Supporting Information

Reversible transformation of self-assemblies and fluorescence by protonation-deprotonation in pyrimidinylene–phenylene macrocycles

Duoduo Xiao,^a Siqi Zhang,^b Dengqing Zhang,^a Dahai Xie,^a Qingdao

Zeng,^b Yunjie Xiang,^{*,a} Ruguang Ning,^a Xianying Li,^{*,c} and Wusong

Jin*^{,a}

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, P. R. China.

^bCAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China.

^cSchool of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, P. R. China.

* To whom correspondence should be addressed. yjxiang@dhu.edu.cn (Y. X), seanlee@dhu.edu.cn (X.L), wsjin@dhu.edu.cn (W.J)

1. Measurements

¹H NMR spectra were recorded on a Bruker model Bruker AV-400 spectrometer, operating at 400 MHz. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–TOF mass) was performed on an AB Sciex model AB Sciex 4800 Plus MALDI TOF/TOF Analyzer, using dithranol as a matrix. Gel permeation chromatography (GPC) analyses were performed on JAI model LC-9201 recycling preparative HPLC, using CHCl₃ as eluent. Fluorescence spectroscopy was conducted using a quartz cell of 1-cm path length on a HORIBA model Fluoromax-4 spectrophotometer. TEM microscopy was recorded on a JEOL model JEM-2100 electron microscope operating at 200 kV. Atomic force microscopy (AFM) was performed on a Bruker model Dimension Icon microscope. The ESI-TOF mass sepectra were acquired using an Agilent 6210 TOF mass spectrometer. The STM measurements were performed with a Nanoscope IIIa scanning probe microscope system (Bruker, USA).

2. Materials

Unless otherwise noted, all commercial reagents were used as received. Tetrahydrofuran (THF) was refluxed over a mixture of Na and benzophenone ketyl under argon and distilled just before use. DMF was dried over CaH₂ under argon and freshly distilled prior to use. CH₂Cl₂ was dried over CaH₂ under argon and freshly distilled prior to use. CHCl₃ was dried over molecular sieve and freshly distilled under argon before use.

3. Synthetic Procedure

Scheme S1. Synthesis of macrocycle 2

Macrocycle 2. A THF/toluene solution (5 mL/2.5 mL) of a mixture of 4^{S1} (90 mg, 0.17 mmol, 1 eq.) and 3^{S1} (100 mg, 0.17 mmol, 1 eq.) were successively added Pd(PPh₃)₄ (30 mg, 0.019 mmol, 11% eq.) and an aqueous solution of K₂CO₃ (2 M, 1 mL) under argon, and the resulting suspension was refluxed at 80 °C for 48 h. After cooling to room temperature, the resulting mixture was extracted with chloroform. The organic phase was washed with water, dried over anhydrous MgSO₄ and evaporated to dryness. The residue was subjected to column chromatography on silica gel, giving the product as a white solid. The solid obtained were subjected to preparative GPC (gel permeation chromatography, CHCl₃ as eluent solution) to purify, **2** was given as white solid after several cycles.

2: Yield: 8.7 %. ¹H NMR (400 MHz, THF- d_8 , 55 °C) δ (ppm) 8.97 (s, 3H), 8.86 (s, 12H), 7.79 (s, 6H), 7.37 (s, 3H), 6.94 (s, 6H), 4.08-3.97 (t, 12H), 1.85 (dd, J = 7.2 Hz, 12H), 1.21 (m, J = 18.7 Hz, 108H), 0.81 (t, J = 6.7 Hz, 18H). MALDI-TOF Mass: calcd. for C₁₃₂H₁₈₀N₁₂O₆ [M]⁺: m/z = 2029.41; found: 2029.6699.

4. Supporting Reference

(S1) D. Xie, R. Li, D. Zhang, J. Hu, D. Xiao, X. Li, Y. Xiang, W. Jin, *Tetrahedron*, 2015, **71**, 8871.

5. Supporting Figures

Figure S1. TEM image of 1_p from CH_2Cl_2 in the presence of TFA.

Figure S2. Fluorescence spectral changes of $\mathbf{1}_{NT}$ (5 × 10⁻⁶ M) upon titration with CF₃COOCH₂CH₃ in DCM at 25 °C. CF₃COOCH₂CH₃ = 0-200 eq. (0-1 mmol/L)

16/8.6/					
					1579
	1579.01				
			1579.34		

Figure S3. (a), (b) ESI-TOF mass spectra of 1_p in the presence of TFA in MeOH/CH₃CN. (c), (d),
(e), (f) experimental isotopic distirbutions for the different charged species.

Figure S4. Optimized model structure of 1_p with six proton (in red). (a) top view and (b) side view.

