

Electronic Supplementary Information

Chiral-at-Metal Iridium Complex for Efficient Enantioselective Transfer Hydrogenation of Ketones

Cheng Tian,¹ Lei Gong,¹ and Eric Meggers^{1,2}

¹College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China

²Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany

Email: gongl@xmu.edu.cn and meggers@chemie.uni-marburg.de

Table of Contents:

1. General Information	S2
2. Optimization of the ATH Reaction with Acetophenone 1a	S3
3. Synthesis of Racemic Products as HPLC References	S5
4. Substrate Scope	S6
5. ATH Reaction of Ketone 1n at Lower Catalyst Loadings	S26
6. Chiral HPLC Traces	S28
7. Single Crystal Diffraction	S57
8. References	S60

1. General Information

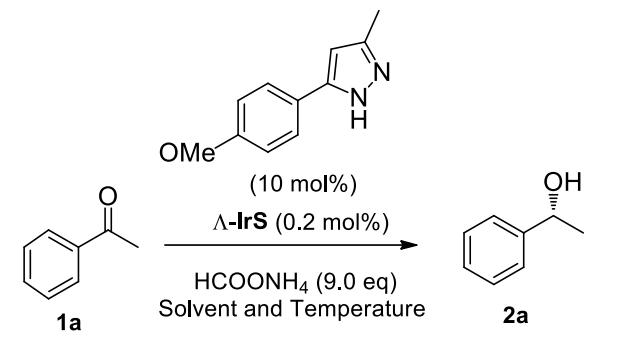
Synthesis of the ligands and catalysts were typically carried out under an atmosphere of argon with magnetic stirring unless stated otherwise. Catalysis reactions were performed under air in a brown glass vial. Solvents were distilled under argon from calcium hydride (CH₃CN, CH₂Cl₂) or sodium/benzophenone (THF, toluene). Pyrazole additives,¹ Λ -**RhO**,² Λ -**IrO**,³ and Λ -**IrS**³ were prepared according to published procedures. All other reagents were purchased from Acros, Aldrich, Alfa and J&K, and used without further purification. Flash column chromatography was performed with silica gel (300-400 mesh, Yantai Jiangyou Silica Gel Development Co., Ltd). ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker AM (500 MHz) spectrometer at ambient temperature. NMR standards were used as follows: CDCl₃ = 7.26 ppm (¹H-NMR) CD₂Cl₂ = 5.32 ppm (¹H-NMR); CDCl₃ = 77.0 ppm (¹³C-NMR), CD₂Cl₂ = 53.8 ppm (¹³C-NMR). Chiral HPLC chromatograms were obtained from an Agilent 1260 Series HPLC system. High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0T FT-MS instrument using ESI technique. Optical rotations were measured on a Anton Paar MCP 500 polarimeter at concentrations of 1.0 g/100 mL. The ee values of products were determined by chiral HPLC, while the absolute configurations of the produced chiral secondary alcohols were assigned by comparison of optical rotations with published examples.⁴⁻¹²

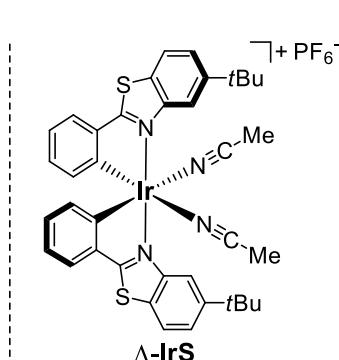
2. Optimization of the ATH Reaction with Acetophenone **1a**

2.1 Metal Catalyst Screening (Figure 1)

General Procedure. To a biphasic solution of HCOONH_4 (189.1 mg, 2.97 mmol) in *i*PrOH/ H_2O (168 μL /168 μL) was added the metal catalyst $\Lambda\text{-RhO}$ (2.7 mg, 0.0033 mmol), $\Lambda\text{-IrO}$ (3.0 mg, 0.0033 mmol), or $\Lambda\text{-IrS}$ (3.1 mg, 0.0033 mmol) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then acetophenone (**1a**, 40.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 60 °C for 22-24 h. Conversion was determined by $^1\text{H-NMR}$ and enantiomeric excess established by HPLC analysis using a Daicel Chiralpak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

