Scan rate: $v = 25 \text{ mV s}^{-1}$.

Dynamics of YDN to HClO

Fig.S5 Time-dependent fluorescence intensity changes of **YDN** (5 μ M) at 516 nm upon addition of varied concentrations of HClO. All data were recorded in PBS buffer (10 mM, pH 7.4) at room temperature. $\lambda_{ex} = 485$ nm.

Absorbance response to HClO

Fig.S6 Concentration-dependent absorption spectra of **YDN** (5 μ M) in the presence of 0-25 μ M HClO in PBS buffer (pH = 7.4) at room temperature.

Comparison about the detection limits for HClO

Probe	Linear range	Solvent	LOD (M)
Ref. 14	0–10 nM	PBS-EtOH, 9:1	5.6×10^{-10}
Ref. 16	0–80 µM	PBS-0.05% DMSO	$1.79 imes 10^{-8}$
Ref. 19a	2–20 µM	PBS	$3.0 imes 10^{-7}$
Ref. 19b	0–0.5 µM	PBS-CH ₃ CN, 1:9	$9.3 imes 10^{-8}$
Ref. 19c	0–100 µM	CH ₃ CN-Water, 4:1	$2.8 imes 10^{-8}$
Ref. 19d	0–10 µM	PBS-0.5% DMSO	4.3×10^{-7}
This work	0–23 µM	PBS	$8.7 imes10^{-9}$

Table S1 Comparison table about the detection limits for HClO

Colour changes under natural light and hand-held UV lamp

Fig.S7 (a) The colour changes under natural light of **YDN** (5 μ M) in the absence and presence of HClO (25 μ M, from left to right); (b) Fluorescence images of **YDN** (5 μ M) in the absence and presence of HClO (25 μ M, from left to right) upon excitation under a hand-held UV lamp (365 nm).

Fluorescence images of YDN to HClO and other ROS/RNS

Fig.S8 Fluorescence images of **YDN** (5 μ M) towards HClO (15 μ M) and other ROS/RNS (200 μ M for each) in PBS buffer (10 mM, pH 7.4) upon excitation under a hand-held UV lamp (365 nm).

Fluorescence response to HClO and other analytes

Fig.S9 Fluorescence spectra of **YDN** (5 μ M) with the addition of 10 μ M HClO or other analytes (200 μ M for each) in PBS buffer (10 mM, pH 7.4) at room temperature. All data were collected 2 min after the addition of HClO. $\lambda_{ex} = 485$ nm, $\lambda_{em} = 516$ nm.

Cell imaging of YDN

Fig. S10 Confocal fluorescence images of HClO in Hela cells. (a) Bright-field image of cells incubated with probe YDN (5 μ M) for 30 min; (d) Bright-field image of cells after treatment with 20 μ M HClO for 15 min and subsequent treatment with 5 μ M YDN for 30 min; (b) and (e) Fluorescence-field images of the Hela cells in green emission (515–555 nm); (c) and (f) Overlap of bright-field and fluorescence. $\lambda_{ex} = 488$ nm.

MTT essay of YDN

Fig.S11 Cell viability of Hela cells in the presence of different concentrations of **YDN** after 24 h of incubation determined by the MTT assay. Error bars standed for the mean value of five experiments.

Characterization

Fig.S12 ¹H NMR of **YDN** in DMSO- d_6 .

Fig.S13 13 C NMR of YDN in DMSO- d_6 .

Fig.S15 MS spectra of YDN + HClO.

References

- 1 Y. Zhou, J.-Y. Li, K.-H. Chu, K. Liu, C. Yao and J.-Y. Li, *Chem. Commun.*, 2012, **48**, 4677-4679.
- 2 Y. Yue, C. Yin, F. Huo, J. Chao and Y. Zhang, Sens. Actuators B: Chem., 2014, 202, 551-556.
- 3 V. Thomsen, D. Schatzlein and D. Mercuro, *Spectroscopy*, 2003, **18**, 112-114.
- 4 P. Xing, Y. Xu, H. Li, S. Liu, A. Lu and S. Sun, Sci. Rep., 2015, 5.16528.