Photoactivatable cytotoxic agents derived from mitochondria-targeting luminescent iridium(III) poly(ethylene glycol) complexes modified with a nitrobenzyl linkage

Karson Ka-Shun Tso,^{*a*} Kam-Keung Leung,^{*a*} Hua-Wei Liu,^{*a*} and Kenneth Kam-Wing Lo^{**a,b,c*}

- a. Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- b. State Key Lab of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- c. Centre for Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China

Electronic Supplementary Information

Table of Contents

General InformationS				
Photoactivation Treatment				
Cytotoxicity Assays				
Photolysi	s Studies	S4		
Cellular Uptake Measurements				
Scheme S	S1 Synthesis of bpy-NB-C=CH	S6		
Scheme S	S2 Synthesis of mPEG-N ₃ and TEG-N ₃	S7		
Scheme S	Synthesis of $[Ir(pq)_2(bpy-NB-C=CH)](PF_6)$ and complexes $1 - 3 \dots$	S8		
Synthesis	and Characterization	S9		
Fig. S1	Comparison of the ¹ H NMR spectra	S20		
Fig. S2	Electronic absorption spectra of complex 1	S21		
Fig. S3	Electronic absorption spectra of complex 2	S22		
Fig. S4	Electronic absorption spectra of complex 3	S23		
Fig. S5	g. S5 Electronic absorption spectra of complex 4			
Fig. S6	Emission spectra of complex 1	S25		
Fig. S7	Emission spectra of complex 2	S26		
Fig. S8	Emission spectra of complex 3	S27		
Fig. S9	Emission spectra of complex 4	S28		
Fig. S10	HPLC chromatograms showing the photolysis of complex 1	S29		
Fig. S11	Viability of HeLa cells upon treatment with complex 4	S30		
Fig. S12	Viability of HeLa cells upon treatment with complex 5	S 31		
Fig. S13	Detection of oxidative stress using CellROX® Deep Red	S32		
Fig. S14	Confocal images of MitoTracker colocalization assays	S33		
Table S1	Electronic absorption spectral data of complexes $1 - 4$	S34		
Table S2	Photophysical data of complexes 1 – 4	S35		
Table S3	Cellular uptake of complexes 1 – 5 towards HeLa cells	S36		
Reference	es	S37		

General Information

All solvents were of analytical grade and purified according to standard procedures.¹ All buffer components were of biological grade and used as received. Benzyl bromide and acetovanillone were purchased from J&K Scientific. Acetic anhydride, triethylamine, triethylene glycol, 2-phenylquinoline, 4,4'-dimethyl-2,2'-bipyridine, IrCl₃·3H₂O, poly(ethylene glycol) methyl ether (mPEG), and MTT were purchased from Sigma-Aldrich. Potassium iodide, potassium carbonate, N,N'-disuccinimidyl carbonate, sodium borohydride, propargyl bromide, potassium hexafluorophosphate, sodium azide, toluene-4-sulfonyl chloride, and trifluoroacetic acid were purchased Nitric acid (70%) was supplied by Fisher Scientific. from Acros. PD-10 size-exclusion columns were received from GE Healthcare. Autoclaved Milli-Q water was used for the preparation of the aqueous solutions. The ligand bpy-CH₂NH₂² and the dinuclear iridium(III) precursor complexes $[Ir_2(pq)_4Cl_2]^3$ were synthesized according to literature procedures. HeLa cells were obtained from American Type Culture Collection. Dulbecco's modified Eagle's medium (DMEM), phenol red-free DMEM, fetal bovine serum (FBS), phosphate-buffered saline (PBS) at pH 7.2, trypsin-EDTA, MitoTracker Deep Red FM, CellROX® Deep Red, and penicillin/streptomycin were purchased from Invitrogen. The growth medium for cell culture contained DMEM with 10% FBS and 1% penicillin/streptomycin.

Photoactivation Treatment

HeLa cells were prepared using a conventional trypsinization procedure with trypsin/EDTA and incubated in flat-bottom 96-well culture plates for cell viability assessment. After being rested for 24 h, the cell cultures were washed with PBS to remove non-adherent dead cells (< 5%) and incubated with a culture medium

containing an iridium(III) complex for 1 h at 37°C under a 5% CO_2 atmosphere. The cells were gently washed with PBS prior to further incubation in phenol red-free medium. The cells were then irradiated at 365 nm using a 6 W UV-A lamp (Spectronic) placed at 6 cm above the cell culture for different time intervals. After irradiation, the culture medium was replaced with a fresh growth medium and further incubated of 24 h. The cell viability was assessed using the MTT assay as described below.

Cytotoxicity Assays

MTT assays⁴ were conducted in 96-well, flat-bottomed microtiter plates. The cell cultures were treated with the complexes as mentioned above. After the treatments, MTT in PBS (5 mg mL⁻¹, 10 μ L) was added to each well and the microtiter plate was incubated for 3 h. The medium was removed carefully and DMSO (200 μ L) was added to each well. The absorbance of all the solutions at 570 nm was measured with a SPECTRAmax 340 microplate reader (Molecular Devices Corporation). The IC₅₀ values of the complexes were evaluated based on the percentage cell survival in a dose-dependent manner relative to the controls. The presence of the DMSO did not affect the viability of cells and cytotoxic activity of the complexes in the studies.