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-8.639513	3.581747	-0.047125	
2	6	0	-7.424849	2.864770	-0.103136	
3	6	0	-6.198638	3.556533	-0.063541	
4	6	0	-6.203548	4.964310	-0.012563	
5	6	0	-7.427920	5.665885	-0.051541	
6	6	0	-8.660119	4.987978	-0.048968	
7	6	0	-7.483649	1.400239	-0.206838	
8	6	0	-4.960570	5.738460	0.103441	
9	7	0	-8.436011	0.697924	0.428162	
10	6	0	-8.440524	-0.644193	0.372681	
11	6	0	-7.459652	-1.404229	-0.333188	
12	6	0	-6.541900	-0.644293	-1.054249	
13	7	0	-6.569820	0.720206	-0.977484	
14	7	0	-4.826552	6.932961	-0.495981	
15	6	0	-3.664778	7.603782	-0.421998	
16	6	0	-2.516332	7.109060	0.265901	
17	6	0	-2.715639	5.911709	0.948436	
18	7	0	-3.912965	5.259758	0.855450	
19	6	0	1.202021	-9.048757	0.867493	
20	6	0	1.216438	-7.801230	0.202342	
21	6	0	-0.000419	-7.179499	-0.147487	
22	6	0	-1.217359	-7.801086	0.202293	
23	6	0	-1.203119	-9.048616	0.867448	
24	6	0	-0.000595	-9.699509	1.187429	
25	6	0	2.523234	-7.166668	-0.010946	
26	6	0	-2.524071	-7.166368	-0.011045	
27	7	0	3.556409	-7.476006	0.792694	
28	6	0	4.727196	-6.831858	0.682629	
29	6	0	4.947040	-5.768819	-0.242763	
30	6	0	3.900534	-5.540619	-1.130213	
31	7	0	2.729485	-6.240888	-1.007312	
32	7	0	-2.730182	-6.240581	-1.007426	
33	6	0	-3.901146	-5.540168	-1.130372	
34	6	0	-4.947700	-5.768226	-0.242947	
35	6	0	-4.728000	-6.831263	0.682488	
36	7	0	-3.557302	-7.475561	0.792585	
37	6	0	-6.220994	-5.003440	-0.284444	
38	6	0	-6.220218	-3.596784	-0.351036	
39	6	0	-7.439648	-2.887647	-0.329809	

40	6	0	-8.650523	-3.605437	-0.269853
41	6	0	-8.676145	-5.010182	-0.221206
42	6	0	-7.447534	-5.692887	-0.213339
43	6	0	7.428591	5.665039	-0.051864
44	6	0	6.204125	4.963620	-0.012769
45	6	0	6.199030	3.555845	-0.063660
46	6	0	7.425153	2.863919	-0.103279
47	6	0	8.639908	3.580742	-0.047385
48	6	0	8.660696	4.986978	-0.049317
49	6	0	4.961253	5.737931	0.103286
50	6	0	7.483767	1.399373	-0.206879
51	7	0	4.827323	6.932399	-0.496220
52	6	0	3.665628	7.603358	-0.422197
53	6	0	2.517177	7.108807	0.265811
54	6	0	2.716401	5.911488	0.948425
55	7	0	3.913651	5.259401	0.855409
56	7	0	6.569819	0.719392	-0.977418
57	6	0	6.541752	-0.645111	-1.054110
58	6	0	7.459478	-1.405103	-0.333076
59	6	0	8.440491	-0.645123	0.372665
60	7	0	8.436120	0.696993	0.428074
61	6	0	1.222360	7.832792	0.298335
62	6	0	7.439318	-2.888516	-0.329615
63	6	0	6.219799	-3.597526	-0.350834
64	6	0	6.220414	-5.004169	-0.284214
65	6	0	7.446887	-5.693757	-0.213069
66	6	0	8.675562	-5.011198	-0.220926
67	6	0	8.650100	-3.606438	-0.269619
68	6	0	1.205745	9.241263	0.336930
69	6	0	0.000566	9.964571	0.357462
70	6	0	-1.204681	9.241380	0.336994
71	6	0	-1.221444	7.832910	0.298392
72	6	0	0.000424	7.130673	0.283043
73	6	0	-9.963605	5.744167	-0.063035
74	6	0	-9.983240	-5.762356	-0.202664
75	6	0	-0.000680	-11.049956	1.855400
76	6	0	9.982614	-5.763445	-0.202315
77	6	0	9.964314	5.742937	-0.063473
78	6	0	0.000667	11.472426	0.395281
79	1	0	-9.573890	3.031335	-0.031598
80	1	0	-5.258568	3.009261	-0.068061
81	1	0	-7.411827	6.750231	-0.049026
82	1	0	-9.240550	-1.132763	0.917369
83	1	0	-5.813008	-1.075967	-1.726679

