Supporting Information Available

- I) Experimental Section
- II) Abbreviations
- III) References
- IV) ¹H and ¹³C NMR Spectra of Compounds

I) Experimental Section

Experimental Data for Compounds

General Procedures. All reactions were carried out under a nitrogen or argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), pentane, diethyl ether (Et₂O), 1,2-dimethoxyethane (DME), 1,4-dioxane, methylene chloride (CH₂Cl₂), toluene and triethylamine (Et₃N) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Methanol (MeOH), benzene and dimethyl sulfoxide (DMSO) were purchased in anhydrous form and used without further purification. Water, ethyl acetate (EtOAc), diethyl ether (Et₂O), methylene chloride (CH₂Cl₂), acetone and hexanes were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thinlayer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of ammonium molybdate, anisaldehyde, and heat as developing agents. E. Merck silica gel (60, particle size 0.040-0.063 mm) was used for flash column chromatography. NMR spectra were recorded on a Bruker AV-400 instrument and calibrated using residual undeuterated solvent as an internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, pent = pentet, hex = hexet, br = broad. IR spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer with diamond ATR accessory. Melting points (m.p.) are uncorrected, and recorded on a Buchi B-540 melting point apparatus. High-resolution mass spectra (HRMS) were recorded on an Agilent ESI TOF (time of flight) mass spectrometer at 3500 V emitter voltage.

Benzyl ester 11: To a stirred solution of 9^1 (33.42 g, 100.0 mmol) in DMF (150 mL) at room temperature were added K₂CO₃ (27.64 g, 200.0 mmol) NHBoc followed by BnBr (14.25 ml, 120.0 mmol). The resulting mixture was stirred for 0.5 h before it was quenched with H₂O (150 mL). The mixture was extracted with Et₂O (3 × 200 mL). The combined organic

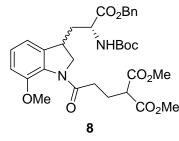
(130 hll). The mixture was extracted with Et20 (5 × 200 hll). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded benzyl ester **11** (38.16 g, 90%) as a yellow amorphous solid. **11**: R_f = 0.32 (hexanes:EtOAc 2:1); [α]_D²⁰ = +3.5 (*c* = 1.0, CHCl₃); IR (film) v_{max} 3348, 3103, 2969, 2891, 2757, 1741, 1711, 1612, 1573, 1491, 1358, 1246, 1138, 1031, 846, 758, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.27 (d, *J* = 20.7 Hz,

S2

1 H), 7.31–7.23 (m, 3 H), 7.21–7.14 (m, 2 H), 7.10 (dd, J = 8.0, 2.6 Hz, 1 H), 7.00– 6.93 (m, 1 H), 6.70 (s, 1 H), 6.57 (d, J = 7.7 Hz, 1 H), 5.03 (q, J = 12.1 Hz, 3 H), 4.65 (s, 1 H), 3.87 (s, 3 H), 3.27–3.13 (m, 2 H), 1.37 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.2, 155.3, 146.2, 135.4, 129.1, 128.5$ (2C), 128.4 (2C), 128.3, 126.7, 122.5, 120.1, 111.6, 110.3, 101.9, 79.8, 67.1, 55.3, 54.4, 28.3 (3C), 28.1 ppm; HRMS (ESI): calcd for C₂₄H₂₉N₂O₅⁺ [M + H⁺] 425.2071, found 425.2074.

Indoline 12: To a stirred solution of benzyl ester 11 (21.20 g, 50.0 mmol) in AcOH

(100 mL) at 0 °C was added NaBH₃CN (6.20 g, 100.0 mmol). NHBoc NHBoc The resulting mixture was stirred at room temperature for 24 h before it was concentrated *in vacuo* and quenched with NaHCO₃


(100 mL, sat. aq.). The aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, CH₂Cl₂:EtOAc 20:1) afforded indoline **12** (17.89 g, 84%, ca. 1.2:1 mixture of diastereomers by ¹H NMR) as a colorless oil.

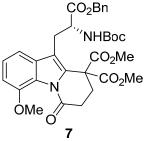
12a: $R_f = 0.25$ (hexanes:EtOAc 3:1); $[\alpha]_D^{20} = -31.8$ (c = 0.5, CHCl₃); IR (film) v_{max} 3326, 3084, 2971, 2856, 2713, 1739, 1713, 1610, 1582, 1501, 1366, 1238, 1140, 1027, 851, 760, 723 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (s, 5 H), 6.74–6.63 (m, 3 H), 5.22–5.06 (m, 3 H), 4.45 (td, J = 9.2, 4.5 Hz, 1 H), 3.81 (s, 3 H), 3.77 (d, J = 8.5 Hz, 1 H), 3.45–3.36 (m, 1 H), 3.36–3.26 (m, 1 H), 2.07 (td, J = 10.4, 9.7, 4.3 Hz, 2 H), 1.45 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.7$, 155.5, 145.5, 140.2, 135.2, 132.7, 128.6 (3C), 128.4, 128.3, 119.3, 116.1, 109.7, 80.1, 67.2, 55.3, 53.5, 52.2, 39.4, 37.4, 28.3 ppm (3C); HRMS (ESI): calcd for C₂₄H₃₁N₂Os⁺ [M + H⁺] 427.2227, found

427.2225.

12b: $R_f = 0.20$ (hexanes:EtOAc 3:1); $[\alpha]_D^{20} = +28.1$ (c = 0.4, CHCl₃); IR (film) v_{max} 3332, 3092, 2969, 2857, 2721, 1735, 1721, 1611, 1583, 1505, 1370, 1240, 1142, 1030, 853, 764, 726 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (s, 5 H), 6.82–6.64 (m, 3 H), 5.16 (d, J = 2.8 Hz, 3 H), 4.54–4.41 (m, 1 H), 3.81 (s, 3 H), 3.71 (t, J = 8.7 Hz, 1 H), 3.44–3.34 (m, 1 H), 3.23 (dd, J = 8.8, 7.0 Hz, 1 H), 2.37–2.25 (m, 1 H), 1.87 (m, J =14.0, 8.2 Hz, 1 H), 1.45 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$, 155.2, 145.5, 140.1, 135.2, 132.6, 128.6 (3C), 128.4, 128.3, 119.4, 116.5, 109.7, 80.1, 67.1, 55.3, 53.9, 52.5, 39.6, 37.3, 28.3 ppm (3C); HRMS (ESI): calcd for C₂₄H₃₁N₂Os⁺ [M + H⁺] 427.2227, found 427.2232.

Indoline ester 8: To a stirred solution of indoline 12 (4.05 g, 9.5 mmol) in CH₂Cl₂ (15

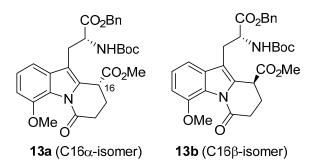
mL) at room temperature were added Et₃N (2.65 mL, 19.0 mmol) followed by a solution of acyl chloride 10^2 (4.20 g, 19.0 mmol) in CH₂Cl₂ (10 mL). The resulting mixture was stirred for 1 h before it was quenched with NH₄Cl (20 mL,


sat. aq.). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded indoline ester **8** (5.12 g, 88%, ca. 1.2:1 mixture of diastereomers by ¹H NMR) as a colorless oil.