2.2 Ligand Additive Screening (Figure 1)

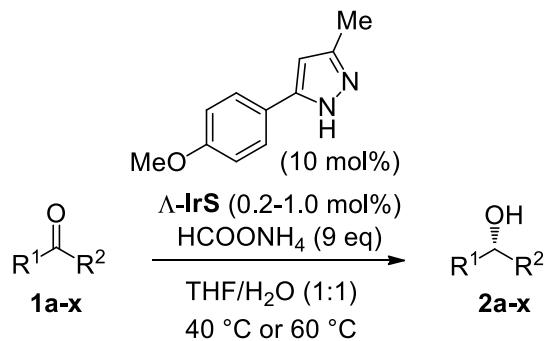

General Procedure. To a biphasic solution of the ligand additive (0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) in *i*PrOH/ H_2O (168 μL /168 μL) was added the metal catalyst $\Lambda\text{-IrS}$ (0.6-3.1 mg, 0.20-1.0 mol%) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then acetophenone (**1a**, 40.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 60 °C for the indicated time. Conversion was determined by $^1\text{H-NMR}$ and enantiomeric excess established by HPLC analysis using a Daicel Chiralpak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).


2.3 Optimization of the Reaction Temperature and Solvents (Table S1)

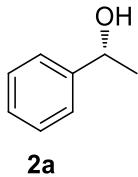
Preparation of stock solutions of the catalyst $\Lambda\text{-IrS}$. A stock solution in THF (3.97 mM): The chiral iridium complex $\Lambda\text{-IrS}$ (1.92 mg, 2.02 μmol) was dissolved in freshly distilled THF (508 μL). A stock solution in *i*PrOH (3.97 mM): The chiral iridium complex $\Lambda\text{-IrS}$ (1.92 mg, 2.02 μmol) was dissolved in freshly distilled isopropanol (508 μL). The stock solutions were prepared freshly and used for the low-loading catalysis reactions.

General Procedure. To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst Λ -IrS (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in *i*PrOH (entry 1) or THF (entries 2-4)) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then acetophenone (**1a**, 40.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 20 °C, 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiralpak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

Table S1. Optimization of the reaction temperatures and solvents for the ATH reaction.



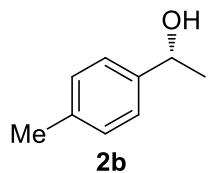
Entry	T (°C)	Solvents	t (h)	Conv. (%)	ee (%)
1	60	<i>i</i> PrOH/H ₂ O (1:1)	3	85	96.0
2	60	THF/H ₂ O (1:1)	1	77	96.0
3	40	THF/H ₂ O (1:1)	6	67	97.0
4	20	THF/H ₂ O (1:1)	24	50	97.4


3. Synthesis of Racemic Products as HPLC References

General Procedure. To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the racemic metal catalyst ***rac*-IrS** (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then **1a-x** (0.33 mmol) was added. The reaction solution was stirred at 40 °C until complete disappearance of the starting material (detected by TLC), cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford the racemic product as HPLC reference for determination of enantiomeric excess in the ATH reaction of ketones.

4. Substrate Scope

General Procedure (Figure 2). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) in THF/H₂O (168 μ L/168 μ L) was added the metal catalyst Λ -IrS (0.6-3.1 mg, 0.20-1.0 mol%) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then **1a-x** (0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time until complete disappearance of the starting material, cooled down to room temperature, then dried by high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford products **2a-x**. Enantiomeric excess was determined by chiral HPLC analysis.

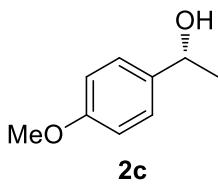

(R)-1-phenylethanol (2a). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst Λ -IrS (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then acetophenone (**1a**, 40.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2a** as a light yellow liquid (39.1 mg, 0.32 mmol, yield: 96%). Enantiomeric excess was established by HPLC analysis using a Daicel

Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 11.6 min, t_r (major) = 13.4 min).

$[\alpha]^{20}_D = +36.0$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +59.5$ (c 1.0, CHCl₃), (*R*) 98% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.33 (m, 4H), 7.30-7.26 (m, 1H), 4.90 (q, J = 6.5 Hz, 1H), 1.88 (br, 1H), 1.50 (d, J = 6.5 Hz, 3H).