Photolysis Studies

Complex **1** (50 μ M) was dissolved in deionized water and irradiated for different time intervals (*t* min) under the same settings used in the biological studies. Photolysis of the complex was monitored using an HPLC system, which was composed of a UV detector (Waters 996 photodiode array) set to monitor at 280 nm, and a Waters 600 pump (Waters Corp.) equipped with a Rheodyne 7725i injector (Rohnert Park) with a

20 μ L sample loop. The reverse-phase separation was performed on a C18 column (Grace AlltimaTM C18 RocketTM 53 × 7 mm, 3 μ m) using MeOH (85%) with 0.1% TFA as an eluent (flow rate: 1.0 mL min⁻¹).

Cellular Uptake Measurements

HeLa cells were grown in a 60 mm tissue culture dish and incubated at 37°C under a 5% CO₂ atmosphere for 48 h. The culture medium was removed and replaced with medium/DMSO (99:1, v/v) containing the complex at [Ir] = 20 μ M. After incubation for 1 h, the medium was removed, and the cell layer was washed gently with PBS (1 mL × 3). Then, the cell layer was trypsinized and digested in 65% HNO₃ (2 mL) at 70 °C for 2 h for ICP-MS (PerkinElmer SCIEX, ELAN DRC Plus) analysis.

Scheme S1 Synthesis of bpy-NB-C≡CH.

Scheme S2 Synthesis of mPEG-N₃ and TEG-N₃.

Scheme S3 Synthesis of $[Ir(pq)_2(bpy-NB-C=CH)](PF_6)$ and complexes 1-3.

Synthesis and Characterization

Benzyl 4-acetyl-2-methoxyphenyl ether (L1)

Benzyl bromide (6.20 g, 36.25 mmol) was added to a suspension of acetovanillone (5.01 g, 30.14 mmol), potassium iodide (250 mg, 1.51 mmol), and potassium carbonate (9.10 g, 65.84 mmol) in CH₃CN (70 mL). The pale yellow mixture was heated to reflux under an inert atmosphere of N₂ for 12 h. The suspension was filtered and the filtrate was evaporated to dryness. The yellow crude product was purified by column chromatography on silica gel. The desired product was eluted with *n*-hexane/EtOAc (4:1, *v*/*v*) and finally isolated as a yellow solid. Yield: 7.11 g (92%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 7.55–7.31 (m, 7H, H on benzyl ring, H3 and H5 of phenyl ring), 6.90 (d, *J* = 8.0 Hz, 1H, H6 of phenyl ring), 5.21 (s, 2H, CH₂ of benzyl), 3.92 (s, 3H, CH₃ of methoxy), 2.53 ppm (s, 3H, CH₃ of acetyl). Positive-ion ESI-MS ion clusters at *m*/*z* 279 [*M* + Na⁺]⁺.

Benzyl 4-acetyl-2-methoxy-5-nitrophenyl ether (L2)

L1 (2.10 g, 8.20 mmol) dissolved in acetic anhydride (7 mL) was added dropwise to a solution of 70% nitric acid (47 mL) and acetic anhydride (17 mL) at 0°C. The resultant orange mixture was stirred for 3 h at room temperature. Cold deionized water (300 mL) was added to the mixture, which was then stirred for 2 h at 0°C. The orange-red precipitate was collected by suction filtration and purified by column chromatography on silica gel. The desired product was eluted with *n*-hexane/EtOAc (4:1, *v*/*v*) and finally isolated as a yellow solid. Yield: 1.45 g (58%). ¹H NMR (300 MHz, chloroform-*d*, 298 K, relative to TMS): $\delta = 7.69$ (s, 1H, H6 of phenyl ring), 7.48–7.37 (m, 5H, H on benzyl ring), 6.79 (s, 1H, H3 of phenyl ring), 5.24 (s, 2H, CH₂ of benzyl), 4.02 (s, 3H, CH₃ of methoxy), 2.51 ppm (s, 3H, CH₃ of acetyl).

Positive-ion ESI-MS ion clusters at m/z 301 $[M + H^+]^+$.

4-Acetyl-2-methoxy-5-nitrophenol (L3)

L2 (500 mg, 1.66 mmol) was dissolved in trifluoroacetic acid (3.35 g, 29.38 mmol) and the yellow solution was stirred under an inert atmosphere of N₂ for 24 h. The solution was evaporated to dryness under reduced pressure. The yellow crude product was dissolved in CH₂Cl₂ (30 mL) and washed with saturated aqueous NaHCO₃ (30 mL × 2) and saturated aqueous NaCl (30 mL × 2). The CH₂Cl₂ portion was dried over MgSO₄ and the solvent was removed by rotary evaporation. The yellow crude product was purified by column chromatography on silica gel. The desired product was eluted with *n*-hexane/EtOAc (1:1, *v/v*) and finally isolated as a yellow solid. Yield: 303 mg (86%). ¹H NMR (300 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 7.69 (s, 1H, H6 of phenyl ring), 6.82 (s, 1H, H3 of phenyl ring), 5.98 (s, OH), 4.04 (s, 3H, CH₃ of methoxy), 2.51 ppm (s, 3H, CH₃ of acetyl). Positive-ion ESI-MS ion clusters at *m/z* 234 [*M* + Na⁺]⁺.