8a: $R_f = 0.25$ (hexanes:EtOAc 2:1); $[\alpha]_D^{20} = -31.3$ (c = 0.7, CHCl₃); IR (film) v_{max} 3357, 3105, 2967, 2867, 2769, 1741, 1703, 1651, 1523, 1483, 1358, 1246, 1158, 1031, 864,

756, 712 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.33 (s, 5 H), 7.05 (t, *J* = 7.8 Hz, 1 H), 6.80 (dd, *J* = 7.7, 3.9 Hz, 2 H), 5.15 (dd, *J* = 19.5, 7.2 Hz, 3 H), 4.48–4.28 (m, 2 H), 3.84 (s, 4 H), 3.71–3.60 (m, 6 H), 3.52 (t, *J* = 7.5 Hz, 1 H), 3.20 (s, 1 H), 2.54 (t, *J* = 7.1 Hz, 2 H), 2.33–2.20 (m, 2 H), 2.07–1.88 (m, 2 H), 1.43 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 172.2, 169.7, 169.6 (2C), 155.3, 149.1, 139.9, 135.1, 130.6, 128.6 (3C), 128.5, 128.3, 126.2, 116.5, 111.7, 80.2, 67.3, 56.9, 55.6, 52.3, 52.3, 52.2, 50.7, 38.1, 36.4, 31.8, 28.2 (3C), 24.6 ppm; HRMS (ESI): calcd for C₃₂H₄₁N₂O₁₀⁺ [M + H⁺] 613.2756, found 613.2750.

8b: $R_f = 0.22$ (hexanes:EtOAc 2:1); $[\alpha]_{10}^{20} = +7.2$ (c = 0.7, CHCl₃); IR (film) v_{max} 3358, 3075, 2981, 2847, 2769, 1729, 1701, 1656, 1519, 1479, 1362, 1258, 1164, 1045, 866 752, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33$ (s, 5 H), 7.08 (t, J = 7.9 Hz, 1 H), 6.92 (d, J = 6.8 Hz, 1 H), 6.82 (d, J = 8.3 Hz, 1 H), 5.22–5.11 (m, 3 H), 4.53–4.43 (m, 1 H), 4.25 (dd, J = 11.1, 7.7 Hz, 1 H), 3.92 (dd, J = 11.3, 5.3 Hz, 1 H), 3.84 (s, 3 H), 3.66 (s, 3 H), 3.63 (s, 3 H), 3.51 (t, J = 7.5 Hz, 1 H), 3.25–3.16 (m, 1 H), 2.63–2.43 (m, 2 H), 2.32–2.16 (m, 3 H), 1.78 (dt, J = 14.1, 8.3 Hz, 1 H), 1.45 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.3$, 169.7, 169.6 (2C), 155.3, 148.9, 140.1, 135.1, 130.4, 128.6 (3C), 128.5, 128.4, 126.3, 117.1, 111.7, 80.2, 67.3, 57.1, 55.6, 52.5, 52.4, 52.3, 50.7, 38.1, 36.4, 31.7, 28.3 (3C), 24.6 ppm; HRMS (ESI): calcd for C₃₂H₄₁N₂O₁₀⁺ [M + H⁺] 613.2756, found 613.2762.

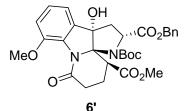

δ-Lactamindole 7: To a solution of indoline ester 8 (6.12 g, 10.0 mmol) in AcOH (100 mL) were added CAN (550 mg, 1.0 mmol) and NaOAc (1.64 g, 20.0 mmol). The reaction vessel was exposed to air through a CaCl₂ tube. The resulting mixture was

stirred at 110 °C for 12 h before it was cooled down to room temperature and concentrated *in vacuo*. The residue was diluted with H₂O (100 mL), neutralized with NaHCO₃ (200

The mL, sat. aq.) and extracted with EtOAc (3 × 200 mL). The combined organic layers were washed with brine (400 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) afforded δ-lactamindole **7** (5.05g, 83%) as a white amorphous solid. **7**: $R_f = 0.35$ (hexanes:EtOAc 1:1); $[\alpha]_D^{20} = -8.6$ (c = 0.7, CHCl₃); IR (film) v_{max} 3413, 3095, 2967, 1744, 1709, 1513, 1458, 1362, 1246, 1172, 1047, 1010, 918, 761, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.20$ (m, 7 H), 6.95–6.90 (m, 1 H), 5.51 (d, J = 6.8 Hz, 1 H), 5.13 (s, 2 H), 4.75 (dd, J = 11.2, 5.4 Hz, 1 H), 3.97 (s, 3 H), 3.80 (s, 3 H), 3.73 (s, 3 H), 3.09 (dd, J = 14.9, 5.6 Hz, 1 H), 2.97–2.82 (m, 3 H), 2.79–2.63 (m, 2 H), 1.34 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.4$, 169.4, 169.2, 165.1, 155.3, 149.1, 135.5, 133.3, 131.8, 128.4 (2C), 128.2, 128.1 (2C), 125.6, 124.3, 117.2, 112.1, 109.3, 79.7, 67.1, 56.5, 55.9, 53.9, 53.6, 52.9, 31.1, 29.4, 28.2 (3C), 27.1 ppm; HRMS (ESI): calcd for C₃₂H₃₇N₂O₁₀⁺ [M + H⁺] 609.2443, found 609.2450.

Monoester 13: To a stirred solution of δ -lactamindole 7 (1.82 g, 3.0 mmol) in DMSO

(20 mL) were added LiCl (1.26 g, 30 mmol) and H₂O (0.54 mL, 30.0 mmol). The resulting mixture was stirred at 65 °C for 8 h before it was quenched with


ice water (40 mL, sat. aq.) and extracted with Et₂O (3×50 mL). The combined organic

layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 20:1) afforded monoesters **13a** and **13b** (1.35 g, 82% ca. 1:1 mixture of diastereomers by ¹H NMR) as a colorless oil.

13a: $R_f = 0.20$ (CH₂Cl₂:Et₂O 20:1); $[\alpha]_D^{20} = -21.8$ (c = 2.0, CHCl₃); IR (film) v_{max} 3412, 3358, 3096, 2976, 1705, 1523, 1462, 1298, 1230, 1168, 1048, 986, 753, 714 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (s, 3 H), 7.22 (d, J = 7.8 Hz, 1 H), 7.20–7.06 (m, 3 H), 6.89 (d, J = 8.0 Hz, 1 H), 5.09 (dd, J = 21.1, 8.5 Hz, 2 H), 4.97 (d, J = 12.1 Hz, 1 H), 4.68–4.56 (m, 1 H), 4.11 (s, 1 H), 3.97 (s, 3 H), 3.67 (s, 3 H), 3.29–3.11 (m, 2 H), 3.07–2.92 (m, 1 H), 2.76 (d, J = 17.0 Hz, 1 H), 2.44 (d, J = 12.6 Hz, 1 H), 2.13 (s, 1 H), 1.40 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.8$, 171.3, 166.4, 155.1, 149.1, 134.9, 134.2, 133.3, 128.5 (3C), 128.4, 128.1, 125.2, 124.5, 114.4, 111.7, 109.1, 80.1, 67.3, 56.7, 53.6, 52.6, 37.9, 31.7, 28.2 (3C), 27.3, 24.5 ppm; HRMS (ESI): calcd for C₃₀H₃₅N₂O₈⁺ [M + H⁺] 551.2388, found 551.2384.

13b: $R_f = 0.20$ (CH₂Cl₂:Et₂O 20:1); $[\alpha]_D^{20} = +6.0$ (c = 1.2, CHCl₃); IR (film) ν_{max} 3400, 3365, 3090, 2976, 1701, 1515, 1456, 1370, 1250, 1168, 1071, 978, 748, 710 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34-7.27$ (m, 3 H), 7.24 (d, J = 7.9 Hz, 1 H), 7.13 (dd, J = 10.1, 5.8 Hz, 3 H), 6.90 (d, J = 7.9 Hz, 1 H), 5.23 (d, J = 7.1 Hz, 1 H), 5.05 (d, J =3.2 Hz, 2 H), 4.72 (d, J = 7.1 Hz, 1 H), 4.09 (s, 1 H), 3.98 (s, 3 H), 3.68 (s, 3 H), 3.24-2.93 (m, 3 H), 2.82-2.70 (m, 1 H), 2.45 (ddt, J = 13.5, 5.3, 2.6 Hz, 1 H), 2.13–1.98 (m, 1 H), 1.38 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.1$, 171.3, 166.3, 155.1, 149.2, 135.1, 134.1, 132.9, 128.5 (3C), 128.3, 127.9, 125.3, 124.5, 114.1, 111.4, 109.1, 80.1, 67.1, 56.7, 53.1, 52.7, 37.8, 31.7, 28.2(3C), 27.6, 24.1 ppm; HRMS (ESI): calcd for $C_{30}H_{35}N_2O_8^+$ [M + H⁺] 551.2388, found 551.2392.