Other analytic data of **2a** are consistent with the literature.⁴

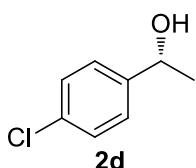


(*R*)-1-(*p*-tolyl)ethanol (2b**).** To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(*p*-tolyl)ethanone (**1b**, 44.7 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 9 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2b** as a light yellow liquid (44.2 mg, 0.32 mmol, yield: 97%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 98% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 11.4 min, t_r (major) = 12.8 min).

$[\alpha]^{20}_D = +41.8$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +55.4$ (c 1.0, CHCl₃), (*R*) 99% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.26 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.86 (q, J = 6.5 Hz, 1H), 2.34 (s, 3H), 1.83 (br, 1H), 1.48 (d, J = 6.5 Hz, 3H).

Other analytic data of **2b** are consistent with the literature.⁴

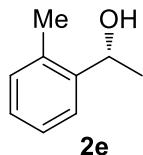


(R)-1-(4-methoxyphenyl)ethanol (2c). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(4-methoxyphenyl)ethanone (**1c**, 50.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 12 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2c** as a light yellow liquid (47.2 mg, 0.31 mmol, yield: 97%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 98% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 90:10, flow rate: 1.0 mL/min, 25 °C, t_r(minor) = 15.0 min, t_r(major) = 16.0 min).

$[\alpha]^{20}_D = +41.1$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +16.5$ (c 1.0, CHCl₃), (*R*) 96% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.31 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.87 (q, J = 6.4 Hz, 1H), 3.81 (s, 3H), 1.70 (br, 1H), 1.48 (d, J = 6.4 Hz, 3H).

Other analytic data of **2c** are consistent with the literature.⁴

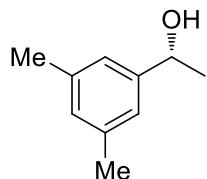

(R)-1-(4-chlorophenyl)ethanol (2d). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS**

(0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(4-chlorophenyl)ethanone (**1d**, 51.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 8 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2d** as a light yellow liquid (51.9 mg, 0.33 mmol, yield: 99%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 10.4 min, t_r (major) = 11.3 min).

$[\alpha]^{20}_D = +39.4$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +44.2$ (c 1.0, CHCl₃), (*R*) 96% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 4H), 4.89 (q, *J* = 6.5 Hz, 1H), 1.78 (br, 1H), 1.48 (d, *J* = 6.5 Hz, 3H).

Other analytic data of **2d** are consistent with the literature.⁴

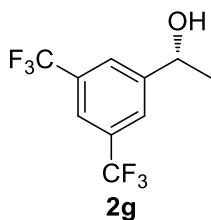


(*R*)-1-(*o*-tolyl)ethanol (2e**).** To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(*o*-tolyl)ethanone (**1e**, 44.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 36 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2e** as a light yellow liquid (42.4 mg, 0.31 mmol, yield: 95%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak AD-H column, ee = 51% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 0.5 mL/min, 25 °C, t_r (minor) = 14.2 min, t_r (major) = 15.8 min).

$[\alpha]^{20}_D = +34.5$ (c 1.0, CHCl_3) (lit.⁵: $[\alpha]^{20}_D = +56.1$ (c 1.0, CHCl_3), (*R*) 98% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 7.51 (d, $J = 8.7$ Hz, 1H), 7.24-7.22 (m, 1H), 7.19-7.13 (m, 2H), 5.14 (q, $J = 6.2$ Hz, 1H), 2.35 (s, 3H), 1.70 (br, 1H), 1.48 (d, $J = 6.5$ Hz, 3H).

Other analytic data of **2e** are consistent with the literature.⁵

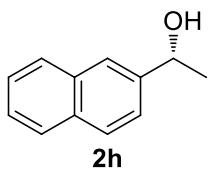

2f

(*R*)-1-(3,5-dimethylphenyl)ethanol (2f). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(3,5-dimethylphenyl)ethanone (**1f**, 50.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 8 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2f** as a light yellow solid (47.3 mg, 0.32 mmol, yield: 95%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak IC column, ee = 97%. (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 98:2, flow rate: 0.5 mL/min, 25 °C, t_r (minor) = 18.4 min, t_r (major) = 19.6 min).