Propargyl 4-(1-hydroxyethyl)-2-methoxy-5-nitrophenyl ether (L4)

Propargyl bromide (110 mg, 0.92 mmol) was added to a white suspension of L3 (98 mg, 0.46 mmol) and potassium carbonate (140 mg, 1.01 mmol) in CH₃CN (20 mL). The mixture was heated to reflux under an inert atmosphere of N₂ for 2 h. The suspension was filtered by suction filtration and the filtrate was evaporated to dryness under reduced pressure. The yellow crude product was purified by column chromatography on silica gel, and eluted with *n*-hexane/EtOAc (5:1, v/v) and finally isolated as a pale yellow solid. Yield: 94 mg (82%). Positive-ion ESI-MS ion clusters at m/z 272 [M + Na⁺]⁺. The solid (94 mg, 0.38 mmol) was dissolved in

THF/MeOH (27 mL, 1:8, v/v) and cooled at 0°C for 5 min. Sodium borohydride (101 mg, 2.66 mmol) was added to the solution. The mixture was stirred for 2 h at 0°C under an inert atmosphere of N₂. The reaction was quenched by deionized water (5 mL) and the pale yellow crude product was extracted with CH₂Cl₂ (30 mL × 3). The organic CH₂Cl₂ portion was concentrated by rotary evaporation and purified by column chromatography on silica gel. The desired product was eluted with *n*-hexane/EtOAc (5:1, v/v) and finally isolated as a pale yellow solid. Yield: 85 mg (90%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 7.75 (s, 1H, H6 of phenyl ring), 7.35 (s, 1H, H3 of phenyl ring), 5.61–5.56 (m, 1H, CH of hydroxyethyl), 4.83 (d, *J* = 2.4 Hz, 2H, CH₂ of propargyl), 4.01 (s, 3H, CH₃ of methoxy), 2.59 (s, 1H, CH of propargyl), 2.36 (s, 1H, OH), 1.57 ppm (d, *J* = 6.3 Hz, 3H, CH₃ of hydroxyethyl). Positive-ion ESI-MS ion clusters at *m/z* 274 [*M* + Na⁺]⁺.

1-(5-Methoxy-2-nitro-4-propargyloxyphenyl)ethyl N-succinimidyl carbonate (L5)

N,*N*²-Disuccinimidyl carbonate (76 mg, 0.30 mmol), **L4** (15 mg, 0.06 mmol), and triethylamine (31 mg, 0.31 mmol) were dissolved in dry CH₃CN (5 mL). The mixture was then stirred under an inert atmosphere of N₂ for 24 h. The solvent was removed by rotary evaporation. The yellow crude product was purified by column chromatography on silica gel. The desired product was eluted with *n*-hexane/EtOAc (2:1, *v*/*v*) and finally isolated as a yellow solid. Yield: 20 mg (85%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): $\delta = 7.82$ (s, 1H, H3 of phenyl ring), 7.10 (s, 1H, H6 of phenyl ring), 6.53–6.48 (m, 1H, CH of ethyl), 4.84–4.82 (m, 2H, CH₂ of propargyl), 4.06 (s, 3H, CH₃ of methoxy), 2.80 (s, 4H, H on *N*-succinimidyl), 2.60 (s, 1H, CH of propargyl), 1.77 ppm (d, *J* = 6.4 Hz, 3H, CH₃ of ethyl).

4-(*N*-(1-(5-methoxy-2-nitro-4-propargyloxyphenyl)ethoxy)carbonyl)aminomethyl -4'-methyl-2,2'-bipyridine (bpy-NB-C≡CH)

Triethylamine (64 mg, 0.64 mmol) was added to a solution of L5 (20 mg, 0.05 mmol) and bpy-CH₂NH₂ (10 mg, 0.05 mmol) in dry DMF (1 mL). The solution was stirred in the dark at room temperature under an inert atmosphere of N₂ for 24 h. The yellow crude product was extracted with CH₂Cl₂ and then purified by column chromatography on silica gel. The desired product was eluted with CH₂Cl₂/MeOH (20:1, ν/ν) and finally isolated as a pale yellow solid. Yield: 19 mg (80%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 8.42 (d, *J* = 5.2 Hz, 1H, H6 of bpy), 8.35 (d, *J* = 5.2 Hz, 1H, H6' of bpy), 8.11 (s, 1H, H3 of bpy), 8.05 (s, 1H, H3' of bpy), 7.61 (s, 1H, H3 of phenyl ring), 7.06–7.00 (m, 3H, H5 and H5' of bpy, H6 of phenyl ring), 6.55–6.53 (m, 1H, NH), 6.29–6.25 (m, 1H, CH of ethyl), 4.67–4.66 (m, 2H, CH₂ of propargyl), 4.24–4.27 (m, 2H, bpy-CH₂), 3.77 (s, 3H, CH₃ of methoxy), 2.81 (s, 3H, CH₃ on bpy), 2.52 (s, 1H, CH of propargyl), 1.47 ppm (d, *J* = 6.4 Hz, 3H, CH₃ of ethoxy). Positive-ion ESI-MS ion clusters at *m/z* 499 [*M* + Na⁺]⁺.