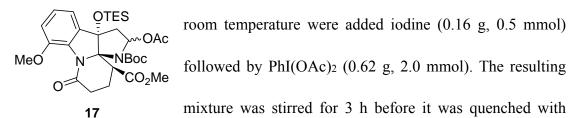
Pyrroloindole 6': To a stirred solution of monoesters 13a and 13b (5.50 g, 10.0 mmol)

in acetone (100 mL) at 0 °C was added NaHCO₃ (100 mL, sat. aq.). The resulting mixture was stirred for 0.5 h before it was added oxone (12.28 g, 20.0 mmol). The reaction

mixture was stirred at 0 °C for an additional 2 h before it was diluted with H₂O (100 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 200 mL). The combined organic layers were washed with brine (300 mL), dried (Na₂SO₄) and concentrated in vacuo. Flash column chromatography (silica gel, hexanes:EtOAc 1:3) afforded pyrroloindole 6' (3.86 g, 68%) as a white amorphous solid. 6': $R_f = 0.23$ (hexanes:EtOAc 3:1); $[\alpha]_{D}^{20} = +8.0$ (c = 1.0, MeOH); IR (film) v_{max} 3412, 3368, 2984, 2924, 2877, 1701, 1680, 1634, 1596, 1370, 1243, 1160,1041, 912, 758, 724 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32$ (q, J = 7.2 Hz, 5 H), 7.19 (t, J = 7.8 Hz, 1 H), 7.04 (d, J = 7.4 Hz, 1 H), 6.94 (d, J = 6.6 Hz, 1 H), 5.16 (d, J = 12.0 Hz, 1 H), 5.02 (d, J = 12.0 Hz, 1 Hz, 1 H), 5.02 (d, J = 12.0 Hz, 1 Hz, 1 Hz), 5.02 (d, J = 12.0 Hz), 5.0212.3 Hz, 1 H), 4.24 (s, 1 H), 3.76 (s, 6 H), 3.61 (s, 1 H), 3.37 (dd, J = 13.8, 3.4 Hz, 1 H), 3.23 (s, 1 H), 2.97 (s, 1 H), 2.69 (dd, J = 12.4, 7.4 Hz, 1 H), 2.59–2.31 (m, 2 H), 2.10–1.87 (m, 1 H), 1.33 ppm (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 171.1, 167.9, 161.4, 158.7, 151.5, 135.5, 135.2, 135.1, 129.9, 128.5 (3C), 128.4, 128.2, 127.6, 115.7, 88.3, 86.9, 82.1, 66.7, 58.2, 53.1, 45.7, 30.9, 29.7, 29.3, 27.9 (3C), 20.1 ppm; HRMS (ESI): calcd for $C_{30}H_{35}N_2O_9^+$ [M + H⁺] 567.2337, found 567.2335.

Silyl ether 15: To a stirred solution of pyrroloindole 6' (1.13 g, 2.0 mmol) in CH₂Cl₂

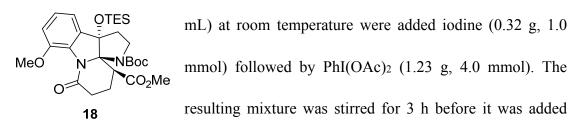
MeO N NBoc O CO₂Me (20 mL) at room temperature were added DMAP (2.44g, 20.0 mmol) and TESOTf (1.35 mL, 6.0 mmol). The resulting mixture was stirred for 1 h before it was


quenched with NaHCO₃ (35 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with brine (40 mL), dried (Na₂SO₄) and concentrated in vacuo. Flash column chromatography (silica gel, hexanes: EtOAc 3:1) afforded silyl ether 15 (1.16 g, 85%) as a colorless oil. **15**: $R_f = 0.40$ (hexanes:EtOAc 3:1); $[\alpha]_D^{20} = -12.0$ (c = 0.5, CHCl₃); IR (film) v_{max} 3551, 3434, 2957, 2861, 2334, 1746, 1671, 1483, 1236, 1138, 1021, 760, 723 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (s, 5 H), 7.17 (t, J = 7.9 Hz, 1 H), 6.95 (dd, J = 26.9, 7.5 Hz, 2 H), 5.24-4.99 (m, 2 H), 3.88-3.65 (m, 6 H), 3.64-3.36 (m, 2 H)H), 3.22–2.75 (m, 2 H), 2.69–2.54 (m, 2 H), 2.34 (ddd, *J* = 18.6, 11.8, 6.9 Hz, 1 H), 2.04–1.91 (m, 1 H), 1.46 (s, 6 H), 1.17 (s, 3 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.56–0.40 ppm (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.7, 170.2, 168.1, 153.7, 152.3, 136.2, 135.8, 130.3, 128.4, 128.1, 127.3, 126.9, 116.8, 115.7, 115.2, 114.1, 89.4, 86.6, 82.1, 66.6, 58.7, 55.7, 52.2, 44.3, 34.8, 30.7, 28.1 (3C), 21.4, 6.7 (3C), 6.1 ppm (3C); HRMS (ESI): calcd for $C_{36}H_{49}N_2O_9Si^+$ [M + H⁺] 681.3202, found 681.3208.

was added Pd/C (10 % wt/wt, 0.07 g) and bubbled with H₂ over 3 h before it was filtered through a short pad of celite. The filtrate was concentrated *in vacuo*. Flash column chromatography (silica gel, CH₂Cl₂:MeOH 20:1) afforded acid **16** (0.51 g, 86%) as a

Acid 16: To a stirred solution of silvl ether 15 (0.68 g, 1.0 mmol) in CH₂Cl₂ (20 mL)

colorless oil. **16**: $R_{\rm f} = 0.50$ (CH₂Cl₂:MeOH 20:1); $[\alpha]_{\rm D}^{20} = +42.7$ (c = 0.8, CHCl₃); IR (film) v_{max} 3584, 3431, 2974, 2852, 2371, 1746, 1710, 1681, 1463, 1326, 1249, 1123, 1034, 923, 749, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20$ (t, J = 7.8 Hz, 1 H), 7.04–6.95 (m, 2 H), 3.79 (d, J = 6.1 Hz, 6 H), 3.53 (s, 1 H), 3.35 (s, 1 H), 2.92 (s, 2 H), 2.71 (dd, J = 12.3, 6.5 Hz, 1 H), 2.58–2.14 (m, 2 H), 2.02 (s, 1 H), 1.34 (s, 9 H), 0.81 (t, J = 7.9 Hz, 9 H), 0.45 ppm (q, J = 7.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 172.9, 171.8, 167.6, 152.0 (2C), 130.6, 127.2 (3C), 115.8, 89.7, 86.4, 83.0, 60.9, 56.5, 54.6, 52.9, 44.1, 31.3, 27.7 (3C), 22.8, 6.6 (3C), 6.00 ppm (3C); HRMS (ESI): calcd for C₂₉H₄₃N₂O₉Si⁺ [M + H⁺] 591.2732., found 591.2734.