$[\alpha]^{20}_D = +38.9$ (c 1.0, CHCl_3) (lit.⁶: $[\alpha]^{20}_D = +45.4$ (c 1.0, CHCl_3), (*R*) 95% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 6.99 (s, 2H), 6.92 (s, 1H), 4.83 (q, $J = 6.6$ Hz, 1H), 2.32 (s, 6H), 1.74 (br, 1H), 1.49 (d, $J = 6.5$ Hz, 3H).

Other analytic data of **2f** are consistent with the literature.⁶

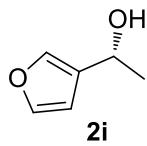


(R)-1-(3,5-bis(trifluoromethyl)phenyl)ethanol (2g). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(3,5-bis(trifluoromethyl)phenyl)ethanone (**1g**, 85.3 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2g** as a light yellow solid (80.9 mg, 0.31 mmol, yield: 94%). Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 90% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 99:1, flow rate: 1.0 mL/min, 25 °C, t_r(minor) = 9.6 min, t_r(major) = 11.3 min).

$[\alpha]^{20}_D = +16.3$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +22.6$ (c 1.0, CHCl₃), (*R*) 94% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.85 (s, 2H), 7.79 (s, 1H), 5.07-5.03 (m, 1H), 1.97 (d, J = 3.8 Hz, 1H), 1.56 (d, J = 6.3 Hz, 3H).

Other analytic data of **2g** are consistent with the literature.⁴

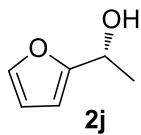

(R)-1-(naphthalen-2-yl)ethanol (2h). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial.

The mixture was stirred for 10 min at room temperature, then 1-(naphthalen-2-yl)ethanone (**1h**, 56.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2h** as a light yellow solid (56.8 mg, 0.33 mmol, yield: 99%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 90:10, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 16.4 min, t_r (major) = 21.0 min).

$[\alpha]^{20}_D = +38.9$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +40.9$ (c 1.0, CHCl₃), (*R*) 99% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.85-7.82 (m, 4H), 7.52-7.45 (m, 3H), 5.08 (q, *J* = 6.5 Hz, 1H), 1.92 (br, 1H), 1.48 (d, *J* = 6.5 Hz, 3H).

Other analytic data of **2h** are consistent with the literature.⁴

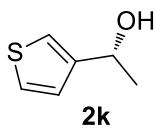


(*R*)-1-(furan-3-yl)ethanol (2i). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **A-IrS** (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(furan-3-yl)ethanone (**1i**, 36.1 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 8 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2i** as a light yellow liquid (34.8 mg, 0.31 mmol, yield: 95%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 96% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 9.8 min, t_r (major) = 11.4 min).

$[\alpha]^{20}_D = +4.9$ (c 1.0, CHCl_3) (lit.⁷: $[\alpha]^{20}_D = +9.6$ (c 1.0, CHCl_3), (*R*) 83% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.39 (s, 2H), 6.43 (s, 1H), 4.89-4.87 (m, 1H), 1.62 (br, 1H), 1.50 (d, $J = 6.5$ Hz, 3H).

Other analytic data of **2i** are consistent with the literature.⁷

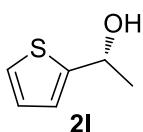


(*R*)-1-(furan-2-yl)ethanol (2j). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added the metal catalyst **A-IrS** (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(furan-2-yl)ethanone (**1j**, 36.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 9 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2j** as a light yellow liquid (35.5 mg, 0.32 mmol, yield: 95%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 96% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 10.3 min, t_r (major) = 11.7 min).

$[\alpha]^{20}_D = +15.7$ (c 1.0, CHCl_3) (lit.⁵: $[\alpha]^{20}_D = +14.5$ (c 1.0, CHCl_3), (*R*) 94% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.38 (s, 1H), 6.34-6.33 (m, 1H), 6.23 (d, $J = 3.2$ Hz, 1H), 4.92-4.87 (m, 1H), 1.88 (d, $J = 4.9$ Hz, 1H), 1.55 (d, $J = 6.5$ Hz, 3H).

Other analytic data of **2j** are consistent with the literature.⁵

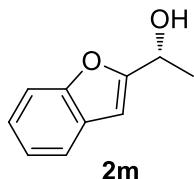


(R)-1-(thiophen-3-yl)ethanol (2k). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(thiophen-3-yl)ethanone (**1k**, 42.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 8 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2k** as a light yellow liquid (39.7 mg, 0.31 mmol, yield: 93%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r(minor) = 12.2 min, t_r(major) = 14.8 min).