$[Ir(pq)_2(bpy-NB-C\equiv CH)](PF_6)$

A mixture of $[Ir_2(pq)_4Cl_2]$ (83 mg, 0.07 mmol) and bpy-NB-C=CH (62 mg, 0.13 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature under an inert atmosphere of N₂ in the dark for 24 h. Then, KPF₆ (40 mg, 0.2 mmol) was added and the mixture was stirred for 1 h. The solvent was removed by rotary evaporation. The red crude product was purified by column chromatography on silica gel. The desired product was eluted with CH₂Cl₂/MeOH (10:1, v/v). Subsequent recrystallization of the product from CH₂Cl₂/diethyl ether afforded the complex as an orange solid. Yield: 114 mg (72%). ¹H NMR (400 MHz, methanol- d_4 , 298 K, relative to TMS): δ = 8.44–8.29 (m, 4H, H3 of phenyl ring of pq and H3 of quinoline of pq), 8.24–8.02 (m, 6H, H3, H3', H6, H5 of bpy and H4 of quinoline of pq), 7.81–7.70 (m, 3H, H8 of quinoline of pq and H6' of bpy), 7.42–7.29 (m, 6H, H5, H7 of quinoline of pq, H3 of nitrophenyl ring and H5' of bpy), 7.18–7.14 (m, 3H, H6 of quinoline of pq and H6 of nitrophenyl ring), 7.03–6.99 (m, 2H, H4 of phenyl ring of pq), 6.81–6.75 (m, 2H, H5 of phenyl ring of pq), 6.52–6.47 (m, 2H, H6 of phenyl ring of pq), 6.27–6.21 (m, 1H, CH on C2 of ethoxy), 4.90–4.86 (m, 2H, CH₂ of propargyl), 4.35–4.22 (m, 2H, bpy-CH₂), 3.86 (s, 1.5 H, methoxy), 3.81 (s, 1.5 H, methoxy), 2.43 (s, 3H, CH₃ on bpy), 1.62 ppm (d, J = 6.4 Hz, 3H, CH₃ of ethoxy). Positive-ion ESI-MS ion clusters at m/z 1077 [M – PF₆⁻]⁺.

α-Tosyl-*ω*-methoxypoly(ethylene glycol), 5 kDa (mPEG_{5k}-Ts)

To a solution of poly(ethylene glycol) methyl ether (mPEG_{5k}-OH) (1.0 g, 0.20 mmol) in THF (10 mL) at 0°C, sodium hydride (15 mg, 0.63 mmol) was added. The suspension was stirred for 5 min and *p*-toluenesulfonyl chloride (115 mg, 0.60 mmol) was added to the suspension. The mixture was stirred at room temperature under an inert atmosphere of N₂ for 48 h. The solvent was removed by rotary evaporation. The monotosylated poly(ethylene glycol) (mPEG_{5k}-Ts) was purified by column chromatography on silica gel. mPEG_{5k}-Ts was eluted with CH₂Cl₂/MeOH (10:1, ν/ν) and finally isolated as a white solid. Yield: 721 mg (70%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 7.78 (d, *J* = 6.4 Hz, 2H, H3 and H5 of toluene-4-sulfonyl), 7.34 (d, *J* = 8.0 Hz, 2H, H2 and H6 of toluene-4-sulfonyl), 4.15– 4.12 (t, *J* = 4.8 Hz, 2H, OCH₂), 3.81–3.79 (t, *J* = 4.8 Hz, 2H, OCH₂), 3.50–3.70 (m, ca. 475H, H of PEG), 3.43–3.46 (t, *J* = 4.8 Hz, 2H, OCH₂), 3.36 (s, 3H, CH₃ of PEG), 2.43 ppm (s, 3H, CH_3 of toluene).

α-Azido-ω-methoxypoly(ethylene glycol), 5 kDa (mPEG_{5k}-N₃)

Sodium azide (46 mg, 0.71 mmol) was added to a solution of the mPEG_{5k}-Ts (711 mg, 0.14 mmol) in dry DMF (5 mL). The mixture was heated to reflux under an inert atmosphere of N₂ for 48 h. After the removal of DMF by vacuum distillation, the white crude product was dissolved in CH₂Cl₂ and the mixture was filtered. The filtrate was evaporated to dryness under reduced pressure and the white solid was dissolved in deionized water (2 mL), and loaded onto a PD-10 size-exclusion column that had been equilibrated with deionized water. The desired product was collected and immediately lyophilized to yield a white solid. Yield: 500 mg (70%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ 3.83–3.80 (m, 2H, OCH₂), 3.70–3.64 (m, ca. 475H, H of PEG), 3.56–3.54 (m, 2H, OCH₂), 3.40–3.37 ppm (m, 5H, OCH₂, CH₃ of PEG). MALDI-TOF-MS: M_n = 4948.02, M_w = 5004.93, PDI = 1.012.