Acetate 17: To a stirred solution of acid 16 (0.59 g, 1.0 mmol) in CH₂Cl₂ (10 mL) at

NaHCO₃ (20 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded acetate **17** (0.50 g, 83%) as a colorless oil. **17**: $R_f = 0.42$ (hexanes:EtOAc 3:1); $[\alpha]_D^{20} = +36.0$ (c = 1.0, CHCl₃); IR (film) v_{max} 3572, 3428, 2965, 2849, 2342, 1736, 1669, 1453, 1232, 1140, 1051, 756, 719 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18-7.10$ (m, 1 H), 7.00 (d, J = 7.9 Hz, 1 H), 6.95 (d, J = 7.5 Hz, 1 H), 6.08 (d, J = 5.3 Hz, 1 H), 3.82 (s, 3 H), 3.73 (s, 3 H), 3.50–3.40 (m, 1 H), 3.01 (s, 2 H), 2.55–2.37 (m, 3 H), 2.05–1.93 (m, 1 H), 1.57 (s, 3 H)

H), 1.36 (s, 9 H), 0.81 (t, *J* = 7.9 Hz, 9 H), 0.46 ppm (q, *J* = 7.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ = 171.9, 169.7, 168.3, 167.6, 152.5, 152.1, 136.7, 131.1, 126.1, 117.2, 114.2, 89.7, 85.8, 81.6, 57.1, 52.1, 43.2, 30.9, 29.7, 28.1 (3C), 23.1, 20.6, 6.6 (3C), 6.1 ppm (3C); HRMS (ESI): calcd for C₃₀H₄₅N₂O₉Si⁺ [M + H⁺] 605.2889, found 605.2885.

Pyrroloindole 18: To a stirred solution of acid 16 (1.18 g, 2.0 mmol) in CH₂Cl₂ (20

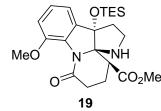
NaBH₃CN (1.24 g, 20.0 mmol). The resulting mixture was stirred for further 1 h before it was quenched with NaHCO₃ (20 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded pyrroloindole **18** (0.95 g, 76%) as a yellow oil. **18**: $R_{\rm f} = 0.44$ (hexanes:EtOAc 3:1); $[\alpha]_{\rm D}^{20} = +49.0$ (c = 1.0, CHCl₃); IR (film) v_{max} 3581, 3432, 2988, 2835, 2359, 1741, 1681, 1468, 1229, 1126, 1053, 764, 726 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (t, J = 7.9 Hz, 1 H), 6.95 (dd, J = 14.9, 7.9 Hz, 2 H), 3.86 (s, 2 H), 3.73 (s, 3 H), 3.49–3.36 (m, 1 H), 3.21 (t, J = 10.1 Hz, 2 H), 2.99–2.65 (m, 3 H), 2.34 (dq, J = 43.1, 11.3 Hz, 3 H), 2.02–1.90 (m, 1 H), 1.38 (d, J = 48.1 Hz, 9 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.47 ppm (d, J = 7.9 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.9$, 167.8, 153.7, 152.2, 136.5, 130.7, 126.8, 115.4, 114.4, 88.4, 87.2, 81.0, 55.9, 52.1, 44.9, 43.3, 30.9, 30.3, 28.1 (3C), 22.4, 6.7 (3C), 6.1 ppm (3C); HRMS (ESI): calcd for $C_{28}H_{43}N_2O_7Si^+$ [M + H⁺] 547.2834, found 547.2836.

Alternatively, pyrroloindole 18 can also be obtained from acetate 17 through the following procedure:

To a stirred solution of acetate **17** (121 mg, 0.2 mmol) in CH₂Cl₂ (5 mL) at room temperature was added NaBH₃CN (124 mg, 2.0 mmol). The resulting mixture was stirred for 1 h before it was quenched with NaHCO₃ (5 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded pyrroloindole **18** (97 mg, 90%) as a yellow oil.

Synthesis of pyrroloindole 18 through reductive decarboxylation of Barton ester:

To a stirred solution of acid **16** (59 mg, 0.10 mmol) in THF (5 mL) at room temperature were added Et₃N (56 μ L, 0.40 mmol), DMAP (6 mg, 0.05 mmol) and HOTT³ (56 mg, 0.15 mmol). The resulting mixture was stirred in the dark for 2 h before it was added *t*-dodecanethiol (41 mg, 0.20 mmol). The resulting mixture was stirred at 65 °C for further 12 h before it was cooled to room temperature and diluted with H₂O (10 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with Et₂O (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded pyrroloindole **18** (23 mg, 43%) as a yellow oil.

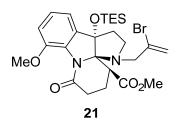

Synthesis of pyrroloindole 18 through reductive decarboxylation of selenoester:

To a stirred solution of acid 16 (59 mg, 0.10 mmol) in CH₂Cl₂ (5 mL) at 0 °C were

added PhSeSePh (47 mg, 0.15 mmol) and *n*-Bu₃P (76 μ L, 0.30 mmol). The resulting mixture was stirred at room temperature for 12 h before it was diluted with EtOAc (5 mL) and washed with H₂O (5 mL). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded crude selenoester (68 mg, 83%) as a yellow solid, which was subjected immediately into the next step.

To a stirred solution of the selenoester (crude, obtained above) in benzene (8 mL) were added AIBN (8 mg, 0.05 mmol) and (TMS)₃SiH (138 μ L, 0.40 mmol). The resulting mixture was stirred at 80 °C for 24 h before it was cooled to room temperature and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded pyrroloindole **18** (29 mg, 54%) as a yellow oil.

Amine 19: To a stirred solution of pyrroloindole 18 (1.09 g, 2.0 mmol) in CH₂Cl₂ (9

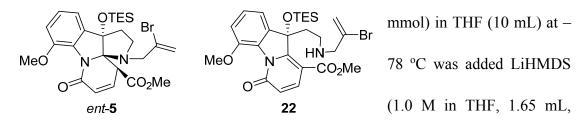


mL) at 0 °C was added CF₃CO₂H (3 ml). The resulting mixture was stirred at room temperature for 1 h before it was quenched with NaHCO₃ (20 mL, sat. aq.). The layers were

separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with brine (40 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) afforded amine **19** (0.80 g, 90%) as a colorless oil. **19**: $R_f = 0.33$ (hexanes:EtOAc 1:2); $[\alpha]_D^{20} = +28.0$ (c = 0.8, CHCl₃); IR (film) v_{max} 3572, 3423, 2974, 2812, 2364, 1738, 1668, 1474, 1239, 1126, 1031, 986, 768, 724 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.17$ (t, J = 7.9 Hz, 1 H), 7.01–6.97 (m, 1 H), 6.94 (d, J = 7.9 Hz, 1 H), 3.88 (s, 3 H), 3.73 (s, 3 H), 3.10

(dd, J = 13.1, 2.8 Hz, 1 H), 2.91 (t, J = 9.1 Hz, 1 H), 2.83 (ddd, J = 17.8, 6.6, 1.4 Hz, 1 H), 2.50–2.15 (m, 6 H), 2.08 (ddd, J = 4.9, 2.8, 1.4 Hz, 1 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.45 ppm (m, J = 8.4, 4.4 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.1, 167.1,$ 151.3, 136.9, 130.9, 126.5, 116.1, 113.8, 92.1, 88.3, 56.1, 51.7, 44.6, 43.8, 37.2, 32.1, 21.6, 6.7 (3C), 6.1 ppm (3C); HRMS (ESI): calcd for C₂₃H₃₅N₂O₅Si⁺ [M + H⁺] 447.2310, found 447.2312.