$[\alpha]^{20}_D = +25.1$ (c 1.0, CHCl₃) (lit.⁸: $[\alpha]^{20}_D = +47.2$ (c 1.0, CHCl₃), (*R*) 96% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.31-7.30 (m, 1H), 7.21-7.20 (m, 1H), 7.11-7.10 (m, 1H), 4.99 (q, J = 6.4 Hz, 1H), 1.76 (br, 1H), 1.53 (d, J = 6.4 Hz, 3H).

Other analytic data of **2k** are consistent with the literature.⁸

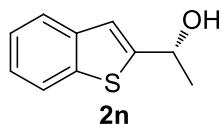

(R)-1-(thiophen-2-yl)ethanol (2l). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(thiophen-2-yl)ethanone **1l** (42.0

mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 9 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2l** as a light yellow liquid (39.4 mg, 0.31 mmol, yield: 92%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 98% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 12.8 min, t_r (major) = 16.3 min).

$[\alpha]^{20}_D = +21.6$ (c 1.0, CHCl_3) (lit.⁵: $[\alpha]^{20}_D = +19.9$ (c 1.0, CHCl_3), (*R*) 96% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 7.25-7.24 (m, 1H), 6.99-6.96 (m, 2H), 5.17-5.12 (m, 1H), 1.93 (d, J = 4.0 Hz, 1H), 1.61 (d, J = 6.4 Hz, 3H).

Other analytic data of **2l** are consistent with the literature.⁵

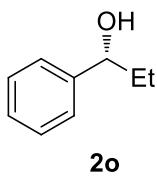


(*R*)-1-(benzofuran-2-yl)ethanol (2m). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added metal catalyst $\Delta\text{-IrS}$ (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(benzofuran-2-yl)ethanone (**1m**, 53.3 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 12 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2m** as a light yellow liquid (52.4 mg, 0.33 mmol, yield: 98%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OD-H column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 0.5 mL/min, 25 °C, t_r (minor) = 25.6 min, t_r (major) = 26.8 min).

$[\alpha]^{20}_D = +11.6$ (c 1.0, CHCl_3) (lit.⁴: $[\alpha]^{20}_D = +9.9$ (c 1.0, CHCl_3), (*R*) 63% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.48-7.46 (m, 1H), 7.40-7.38 (m, 1H), 7.22-7.20 (m, 1H), 7.16-7.13 (m, 1H), 6.54 (s, 1H), 4.97-4.93 (m, 1H), 2.05 (br, 1H), 1.57 (d, $J = 6.6$ Hz, 3H).

Other analytic data of **2m** are consistent with the literature.⁴

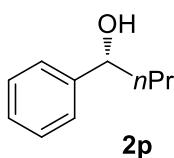


(*R*)-1-(benzo[*b*]thiophen-2-yl)ethanol (2n). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added the metal catalyst $\Lambda\text{-IrS}$ (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(benzo[*b*]thiophen-2-yl)ethanone (**1n**, 58.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 9 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2n** as a light yellow solid (55.0 mg, 0.31 mmol, yield: 93%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 99% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 35.0 min, t_r (major) = 43.0 min).

$[\alpha]^{20}_D = +23.0$ (c 1.0, CHCl_3) (lit.⁵: $[\alpha]^{20}_D = +22.9$ (c 1.0, CHCl_3), (*R*) 93% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.81 (d, $J = 7.8$ Hz, 1H), 7.71 (d, $J = 7.8$ Hz, 1H), 7.35-7.28 (m, 2H), 7.2 (s, 1H), 5.23-5.19 (m, 1H), 2.05 (d, $J = 4.6$ Hz, 1H), 1.66 (d, $J = 6.4$ Hz, 3H).