α-Azido-ω-methoxypoly(ethylene glycol), 10 kDa (mPEG_{10k}-N₃)

mPEG_{10k}-N₃ was synthesized similarly according to the synthetic procedure of mPEG_{5k}-N₃ except that mPEG_{10k}-OH (1.0 g, 0.10 mmol) was used instead of mPEG_{5k}-OH, and mPEG_{5k}-Ts (430 mg, 0.04 mmol) was replaced by mPEG_{10k}-Ts. mPEG_{10k}-Ts: Yield: 570 mg (57%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 7.78 (d, *J* = 6.4 Hz, 2H, H3 and H5 of toluene-4-sulfonyl), 7.34 (d, *J* = 8.0 Hz, 2H, H2 and H6 of toluene-4-sulfonyl), 4.15–4.12 (t, *J* = 4.8 Hz, 2H, OCH₂), 3.82–3.37 (m, ca. 910H, H of PEG), 3.43–3.46 (t, *J* = 4.8 Hz, 2H, OCH₂), 3.37 (s, 3H, CH₃ of PEG), 2.45 ppm (s, 3H, CH₃ of toluene-4-sulfonyl).

mPEG_{10k}-N₃: Yield: 180 mg (42%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ 3.89–3.80 (m, 2H, OCH₂), 3.70–3.37 ppm (m, ca. 910H, H of PEG). MALDI-TOF-MS: M_n = 9774.79, M_w = 9792.95, PDI = 1.002.

8-Tosyl-3,6-dioxaoctanol (TEG-Ts)

To a solution of triethylene glycol (TEG) (1.4 g, 9.59 mmol) in CH₃CN (10 mL), *p*-toluenesulfonyl chloride (833 mg, 4.36 mmol) and triethylamine (441 mg, 4.36 mmol) were added. The resulting solution was stirred under an inert atmosphere of N₂ for 24 h. The solvent was removed by rotary evaporation. The monotosylated triethylene glycol (TEG-Ts) was purified by column chromatography on silica gel. TEG-Ts was eluted with CH₂Cl₂/MeOH (10:1, *v*/*v*) and finally isolated as a colorless oil. Yield: 2.0 g (68%). ¹H NMR (300 MHz, chloroform-*d*, 298 K, relative to TMS): $\delta = 7.75$ (d, J = 6.4 Hz, 2H, H3 and H5 of toluene-4-sulfonyl), 7.28 (d, J = 8.0 Hz, 2H, H2 and H6 of toluene-4-sulfonyl), 5.26–5.22 (m, 1H, OH), 4.12–4.09 (m, 2H, OCH₂), 3.72–3.48 (m, 10H, OCH₂), 3.36 (s, 3H, CH₃ of PEG), 2.35 ppm (s, 3H, CH₃ of toluene). Positive-ion ESI-MS ion clusters at *m*/*z* 327 [*M* + Na⁺]⁺.

8-Azido-3,6-dioxaoctanol (TEG-N₃)

Sodium azide (3 mg, 0.04 mol) was added to a solution of TEG-Ts (2.0 g, 6.56 mmol) in dry DMF (3 mL). The mixture was heated to reflux under an inert atmosphere of N₂ for 48 h. After removal of DMF by vacuum distillation, the oily crude product was purified by column chromatography on silica gel. The desired product was eluted with CH₂Cl₂/MeOH (10:1, v/v) and finally isolated as a colorless oil. Yield: 1.1 g (95%). ¹H NMR (400 MHz, chloroform-*d*, 298 K, relative to TMS): δ = 4.28– 4.25 (m, 1H, OH), 3.68–3.63 (m, 8H, OCH₂), 3.56–3.51 (m, 2H, OCH₂), 3.40–3.36 ppm (m, 2H, OCH₂). Positive-ion ESI-MS ion clusters at m/z 198 $[M + Na^{\dagger}]^{\dagger}$.