Vinyl bromide 21: To a stirred solution of amine 19 (580 mg, 1.3 mmol) in MeCN (10

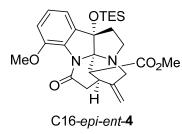


mL) were added allyl iodide **20** (642 mg, 2.6 mmol) and K_2CO_3 (542 mg, 3.9 mmol). The resulting mixture was stirred at 50 °C for 12 h before it was cooled to room

temperature and filtered through a short pad of celite. The filtrate was diluted with EtOAc (15 mL) and washed with brine (15 mL). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded vinyl bromide **21** (623 mg, 85%) as a colorless oil. **21**: $R_f = 0.40$ (hexanes:EtOAc 3:1); $[\alpha]_D^{20} = +64.5$ (c = 1.0, CHCl₃); IR (film) v_{max} 2972, 2874, 2831, 2370, 1729, 1667, 1478, 1379, 1253, 1166, 1017, 775, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20$ (s, 1 H), 7.00–6.94 (m, 2 H), 5.87 (d, J = 1.4 Hz, 1 H), 5.46–5.41 (m, 1 H), 3.93 (d, J = 15.5 Hz, 4 H), 3.72 (s, 3 H), 3.20 (dd, J = 12.7, 3.3 Hz, 1 H), 3.04 (t, J = 8.2 Hz , 1 H), 2.88 (ddd, J = 17.7, 6.1, 2.2 Hz, 1 H), 2.73 (d, J = 16.8 Hz, 1 H), 2.53–2.36 (m, 2 H), 2.35–2.23 (m, 2 H), 2.11–2.02 (m, 1 H), 1.78 (ddd, J = 11.2, 8.5, 6.4 Hz, 1 H), 0.82 (t, 9 H), 0.48 ppm (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.6$, 168.4, 151.5, 137.5, 131.2, 130.7, 127.1, 116.9, 115.6, 114.1, 92.2, 87.7, 59.9, 56.3,

51.5, 50.8, 45.9, 34.1, 31.5, 20.6, 6.7 (3C), 6.1 ppm (3C); HRMS (ESI): calcd for C₂₆H₃₈BrN₂O₅Si⁺ [M + H⁺] 565.1728, found 565.1730.

Enone ent-5 and Amine 22: To a stirred solution of vinyl bromide 21 (620 mg, 1.1

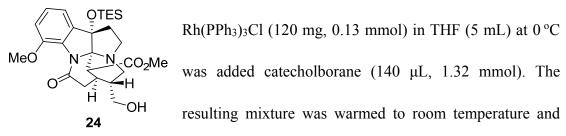


1.65 mmol). The resulting mixture was stirred for 0.5 h before it was added a solution of PhSeCl (316 mg, 1.65mmol) in THF (10 ml). The resulting mixture was stirred at – 78 °C for further 0.5 h before it was diluted with EtOAc (15 mL) and quenched with NaHCO₃ (10 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded crude selenide (750 mg, 95%), which was subjected immediately into the next step.

To a stirred solution of the selenide (crude, obtained above) in THF (10 mL) at room temperature was added H₂O₂ (30% wt/wt in H₂O, 0.34 mL, 3.0 mmol). The resulting mixture was stirred for 0.5 h before it was diluted with Et₂O (5 mL) and quenched with Na₂S₂O₃ (10 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with Et₂O (3×10 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded enone *ent*-**5** (56 mg, 10%) as a colorless oil, along with amine **22** (365 mg, 65%) as a colorless oil. *ent-5*: $R_f = 0.32$ (hexanes:EtOAc 5:1); $[\alpha]_D^{20} = +45.6$ (c = 1.0, CHCl₃); IR (film) ν_{max} 2971, 2868, 2816, 2371, 1735, 1671, 1476, 1379, 1238, 1173, 1133, 1015, 741, 713 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20$ (t, J = 7.9 Hz, 1 H), 7.05–6.95 (m, 2 H), 6.81 (dd, J = 10.1, 2.1 Hz, 1 H), 6.12 (dd, J = 10.1, 3.2 Hz, 1 H), 5.45 (s, 1 H), 5.35 (s, 1 H), 4.39–4.34 (m, 1 H), 3.93 (s, 3 H), 3.78 (s, 3 H), 3.75–3.65 (m, 1 H), 3.13 (d, J = 15.5 Hz, 1 H), 2.85 (t, J = 8.0 Hz, 1 H), 2.68–2.57 (m, 1 H), 2.23 (dd, J = 11.6, 5.5 Hz, 1 H), 1.88–1.78 (m, 1 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.54–0.42 ppm (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7, 160.6, 150.8, 137.8, 136.8, 130.5, 129.8, 126.9, 123.3, 117.9, 115.9, 114.4, 90.8, 88.5, 57.9, 56.4, 52.1, 49.1, 46.5, 35.7, 6.7 (3C), 6.2 ppm (3C); HRMS (ESI): calcd for C₂₆H₃₆BrN₂O₅Si⁺ [M + H⁺] 563.1571, found 563.1575.$

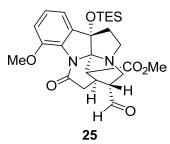
22: $R_f = 0.22$ (hexanes:EtOAc 2:1); $[\alpha]_D^{20} = -31.2$ (c = 1.0, CHCl₃); IR (film) v_{max} 3351, 2968, 2874, 2843, 2372, 1671, 1552, 1485, 1248, 1099, 1033, 964, 768, 732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (d, J = 9.6 Hz, 1 H), 7.32 (t, J = 7.9 Hz, 1 H), 7.08 (dd, J = 7.9, 3.6 Hz, 2 H), 6.56 (d, J = 9.6 Hz, 1 H), 5.54 (d, J = 1.3 Hz, 1 H), 5.38 (d, J = 1.6 Hz, 1 H), 3.99 (s, 3H), 3.88 (s, 3 H), 3.30–3.20 (m, 1 H), 3.17 (s, 2 H), 2.42–2.32 (m, 1 H), 2.08 (t, J = 7.4 Hz, 2 H), 0.72 (t, J = 7.9 Hz, 9 H), 0.20 ppm (q, J = 8.0 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.4$, 159.3, 158.1, 149.3, 138.8, 138.7, 132.9, 128.4, 127.6, 120.9, 117.3, 116.1, 115.8, 109.3, 83.2, 57.1, 56.8, 52.1, 42.5, 41.5, 6.6 (3C), 5.5 ppm (3C); HRMS (ESI): calcd for C₂₆H₃₆BrN₂O₅Si⁺ [M + H⁺] 563.1571, found 563.1573.

Tetracycle C16*-epi-ent-***4**: To a stirred solution of amine **22** (303 mg, 0.54 mmol) in toluene (10 mL) at –78 °C were added *n*-Bu₃SnH (0.17 mL, 0.64 mmol) and Et₃B (57

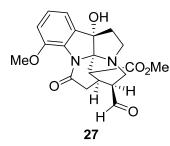

 μ L, 0.54 mmol). The resulting mixture was stirred for 0.5 h before it was warmed to 0 °C and stirred for an additional 2 h. The solvent was removed, and flash column chromatography (silica gel, hexanes:EtOAc 1:1)

afforded tetracycle C16-*epi-ent*-**4** (183 mg, 70%) as a white amorphous solid. C16-*epi-ent*-**4**: $R_{\rm f} = 0.23$ (hexanes:EtOAc 3:1); $[\alpha]_{\rm p}^{20} = +126.5$ (c = 1.0, CHCl₃); IR (film) $\nu_{\rm max}$ 2971, 2868, 2822, 2361, 1741, 1683, 1485, 1395, 1237, 1135, 1012, 761, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.13$ (t, J = 7.9 Hz, 1 H), 6.99 (d, J = 7.5 Hz, 1 H), 6.91 (d, J = 8.2 Hz, 1 H), 4.82 (d, J = 10.7 Hz, 2 H), 3.87 (s, 3 H), 3.66 (s, 4 H), 3.36 (d, J = 13.1 Hz, 1 H), 3.25–3.19 (m, 1 H), 2.98–2.88 (m, 2 H), 2.79 (d, J = 1.7 Hz, 1 H), 2.73–2.62 (m, 2 H), 2.22–2.13 (m, 1 H), 2.09 (dd, J = 10.6, 4.3 Hz, 1 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.47 ppm (q, J = 7.8 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.7$, 166.6, 149.8, 143.3, 136.6, 130.7, 126.1, 116.6, 114.3, 111.1, 89.9, 89.2, 56.3, 51.3, 49.01, 48.5, 47.5, 40.5, 40.2, 40.1, 6.8 (3C), 6.3 ppm (3C); HRMS (ESI): calcd for C₂₆H₃₇N₂O₅Si⁺ [M + H⁺] 485.2466, found 485.2467.