Other analytic data of **2n** are consistent with the literature.⁵

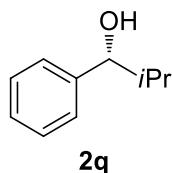


(R)-1-phenylpropan-1-ol (2o). To a biphasic solution of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (4.7 mg, 0.025 mmol) and HCOONH₄ (141.8 mg, 2.25 mmol) in THF/H₂O (126 μ L/126 μ L) was added the metal catalyst **Λ-IrS** (1.2 mg, 1.7 μ mol, 0.50 mol%) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then propiophenone (**1o**, 33.5 mg, 0.25 mmol) was added. The reaction solution was stirred at 60 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2o** as a yellow solid (32.0 mg, 0.24 mmol, yield: 94%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OD-H column, ee = 96% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 99:1, flow rate: 1 mL/min, 25 °C, t_r (major) = 18.2 min, t_r (minor) = 21.1 min).

$[\alpha]^{20}_D = +45.7$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +45.1$ (c 1.0, CHCl₃), (*R*) 98% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.29-7.25 (m, 1H), 4.60 (t, *J* = 6.6 Hz, 1H), 1.87-1.71 (m, 3H), 0.92 (t, *J* = 7.4 Hz, 3H).

Other analytic data of **2o** are consistent with the literature.⁴

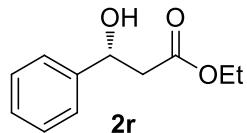

(R)-1-phenylbutan-1-ol (2p). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-phenylbutan-1-one (**1p**, 49.3 mg, 0.33

mmol) was added. The reaction solution was stirred at 40 °C for 15 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2p** as a light yellow solid (46.6 mg, 0.31 mmol, yield: 93%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 97:3, flow rate: 0.5 mL/min, 25 °C, t_r (minor) = 19.9 min, t_r (major) = 21.6 min).

$[\alpha]^{20}_D = +36.4$ (c 1.0, CHCl_3) (lit.⁴: $[\alpha]^{20}_D = +43.0$ (c 1.0, CHCl_3), (*R*) 97% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 7.35-7.34 (m, 4H), 7.30-7.27 (m, 1H), 4.70-4.67 (m, 1H), 1.84-1.76 (m, 2H), 1.72-1.65 (m, 1H), 1.41-1.48 (m, 1H), 1.37-1.29 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H).

Other analytic data of **2p** are consistent with the literature.⁴

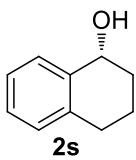


(R)-2-methyl-1-phenylpropan-1-ol (2q). To a biphasic solution of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (3.2 mg, 0.017 mmol) and HCOONH_4 (96.5 mg, 1.53 mmol) in $\text{THF}/\text{H}_2\text{O}$ (84 μL /84 μL) was added the metal catalyst **Λ-IrS** (1.6 mg, 3.4 μmol) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-methyl-1-phenylpropan-1-one (**1q**, 24.5 mg, 0.17 mmol) was added. The reaction solution was stirred at 60 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2q** as a yellow solid (22.6 mg, 0.15 mmol, yield: 91%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak IC column, ee = 90% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 98:2, flow rate: 0.5 mL/min, 25 °C, t_r (major) = 13.2 min, t_r (minor) = 14.9 min).

$[\alpha]^{20}_{\text{D}} = +6.2$ (c 1.0, CHCl_3) (lit.⁹: $[\alpha]^{28}_{\text{D}} = +21.67$ (c 0.42, CH_2Cl_2 , *R* 71% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.36-7.31 (m, 4H), 7.28-7.27 (m, 1H), 4.37 (d, $J = 6.8$ Hz, 1H), 1.98-1.93 (m, 1H), 1.60 (br, 1H), 1.01 (d, $J = 6.8$ Hz, 3H), 0.80 (d, $J = 6.8$ Hz, 3H).

Other analytic data of **2q** are consistent with the literature.⁹

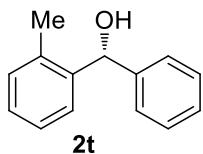


(R)-ethyl 3-hydroxy-3-phenylpropanoate (2r). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then ethyl 3-oxo-3-phenylpropanoate (**1r**, 64.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 12 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2r** as a yellow liquid (62.3 mg, 0.32 mmol, yield: 97%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 96% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, $t_r(\text{major}) = 17.5$ min, $t_r(\text{minor}) = 19.0$ min).

$[\alpha]^{20}_{\text{D}} = +41.1$ (c 1.0, CHCl_3) (lit.¹⁰: $[\alpha]^{28}_{\text{D}} = +48.9$ (c 0.84, CHCl_3), *R* 89% ee). Configuration of the product was assigned as *R* accordingly.