$[Ir(pq)_2(bpy-NB-PEG5k)](PF_6) (1)$

A solution of ascorbic acid (14 mg, 0.08 mmol) and anhydrous copper(II) sulfate (7 mg, 0.04 mmol) in H_2O (1) mL) was added to a solution of $[Ir(pq)_2(bpy-NB-C=CH)](PF_6)$ (27 mg, 0.02 mmol) and mPEG_{5k}-N₃ (100 mg, 0.02 mmol) in MeOH (5 mL). The resulting solution was stirred at room temperature under an inert atmosphere of N_2 in the dark for 24 h. The solvent was removed by rotary evaporation. The orange crude product was dissolved in CH_2Cl_2 and the solution was filtered. The filtrate was evaporated to dryness under reduced pressure and the orange solid was dissolved in deionized water (1.5 mL), and loaded onto a PD-10 size-exclusion column that had been equilibrated with deionized water. The desired product was collected and purified using a Centricon-10 ultrafiltration device. The orange residue was immediately lyophilized to yield an orange solid. Yield: 77 mg (63%). ¹H NMR (400 MHz, methanol- d_4 , 298 K, relative to TMS): $\delta = 8.40$ – 8.33 (m, 4H, H3 of phenyl ring of pg and H3 of guinoline of pg), 8.25-8.05 (m, 6H, H3, H3', H6, H5 of bpy and H4 of quinoline of pq), 7.84-7.76 (m, 3H, H8 of quinoline of pq and H6' of bpy), 7.45–7.29 (m, 6H, H5, H7 of quinoline of pq, H3 of nitrophenyl ring and H5' of bpy), 7.19-7.13 (m, 3H, H6 of quinoline of pq and H6 of nitrophenyl ring), 7.04–7.00 (m, 2H, H4 of phenyl ring of pq), 6.82–6.77 (m, 2H, H5 of phenyl ring of pq), 6.51–6.47 (m, 2H, H6 of phenyl ring of pq), 6.24–6.21 (m, 1H, CH on C2 of ethoxy), 5.31 (s, 2H, CH₂ of propargyl), 4.36–4.29 (m, 2H, bpy-CH₂), 3.87–3.80 (m, 5H, OCH₂ of TEG and CH₃ of methoxy), 3.64–3.36 (m, ca. 475H, H of PEG), 2.44 (s, 3H, CH₃ on bpy), 1.62 ppm (d, J = 6.4 Hz, 3H, CH₃ of ethoxy). IR (KBr): v = 3432 (br, N–H), 1466 (m, N–O), 1342 (m, N–O), 1110 (s, C–O), 842 cm⁻¹

(s, PF_6^-). MALDI-TOF-MS: $M_n = 5996.86$, $M_w = 6073.06$, PDI = 1.013.

$[Ir(pq)_2(bpy-NB-PEG10k)](PF_6)$ (2)

Complexes **2** was synthetized similarly according to the synthetic procedure of complex **1** except that mPEG_{10k}-N₃ (100 mg, 0.01 mmol) was used instead of mPEG_{5k}-N₃. Yield: 78 mg (70%). ¹H NMR (400 MHz, methanol-*d*₄, 298 K, relative to TMS): δ = 8.43–8.36 (m, 4H, H3 of phenyl ring of pq and H3 of quinoline of pq), 8.25–8.08 (m, 6H, H3, H3', H6, H5 of bpy and H4 of quinoline of pq), 7.87–7.77 (m, 3H, H8 of quinoline of pq and H6' of bpy), 7.42–7.30 (m, 6H, H5, H7 of quinoline of pq, H3 of nitrophenyl ring and H5' of bpy), 7.21–7.15 (m, 3H, H6 of quinoline of pq and H6 of nitrophenyl ring), 7.08–7.02 (m, 2H, H4 of phenyl ring of pq), 6.83–6.75 (m, 2H, H5 of phenyl ring of pq), 6.52–6.49 (m, 2H, H6 of phenyl ring of pq), 6.26–6.22 (m, 1H, CH on C2 of ethoxy), 5.29 (s, 2H, CH₂ of propargyl), 4.35–4.22 (m, 2H, bpy-CH₂), 3.89–3.37 (m, ca. 910H, H of PEG and CH₃ of methoxy), 2.43 (s, 3H, CH₃ on bpy), 1.62 ppm (d, *J* = 6.4 Hz, 3H, CH₃ of ethoxy). IR (KBr): *v* = 347 (br, N–H), 1466 (m, N–O), 1342 (m, N–O), 1110 (s, C–O), 842 cm⁻¹ (s, PF₆⁻). MALDI-TOF-MS: *M*_n = 10781.10, *M*_w = 10788.95, PDI = 1.001.

$[Ir(pq)_2(bpy-NB-TEG)](PF_6)$ (3)

Complexes **3** was synthetized similarly according to the synthetic procedure of complex **1** except that TEG-N₃ (9 mg, 0.05 mmol) was used instead of mPEG_{5k}-N₃. Yield: 52 mg (75%). ¹H NMR (300 MHz, methanol- d_4 , 298 K, relative to TMS): δ = 8.39–8.31 (m, 4H, H3 of phenyl ring of pq and H3 of quinoline of pq), 8.21–8.03 (m, 6H, H3, H3', H6, H5 of bpy and H4 of quinoline of pq), 7.83–7.73 (m, 3H, H8 of quinoline of pq and H6' of bpy), 7.44–7.30 (m, 6H, H5, H7 of quinoline of pq, H3 of