Alternatively, tetracycle C16-*epi-ent*-4 can also be obtained from enone *ent*-5 through the following procedure:


To a stirred solution of enone *ent*-**5** (264 mg, 0.47 mmol) and AIBN (77 mg, 0.47 mmol) in benzene (5 mL) at 80 °C were added *n*-Bu₃SnH (253 μ L, 0.94 mmol). The resulting mixture was stirred for 0.5 h before it was cooled to room temperature and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc 1:1) afforded tetracycle C16-*epi-ent*-**4** (186 mg, 82%) as a white amorphous solid.

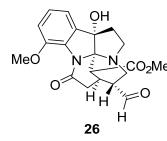
stirred for 2 h before it was added NaOH (3 M aq., 0.43 mL, 1.3 mmol) and H₂O₂ (30% wt/wt in H₂O, 0.15 mL, 1.3 mmol). The resulting mixture was stirred for 1 h before it was quenched with NaHCO₃ (5 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (10 mL), dried (Na₂SO₄) and concentrated in vacuo. Flash column chromatography (silica gel, EtOAc) afforded alcohol 24 (109 mg, 84%) as a white amorphous solid. 24: $R_{\rm f} = 0.40$ (EtOAc); $[\alpha]_{\rm D}^{20} = +95.3$ (c = 1.2, CHCl₃); IR (film) vmax 2970, 2858, 2831, 2358, 1736, 1679, 1474, 1386, 1246, 1138, 1017, 971, 758, 732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.17–7.11 (m, 1 H), 6.99 (dd, J = 7.5, 0.9 Hz, 1 H), 6.92 (dd, J = 8.2, 0.6 Hz, 1 H), 3.90 (s, 3 H), 3.70 (s, 3 H), 3.64-3.56 (m, 1 H), 3.17(dd, J = 11.9, 4.4 Hz, 1 H), 2.97 (dd, J = 18.1, 8.0 Hz, 1 H), 2.89–2.81 (m, 3 H), 2.81– 2.74 (m, 1 H), 2.66 (dd, J = 9.7, 8.3 Hz, 2 H), 2.17–2.06 (m, 2 H), 1.80 (s, 2 H), 1.62 (s, 1 H), 0.82 (t, J = 7.9 Hz, 9 H), 0.51–0.42 ppm (m, 6 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.2, 166.8, 149.7, 136.9, 130.5, 126.1, 116.5, 114.2, 90.3, 89.1, 64.7, 56.3, 51.4, 116.5, 114.2, 90.3, 100.1, 10$ 49.4, 45.4, 44.0, 42.9, 42.1, 39.6, 33.1, 6.8 (3C), 6.3 ppm (3C); HRMS (ESI): calcd for $C_{26}H_{39}N_2O_6Si^+$ [M + H⁺] 503.2572, found 503.2576.


Aldehyde 25: To a stirred solution of alcohol 24 (50 mg, 0.1 mmol) in CH₂Cl₂ (5 mL) at room temperature were added NaHCO₃ (50 mg, 0.6 mmol) and Dess–Martin

periodinane (46 mg, 0.11 mmol). The resulting mixture was stirred for 0.5 h before it was diluted with CH₂Cl₂ (10 mL) and quenched with Na₂S₂O₃ (5 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with

CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, EtOAc) afforded aldehyde **25** (44 mg, 88%) as a white amorphous solid. **25**: $R_f = 0.65$ (EtOAc); $[\alpha]_p^{20} = +112.4$ (c = 0.7, CHCl₃); IR (film) ν_{max} 2983, 2976, 2820, 2353, 1730, 1661, 1468, 1429, 1386, 1249, 1178, 1024, 754, 714 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.62$ (s, 1 H), 7.15 (t, J = 7.9 Hz, 1 H), 7.01–6.96 (m, 1 H), 6.93 (d, J = 8.1 Hz, 1 H), 3.90 (s, 3 H), 3.64 (s, 3 H), 3.41–3.30 (m, 3 H), 3.00 (ddd, J = 14.8, 13.1, 7.6 Hz, 2 H), 2.75–2.59 (m, 3 H), 2.20–2.02 (m, 3 H), 0.81 (t, J = 7.9 Hz, 9 H), 0.54–0.41 ppm (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 203.1$, 170.1, 166.3, 149.7, 136.4, 130.5, 126.2, 116.6, 114.2, 89.6, 89.1, 56.2, 51.5, 51.2, 49.2, 44.7, 42.2, 40.2, 39.9, 31.5, 6.8 (3C), 6.3 ppm (3C); HRMS (ESI): calcd for C₂₆H₃₇N₂O₆Si⁺ [M + H⁺] 501.2415, found 501.2417.

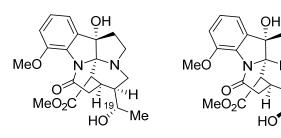
Aldehyde 27: To a stirred solution of aldehyde 25 (80 mg, 0.16 mmol) in MeCN (5



mL) at room temperature was added HF·py (0.73 mL, 8.0 mmol). The resulting mixture was stirred for 12 h before it was quenched with NaHCO₃ (20 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with

EtOAc (3×10 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel,

CH₂Cl₂:MeOH 10:1) afforded aldehyde **27** (53 mg, 86%) as a white amorphous solid. **27**: $R_f = 0.59$ (CH₂Cl₂:MeOH 10:1); $[\alpha]_D^{20} = +25.6$ (c = 0.8, CHCl₃); IR (film) v_{max} 3391, 3306, 2983, 2835, 2348, 1809, 1732, 1652, 1482, 1424, 1393, 1271, 1168, 1130, 1021, 924, 756, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.72$ (s, 1 H), 7.19 (t, J = 7.8 Hz, 1 H), 7.08–7.04 (m, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 5.21 (s, 1 H), 3.89 (s, 3 H), 3.87 (s, 3 H), 3.47–3.41 (m, 1 H), 3.18–3.09 (m, 2 H), 3.07–2.98 (m, 2 H), 2.78–2.54 (m, 3 H), 2.45–2.34 (m, 1 H), 2.12–1.99 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.4$, 171.8, 166.2, 149.2, 136.2, 129.8, 126.9, 115.9, 113.9, 89.1, 88.7, 56.2, 53.1, 49.4, 48.2, 47.7, 42.6, 40.6, 34.8, 29.3 ppm; HRMS (ESI): calcd for C₂₀H₂₃N₂O₆⁺ [M + H⁺] 387.1551, found 387.1554.


Aldehyde 26: To a stirred solution of aldehyde 25 (100 mg, 0.2 mmol) in MeCN (5

mL) at room temperature were added HF·py (0.91 mL, 10.0 mmol). The resulting mixture was stirred for 6 h before it was quenched with NaHCO₃ (20 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with

EtOAc (3 × 10 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, CH₂Cl₂:MeOH 10:1) afforded both aldehydes **26** (41 mg, 53%) and **27** (29 mg, 38%) as white amorphous solids. **26**: $R_f = 0.62$ (CH₂Cl₂:MeOH 10:1); $[\alpha]_D^{20} = +108.3$ (c =0.5, CHCl₃); IR (film) v_{max} 3389, 3301, 2969, 2835, 2349, 1816, 1723, 1648, 1469, 1441, 1362, 1264, 1157, 1138, 1028, 931, 744, 718 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.62$ (s, 1 H), 7.21 (t, J = 7.8 Hz, 1 H), 7.06 (dd, J = 7.5, 0.8 Hz, 1 H), 6.94 (d, J = 8.1 Hz, 1 H), 5.07 (s, 1 H), 3.91 (s, 3 H), 3.73 (s, 3 H), 3.45 (d, J = 12.0 Hz, 1 H), 3.37 (dd, J = 6.8, 5.3 Hz, 1 H), 3.15 (dd, J = 12.0, 4.8 Hz, 1 H), 2.95 (d, J = 2.0 Hz, 1 H), 2.83 (dd, J = 8.5, 6.4 Hz, 1 H), 2.79–2.67 (m, 2 H), 2.40 (d, J = 6.5 Hz, 1 H), 2.24 (d, J = 4.8 Hz, 1 H), 2.13–1.96 ppm (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) : $\delta = 200.7$, 171.5, 166.2, 149.3, 136.6, 129.7, 127.1, 116.1, 113.8, 88.6, 88.4, 56.2, 52.3, 51.3, 48.5, 46.7, 41.2, 40.6, 40.1, 30.3 ppm; HRMS (ESI): calcd for C₂₀H₂₃N₂O₆⁺ [M + H⁺] 387.1551, found 387.1552.