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ 7.33-7.27 (m, 4H), 7.24-7.20 (m, 1H), 5.07 (d, $J = 3.5$ Hz, 1H), 4.14-4.10 (m, 2H), 3.20 (br, 1H), 2.72-2.62 (m, 2H), 1.20 (t, $J = 7.1$ Hz, 3H).

Other analytic data of **2r** are consistent with the literature.¹⁰



(R)-1,2,3,4-tetrahydronaphthalen-1-ol (2s). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and H₂O (168 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 3,4-dihydronaphthalen-1(*2H*)-one (**1s**, 48.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 18 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2s** as a yellow liquid (46.6 mg, 0.32 mmol, yield: 95%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 98% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, *t_r*(minor) = 10.5 min, *t_r*(major) = 13.6 min).

$[\alpha]^{20}_D = -26.2$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = -32.2$ (c 1.0, CHCl₃), (*R*) 99% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.36 (m, 1H), 7.16-7.12 (m, 2H), 7.05-7.03 (m, 1H), 4.73-4.71 (m, 1H), 2.79-2.74 (m, 1H), 2.69-2.63 (m, 1H), 1.95-1.82 (m, 3H), 1.74-1.69 (m, 1H), 1.60 (br, 1H).

Other analytic data of **2s** are consistent with the literature.⁴

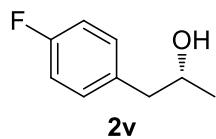

(R)-phenyl(o-tolyl)methanol (2t). To a biphasic solution of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (4.7 mg, 0.025 mmol) and HCOONH₄ (141.8 mg, 2.25 mmol) in THF/H₂O (126 μ L/126 μ L) was added the metal catalyst **Λ-IrS** (1.2 mg, 1.7 μ mol) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then phenyl(*o*-tolyl)methanone (**1t**, 32.6 mg, 0.25 mmol) was added. The reaction solution was stirred at 40 °C for 24 h, cooled down to room

temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2t** as a yellow solid (31.4 mg, 0.16 mmol, yield: 99%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OJ column, ee = 97% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (minor) = 27.2 min, t_r (major) = 30.8 min).

$[\alpha]^{20}_D = +6.8$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = +5.4$ (c 1.0, CHCl₃), (*R*) 86% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.45 (d, *J* = 7.8 Hz, 1H), 7.26-7.24 (m, 4H), 7.21-7.19 (m, 1H), 7.18-7.17 (m, 1H), 7.14-7.12 (m, 1H), 7.08-7.07 (m, 1H), 5.95 (d, *J* = 3.6 Hz, 1H), 2.18 (s, 3H), 2.03 (d, *J* = 3.9 Hz, 1H).

Other analytic data of **2t** are consistent with the literature.⁴

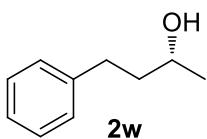


(*R*)-(2-fluorophenyl)(phenyl)methanol (2u). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then (2-fluorophenyl)(phenyl)methanone (**1u**, 66.7 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 24 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2u** as a yellow solid (65.3 mg, 0.32 mmol, yield: 97%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OD-H column, ee = 81% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r (major) = 11.5 min, t_r (minor) = 12.9 min).

$[\alpha]^{20}_{\text{D}} = +4.5$ (c 1.0, CHCl_3) (lit.⁴: $[\alpha]^{20}_{\text{D}} = +5.52$ (c 1.0, CHCl_3), (R) 90% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 7.46-7.43 (m, 1H), 7.35-7.33 (m, 2H), 7.29-7.26 (m, 2H), 7.22-7.20 (m, 1H), 7.19-7.16 (m, 1H), 7.10-7.07 (m, 1H), 6.97-6.93 (m, 1H), 6.09 (d, $J = 3.9$ Hz, 1H), 2.21 (d, $J = 4.1$ Hz, 1H).

Other analytic data of **2u** are consistent with the literature.⁴

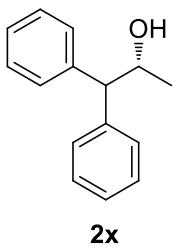


(R)-1-(4-fluorophenyl)propan-2-ol (2v). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH_4 (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol , 168 μL of a 3.97 mM stock solution in THF) and H_2O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1-(4-fluorophenyl)propan-2-one (**1v**, 50.6 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2v** as a yellow liquid (47.8 mg, 0.31 mmol, yield: 94%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OD-H column, ee = 9% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 98:2, flow rate: 0.5 mL/min, 25 °C, t_r (major) = 20.7 min, t_r (minor) = 22.4 min).