84	1	0	-3.640533	8.559012	-0.934697
85	1	0	-1.976602	5.474926	1.606324
86	1	0	2.147240	-9.503154	1.140937
87	1	0	-0.000353	-6.174948	-0.565295
88	1	0	-2.148403	-9.502897	1.140858
89	1	0	5.513391	-7.155078	1.356569
90	1	0	3.972094	-4.857355	-1.966253
91	1	0	-3.972594	-4.856911	-1.966427
92	1	0	-5.514264	-7.154391	1.356391
93	1	0	-5.276372	-3.058558	-0.329892
94	1	0	-9.598592	-3.077144	-0.286597
95	1	0	-7.458713	-6.778131	-0.179432
96	1	0	7.412636	6.749384	-0.049408
97	1	0	5.258887	3.008697	-0.068067
98	1	0	9.574215	3.030206	-0.031877
99	1	0	3.641451	8.558552	-0.934967
100	1	0	1.977362	5.474841	1.606402
101	1	0	5.812768	-1.076740	-1.726468
102	1	0	9.240501	-1.133744	0.917329
103	1	0	5.276016	-3.059189	-0.329733
104	1	0	7.457942	-6.779001	-0.179152
105	1	0	9.598236	-3.078259	-0.286372
106	1	0	2.137697	9.795737	0.384760
107	1	0	-2.136563	9.795962	0.384857
108	1	0	0.000369	6.048726	0.181182
109	1	0	-10.755925	5.190523	0.447874
110	1	0	-10.298995	5.917583	-1.094270
111	1	0	-9.869048	6.722163	0.415844
112	1	0	-9.886268	-6.730595	0.295593
113	1	0	-10.334278	-5.956066	-1.224850
114	1	0	-10.768192	-5.197445	0.307639
115	1	0	-0.000517	-11.851801	1.104969
116	1	0	-0.886388	-11.191096	2.480422
117	1	0	0.884810	-11.191044	2.480745
118	1	0	10.335211	-5.954557	-1.224452
119	1	0	9.884915	-6.732916	0.293368
120	1	0	10.766799	-5.199798	0.310588
121	1	0	10.301115	5.913815	-1.094670
122	1	0	10.755869	5.190348	0.449787
123	1	0	9.869313	6.722066	0.412970
124	1	0	-0.884247	11.864775	0.903502
125	1	0	0.002533	11.886310	-0.621797
126	1	0	0.883907	11.864558	0.906611
127	1	0	2.019624	-6.125147	-1.724016

128	1	0	-2.020291	-6.124938	-1.724117	
129	1	0	-5.948322	1.256982	-1.576062	
130	1	0	-4.068097	4.437246	1.431700	
131	1	0	4.068738	4.436922	1.431719	
132	1	0	5.948324	1.256194	-1.575975	

Figure S5. Fluorescence spectral changes of 1_{NT} (5 × 10⁻⁶ M) upon titration with (a) CSA, (b) *p*-TSA, and (c) TfOH in DCM at 25 °C. CSA = 0-500 eq. (0-2.5 mmol/L), *p*-TSA = 0-40 eq. (0-0.2 mmol/L), TfOH = 0-9 eq. (0-0.045 mmol/L).

Figure S6. Fluorescence photographs of 1_{NT} in DCM in the absence and presence of acid.

Figure S7. ¹H NMR (400 MHz) spectral changes of 1_{NT} in CD₂Cl₂ at 25 °C in aromatic region upon titration with TfOH.

Figure S8. Fluorescence spectral changes of 1_{NT} (5 × 10⁻⁶ M) upon titration with HCl (in THF). [HCl] = 0-200 eq. (0-1 mmol/L).

Figure S9. Fluorescence spectra of 1_{NT} (5 × 10⁻⁶ M) upon titration with HCl ((black) and then with the THF solution of CF₃SO₃Ag (red).

Figure S10. ¹H NMR (400 MHz) spectral changes of 1_p in the presence of TfOH in CD₂Cl₂ in aromatic region upon titration with NaOH at 25 °C.

Figure S11. Schematic illustration showing the columnar molecular stacking of macrocycle 2 within the nanofibers (2_{NF}) .

Figure S12. ¹H NMR (400 MHz) spectral changes of 2_{NF} in CD₂Cl₂ at 25 °C in aromatic region upon titration with TFA.

Figure S13. MALDI-TOF mass of macrocycle 2.

Figure S14. ¹H NMR spectrum of macrocycle **2** in THF- d_8 (55 °C).