nitrophenyl ring and H5' of bpy), 7.19–7.13 (m, 3H, H6 of quinoline of pq and H6 of nitrophenyl ring), 7.06–7.00 (m, 2H, H4 of phenyl ring of pq), 6.83–6.75 (m, 2H, H5 of phenyl ring of pq), 6.52–6.47 (m, 2H, H6 of phenyl ring of pq), 6.26–6.22 (m, 1H, CH on C2 of ethoxy), 5.30 (m, 2H, CH₂ of propargyl), 4.35–4.22 (m, 2H, bpy-CH₂), 3.99–3.37 (m, 5H, OCH₂ of TEG and CH₃ of methoxy), 3.63–3.46 (m, 10H, OCH₂ of TEG), 2.43 (s, 3H, CH₃ on bpy), 1.62 ppm (d, J = 6.4 Hz, 3H, CH₃ of ethoxy). IR (KBr): v = 3424 (br, N–H), 1517 (s, N–O), 1339 (m, N–O), 1275 (s, C–O), 845 cm⁻¹ (s, PF₆⁻). Positive-ion ESI-MS ion clusters at m/z 1251 [$M - PF_6^{-}$]⁺. Anal. Calc. for C₆₁H₅₇N₉O₉PF₆Ir·CH₃CN·1.5(CH₃CH₂)₂O: C, 53.48; H, 4.88; N, 9.04. Found: C, 53.12; H, 5.23; N, 9.35%.

$[Ir(pq)_2(bpy-CH_2NH_2)](PF_6)$ (4)

A mixture of $[Ir_2(pq)_4Cl_2]$ (46 mg, 0.04 mmol) and bpy-CH₂NH₂ (12 mg, 0.06 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature under an inert atmosphere of N₂ in the dark for 12 h. Then KPF₆ (70 mg, 0.38 mmol) was added and the mixture was stirred for 1 h. The solvent was removed by rotary evaporation. The red crude product was purified by column chromatography on silica gel. The desired product was eluted with CH₂Cl₂/MeOH (10:1, ν/ν). Subsequent recrystallization of the product from CH₂Cl₂/diethyl ether afforded the complex as orange crystals. Yield: 45 mg (80%). ¹H NMR (400 MHz, methanol-*d*₄, 298 K, relative to TMS): δ = 8.43– 8.37 (m, 4H, H3 of phenyl ring of pq and H3 of quinoline of pq), 8.30 (s, 1H, H3 of bpy), 8.20–8.16 (m, 4H, H3', H5 of bpy and H4 of quinoline of pq), 8.10 (d, *J* = 5.6 Hz, 1H, H6 of bpy), 7.84 (d, *J* = 8.4 Hz, 2H, H8 of quinoline of pq, H5' of bpy), 7.19–7.15 (m, 2H, H6 of quinoline of pq), 7.07–7.03 (m, 2H, H4 of phenyl ring of pq), 6.82–6.79 (m, 2H, H5 of phenyl ring of pq), 6.53–6.49 (m, 2H, H6 of phenyl ring of pq), 3.92 (s, 2H, bpy-CH₂), 2.46 ppm (s, 3H, CH₃ on bpy). IR (KBr): v = 3422 (br, N–H), 1605 (m, N–H), 845 cm⁻¹ (s, PF₆⁻). Positive-ion ESI-MS ion clusters at m/z 800 $[M - PF_6^-]^+$. Anal. Calc. for C₄₂H₃₃N₅PF₆Ir· CH₃CN·(CH₃CH₂)₂O: C, 54.38; H, 4.37; N, 7.93. Found: C, 54.09; H, 4.41; N, 8.17%.

Fig. S1 Comparison of the ¹H NMR spectra of $[Ir(pq)_2(bpy-NB-C=CH)](PF_6)$ (black), complexes 1 (green), 2 (magenta), and 3 (red).

Fig. S2 Electronic absorption spectra of complex 1 in CH₂Cl₂ (solid) and CH₃CN (dashed) at 298 K.

Fig. S3 Electronic absorption spectra of complex 2 in CH_2Cl_2 (solid) and CH_3CN (dashed) at 298 K.

Fig. S4 Electronic absorption spectra of complex **3** in CH_2Cl_2 (solid) and CH_3CN (dashed) at 298 K.

Fig. S5 Electronic absorption spectra of complex 4 in CH_2Cl_2 (solid) and CH_3CN (dashed) at 298 K.

Fig. S6 Emission spectra of complex **1** in degassed CH_2Cl_2 (red), CH_3CN (blue), and buffer (green) at 298 K.

Fig. S7 Emission spectra of complex 2 in degassed CH_2Cl_2 (red), CH_3CN (blue), and buffer (green) at 298 K.

Fig. S8 Emission spectra of complex 3 in degassed CH_2Cl_2 (red) and CH_3CN (blue) at

298 K.

Fig. S9 Emission spectra of complex 4 in degassed CH_2Cl_2 (red) and CH_3CN (blue) at

298 K.

Fig. S10 HPLC chromatograms showing the conversion of complex 1 into complex 4 upon irradiation for different time periods (t).

Fig. S11 Viability of HeLa cells upon treatment with complex **4** in the dark for 1 h, followed by irradiation at 365 nm for 0 (black), 5 (blue), 10 (yellow), and 20 min (red).

Fig. S12 Viability of HeLa cells upon treatment with complex **5** in the dark for 1 h, followed by irradiation at 365 nm for 0 (black), 5 (blue), 10 (yellow), and 20 min (red).