(+)-Asmaphorzaine E (ent-3) and C19-epi-ent-3: To a stirred solution of aldehyde 27

(+)-asmaphorzaine E (ent-3)

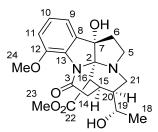
(40 mg, 0.10 mmol) in THF (2 mL) at -78 °C was added MeMgBr (3.0

M in Et₂O, 0.17 mL, 0.52 mmol).

The resulting mixture was stirred

for 0.5 h before it was quenched with NaHCO₃ (10 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with EtOAc (4×5 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄) and concentrated *in vacuo* to afford the crude alcohol (38 mg, 90%, ca. 3:1 mixture of inseparable diastereomers by ¹H NMR) as a colorless oil, which was used directly in the next step.

C19-epi-ent-3

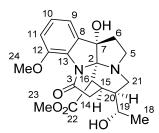

To a stirred solution of the alcohol (crude, obtained above) in toluene (2 mL) at 90 °C was added DBU (74 μ L, 0.52 mmol). The resulting mixture was stirred for 16 h before it was diluted with EtOAc (10 mL) and quenched with NaHCO₃ (10 mL, sat. aq.). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*.

Flash column chromatography (silica gel, EtOAc) afforded (+)-asmaphorzaine E (*ent*-**3**) (26 mg, 68%) as a white solid, along with C19-*epi-ent*-**3** (8 mg, 20%) as a white solid. *ent*-**3**: $R_f = 0.12$ (EtOAc); m.p. 257–259 °C (EtOAc/hexanes); $[\alpha]_D^{30} = +35.8$ (c = 0.4, MeOH); Lit. $[\alpha]_D^{30} = +26$ (c = 0.1, MeOH);⁴ IR (film) v_{max} 3383, 2985, 2808, 1588, 1462, 1437, 1382, 1317, 1206, 1021, 910, 756, 712 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): $\delta = 7.22$ (t, J = 7.8 Hz, 1 H), 7.04 (d, J = 7.7 Hz, 1 H), 7.00 (d, J = 8.2 Hz, 1 H), 3.85 (s, 3 H), 3.69 (dq, J = 9.5, 6.1 Hz, 1 H), 3.60 (s, 3 H), 3.06 (d, J = 2.8 Hz, 1 H), 3.04–2.97 (m, 1 H), 2.85 (dd, J = 11.6, 4.9 Hz, 1 H), 2.78 (d, J = 18.8 Hz, 1 H), 2.74 (dd, J = 8.7, 6.5 Hz, 1 H), 2.61 (dd, J = 11.6, 11.5 Hz, 1 H), 2.37 (dd, J = 18.8, 8.5 Hz, 1 H), 2.27–2.19 (m, 1 H), 2.09–2.00 (m, 1 H), 1.94 (dd, J = 11.2, 3.8 Hz, 1 H), 1.90–1.84 (m, 1 H), 1.24 ppm (d, J = 6.1 Hz, 3 H); ¹³C NMR (125 MHz, CD₃OD): $\delta = 173.7$, 171.5, 150.8, 138.7, 131.7, 128.0, 117.1, 115.2, 89.2, 88.8, 66.7, 56.7, 52.2, 49.6, 48.9, 48.7, 45.9, 43.3, 32.3, 31.8, 22.3 ppm; HRMS (ESI): calcd for C₂₁H₂₇N₂O₆⁺ [M + H⁺] 403.1864, found 403.1864.

C19-*epi-ent-3*: $R_f = 0.10$ (EtOAc); m.p. 236–238 °C; $[\alpha]_D^{20} = +52.8$ (c = 0.5, MeOH); IR (film) v_{max} 3386, 2954, 2821, 1583, 1452, 1421, 1401, 1322, 1208, 1122, 1032, 910, 754, 716 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): $\delta = 7.26-7.19$ (m, 1 H), 7.03 (ddd, J =13.6, 7.9, 0.9 Hz, 2 H), 3.86 (s, 3 H), 3.74–3.67 (m, 1 H), 3.60 (s, 3 H), 3.23 (dd, J =11.9, 4.8 Hz, 1 H), 3.11–3.05 (m, 1 H), 2.79–2.64 (m, 4 H), 2.37 (dd, J = 18.7, 8.5 Hz, 1 H), 2.24 (td, J = 11.0, 6.4 Hz, 1 H), 2.06 (ddd, J = 10.8, 8.8, 4.0 Hz, 1 H), 1.94 (dd, J =11.3, 3.8 Hz, 1 H), 1.91–1.81 (m, 1 H), 1.24 ppm (d, J = 6.3 Hz, 3 H); ¹³C NMR (100 MHz, CD₃OD): $\delta =$ 173.5, 171.1, 150.7, 138.6, 131.6, 128.0, 117.0, 115.2, 89.3, 88.8, $68.5, 56.6, 52.2, 49.7, 48.8, 48.6, 46.1, 43.3, 33.8, 31.6, 21.8 \ \text{ppm; HRMS (ESI): calcd}$ for $C_{21}H_{27}N_2O_6^+ \ [\text{M} + \text{H}^+] \ 403.1864, \ \text{found} \ 403.1863.$

Table 1. ¹H NMR Spectroscopic (CD₃OD, 25 °C) Comparison of Synthetic and Natural

(+)-Alsmaphorazine E (*ent*-3)⁴



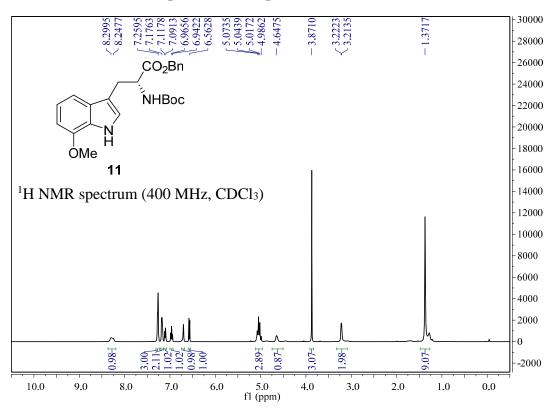
(+)-asmaphorzaine E (ent-3)