Fig. S13 Detection of oxidative stress using CellROX[®] Deep Red. HeLa cells were treated with (a) complex **1** (20 μ M, 1 h, 37°C) and (b) complex **5** (20 μ M, 1 h, 37°C), and the cells were irradiated for 10 min. (c) HeLa cells were irradiated for 10 min in the absence of any complex. (d) HeLa cells were treated with H₂O₂ (positive control; 100 μ M, 1 h, 37°C). (e) Untreated HeLa cells were used as a negative control for basal level of fluorescence.

	(a)		(b)	(c)	(d)	(e)
		0 <u>ı</u> ım 30	<u>8 m</u>	<u>8</u> <u>c</u> <u>m</u> 80	. m 10	<u>3, un</u> 10
Irradiat	ion	+	+	+	-	-
Comple	x 1	+	-	-	-	-
Comple	x 5	-	+	-	-	-
H ₂	2 ⁰ 2	-	-	-	+	-

Fig. S14 Laser-scanning confocal microscopy images of HeLa cells upon incubation with complexes **1**, **2**, and **4** (1 h, $\lambda_{ex} = 405$ nm), and then by MitoTracker Deep Red FM (100 nM, 20 min, $\lambda_{ex} = 635$ nm) at 37°C.

Complex	Solvent	$\lambda_{\rm abs}/\rm{nm}~(\epsilon/\rm{dm}^3~\rm{mol}^{-1}~\rm{cm}^{-1})$
1	CH ₂ Cl ₂	255 (70 265), 266 (70 925), 283 sh (59 780), 307 sh
		(35 840), 338 (32 980), 349 sh (30 405), 440 (6600)
	CH ₃ CN	258 (54 570), 271 (54 635), 280 sh (52 880), 306 sh
		(28 355), 335 (27 635), 348 sh (25 275), 437 (5435)
2	CH_2Cl_2	255 (86 160), 266 (86 775), 283 sh (72 960), 307 sh
		(43 780), 338 (40 160), 349 sh (37 040), 440 (8045)
	CH ₃ CN	258 (67 730), 271 (67 850), 280 sh (65 315), 306 sh
		(35 085), 335 (34 080), 348 sh (31 450), 437 (5740)
3	CH_2Cl_2	255 (77 280), 266 (77 420), 283 sh (65 165), 307 sh
		(33 460), 338 (30 930), 349 sh (28 500), 440 (6210)
	CH ₃ CN	258 (62 930), 271 (63 160), 280 sh (60 840), 306 sh
		(32 440), 335 (31 970), 348 sh (29 400), 437 (6250)
4	CH_2Cl_2	263 sh (39 250), 273 (40 680), 281 (41 140), 306 sh
		(19 850), 337 (18 680), 350 sh (17 560), 438 (4330)
	CH ₃ CN	259 sh (39 265), 269 (40 340), 280 sh (38 200), 305 sh
		(19 490), 335 (17 850), 350 sh (15 380), 438 (4120)

Table S1 Electronic absorption spectral data of complexes 1 - 4 at 298 K.

Complex	Medium	$\lambda_{\rm em}/{\rm nm}$	$ au_{ m o}/\mu{ m s}$	$arPsi_{ m em}$	
1	CH ₂ Cl ₂	551, 602 sh	2.42	0.29	
	CH ₃ CN	555, 603 sh	2.44	0.28	
	Buffer ^a	560, 605 sh	0.84	0.01	
2	CH ₂ Cl ₂	551, 602 sh	2.15	0.25	
	CH ₃ CN	555, 603 sh	2.40	0.27	
	Buffer ^a	560, 605 sh	0.82	0.01	
3	CH_2Cl_2	555, 588 sh	2.41	0.30	
	CH ₃ CN	551, 601 sh	2.33	0.28	
4	CH_2Cl_2	552, 594 sh	2.19	0.29	
	CH ₃ CN	555, 603 sh	1.06	0.22	

Table S2 Photophysical data of complexes 1 - 4 at 298 K.

 \overline{a} 50 mM potassium phosphate buffer pH 7.4.

Table S3 Cellular uptake of complexes 1 - 5 towards HeLa cells.

Complex	Amount of complex/fmol ^a
1	1.58 ± 0.11
2	1.12 ± 0.45
3	1.57 ± 0.01
4	10.65 ± 1.15
5	1.35 ± 0.24

 $\overline{}^{a}$ Amounts of iridium associated with an average HeLa cell upon incubation with the complexes for 1 h at 37°C, as determined by ICP-MS.

References

- D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, Pergamon, Oxford, 1997.
- 2. C. Busche, P. Comba, A. Mayboroda and H. Wadepohl, *Eur. J. Inorg. Chem.*, 2010, 2010, 1295.
- K. K.-W. Lo, K. Y. Zhang, C.-K. Chung and K. Y. Kwok, *Chem. –Eur. J.*, 2007, 13, 7110
- 4. T. Mosmann, J. Immunol. Methods, 1983, 65, 55.