No.	Natural ⁴	Synthetic
	δ^{1} H [ppm, mult, J (Hz)]	δ^{1} H [ppm, mult, <i>J</i> (Hz)]
2		
3		
5a	2.75 (dd, J = 8.7, 6.5 Hz)	2.74 (dd, J = 8.7, 6.5 Hz)
5b	2.04 (m)	2.09–2.00 (m)
6a	2.23 (m)	2.27–2.19 (m)
6b	1.93 (dd, J = 11.5, 3.8 Hz)	1.93 (dd, $J = 11.2$, 3.8 Hz)
7		
8		
9	7.03 (d, $J = 7.7$ Hz)	7.04 (d, J = 7.7 Hz)
10	7.22 (dd, $J = 8.0, 7.7 \text{ Hz}$)	7.22 (dd, $J = 7.8$, 7.8 Hz)
11	7.00 (d, J = 8.0 Hz)	7.00 (d, J = 8.2 Hz)
12		
13		
14a	2.76 (d, J = 18.8 Hz)	2.78 (d, <i>J</i> = 18.8 Hz)
14b	2.37 (dd, <i>J</i> = 18.8, 8.5 Hz)	2.37 (dd, <i>J</i> = 18.8, 8.5 Hz)
15	3.00 (m)	3.04–2.97 (m)
16	3.05 (d, J = 2.8 Hz)	3.05 (d, J = 2.8 Hz)
18	1.24 (d, J = 6.1 Hz)	1.24 (d, J = 6.1 Hz)
19	3.68 (dq, J = 9.5, 6.1 Hz)	3.69 (dq, J = 9.5, 6.1 Hz)
20	1.88 (m)	1.90–1.84 (m)
21a	2.85 (dd, J = 11.5, 3.8 Hz)	2.85 (dd, <i>J</i> = 11.6, 4.9 Hz)
21b	2.61 (dd, <i>J</i> = 11.6, 11.5 Hz)	2.61 (dd, <i>J</i> = 11.6, 11.5 Hz)
22		
23	3.60 (s)	3.60 (s)
24	3.85 (s)	3.85 (s)

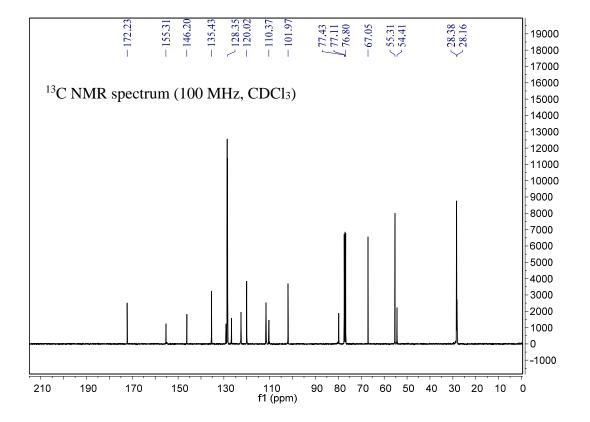
Table 2. ¹³C NMR Spectroscopic (CD₃OD, 25 °C) Comparison of Synthetic and Natural

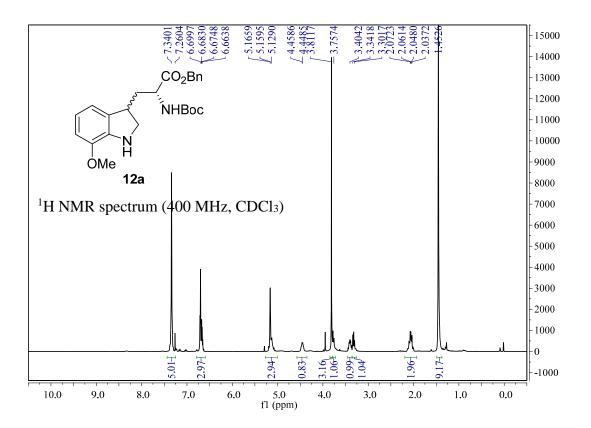
(+)-alsmaphorazine E (*ent-3*)⁴

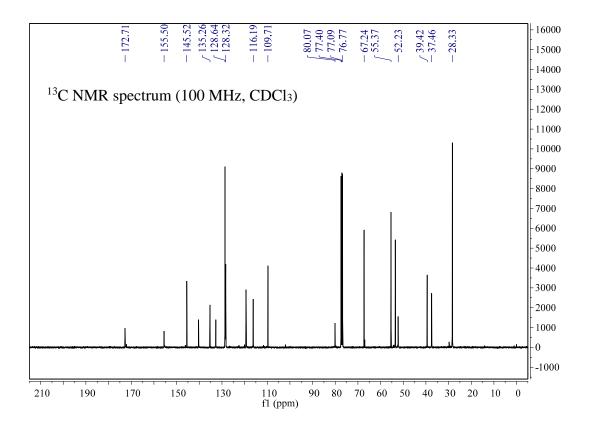
No.	Natural ⁴	Synthetic	
190.	δ ¹³ C (ppm)	δ ¹³ C (ppm)	
2	89.1	89.2	
3	171.3	171.5	
5a	48.8	48.7	
5b			
6a	43.3	43.3	
6b			
7	88.8	88.8	
8	138.8	138.7	
9	117.1	117.1	
10	128.0	128.0	
11	115.3	115.2	
12	150.9	150.8	
13	131.7	131.7	
14a	31.8	31.8	
14b			
15	32.4	32.3	
16	49.7	49.6	
18			
19	66.7	66.7	
20	48.9	48.9	
21a	45.9	45.9	
21b			
22	173.8	173.7	
23	52.2	52.2	
24	56.7	56.7	

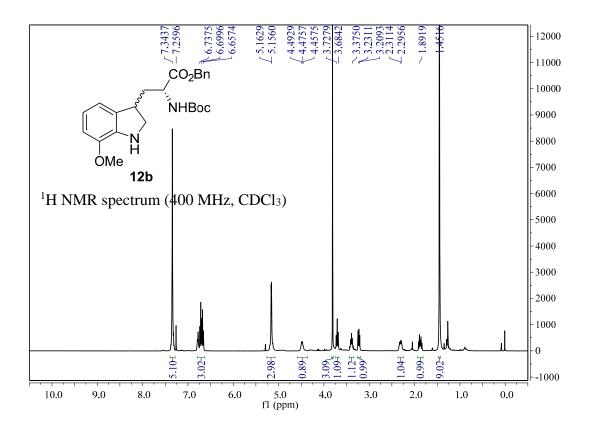

(+)-asmaphorzaine E (ent-3)

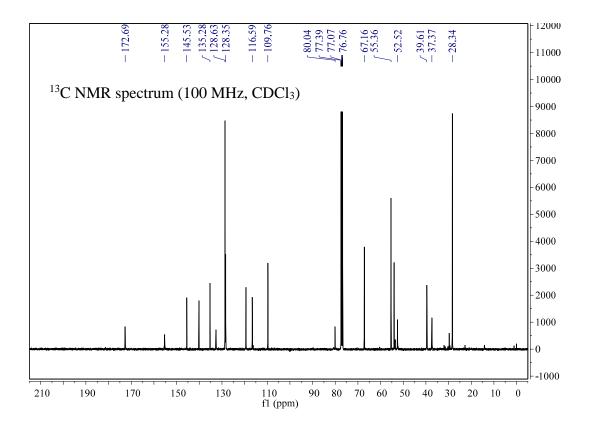
II) Abbreviations


AIBN	2,2'-azobis(2-methylpropionitrile)
CAN	cerium ammonium nitrate
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DMAP	N,N-Dimethylpyridin-4-amine
DMF	N,N-Dimethylformamide
НОТТ	S-(1-oxido-2-pyridinyl) 1,1,3,3-tetramethylthiouronium hexa-
	fluorophosphate
LiHMDS	lithium bis(trimethylsilyl)amide
LiHMDS py	lithium bis(trimethylsilyl)amide pyridine


III) References


- For its preparation, see: (a) C. Ma, X. Liu, X. Li, J. Flippen-Anderson, S. Yu and J.
 M. Cook, J. Org. Chem., 2001, 66, 4525; (b) H. Zhou, X. Liao, W. Yin, J. Ma and
 J. M. Cook, J. Org. Chem., 2006, 71, 251.
- K. R. Prabhu, N. Pillarsetty, H. Gali and K. V. Katti, J. Am. Chem. Soc., 2000, 122, 1554.
- 3 P. Garner, J. T. Anderson, S. Dey, W. J. Youngs and K. Galat, *J. Org. Chem.*, 1998,
 63, 5732.
- 4 K. Koyama, Y. Hirasawa, A. E. Nugroho, T. Kaneda, T. C. Hoe, K.-L. Chan and H. Morita, *Tetrahedron*, 2012, **68**, 1502.




IV) ¹H and ¹³C NMR Spectra of Compounds