$[\alpha]^{20}_{\text{D}} = -2.7$ (c 1.0, CHCl_3) (lit.¹¹: $[\alpha]^{24}_{\text{D}} = -29.2$ (c 2.25, CHCl_3), (R) 37% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl_3): δ 7.12-7.08 (m, 2H), 6.96-6.92 (m, 2H), 3.95-3.91 (m, 1H), 2.71-2.67 (m, 1H), 2.62-2.58 (m, 1H), 1.39 (br, 1H), 1.17 (d, $J = 6.2$ Hz, 3H).

Other analytic data of **2v** are consistent with the literature.¹¹



(R)-4-phenylbutan-2-ol (2w). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 4-phenylbutan-2-one (**1w**, 49.3 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 10 h, cooled down to room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2w** as a yellow liquid (44.7 mg, 0.30 mmol, yield: 90%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiralpak OD-H column, ee = 30% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C, t_r(major) = 10.3 min, t_r(minor) = 15.1 min).

$[\alpha]^{20}_D = -4.4$ (c 1.0, CHCl₃) (lit.¹²: $[\alpha]^{20}_D = +7.9$ (c 1.0, CHCl₃), (*S*) 33% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.23-7.22 (m, 2H), 7.14-7.10 (m, 3H), 3.80-3.73 (m, 1H), 3.72-2.66 (m, 1H), 2.64-2.58 (m, 1H), 1.76-1.66 (m, 2H), 1.26 (br, 1H), 1.16 (d, J = 6.2 Hz, 3H).

Other analytic data of **2w** are consistent with the literature.¹²

(R)-1,1-diphenylpropan-2-ol (2x). To a mixture of 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (6.2 mg, 0.033 mmol) and HCOONH₄ (189.1 mg, 2.97 mmol) was added the metal catalyst **Λ-IrS** (0.67 μmol, 168 μL of a 3.97 mM stock solution in THF) and H₂O (168 μL) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 1,1-diphenylpropan-2-one (**1x**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C for 15 h, cooled down to

room temperature, then dried under high vacuum. The residue was purified by flash chromatography on silica gel (*n*-hexane/dichloromethane = 1:1 to 1:2) to afford product **2x** as a yellow solid (65.3 mg, 0.31 mmol, yield: 93%). Enantiomeric excess was established by HPLC analysis using a Daicel Chiraldak OD-H column, ee = 94% (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 98:2, flow rate: 0.5 mL/min, 25 °C, *t_r*(major) = 30.7 min, *t_{r(minor) = 31.9 min).}*

$[\alpha]^{20}_D = +4.9$ (c 1.0, CHCl₃) (lit.⁴: $[\alpha]^{20}_D = -4.9$ (c 1.0, CHCl₃), (*S*) 65% ee). Configuration of the product was assigned as *R* accordingly.

¹H-NMR (500 MHz, CDCl₃): δ 7.32-7.31 (m, 2H), 7.25-7.23 (m, 2H), 7.21-7.19 (m, 4H), 7.17-7.15 (m, 1H), 7.12-7.09 (m, 1H), 4.49-4.46 (m, 1H), 3.73 (d, *J* = 8.8 Hz, 1H), 1.60 (br, 1H), 1.12 (d, *J* = 6.2 Hz, 3H).

Other analytic data of **2x** are consistent with the literature.⁴

5. ATH Reaction of Ketone **1n** at Different Catalyst Loadings

*Preparation of stock solutions of the catalyst **Λ-IrS** in THF at lower concentrations.*

Stock solution of 0.53 mM: The chiral iridium complex **Λ-IrS** (1.34 mg, 1.41 μ mol) was dissolved in freshly distilled THF (2.66 mL). The stock solution was prepared freshly and used for the low-loading catalysis reactions.

Stock solution of 0.27 mM: The chiral iridium complex **Λ-IrS** (1.34 mg, 1.41 μ mol) was dissolved in freshly distilled THF (5.22 mL). The stock solution was prepared freshly and used for the low-loading catalysis reactions.

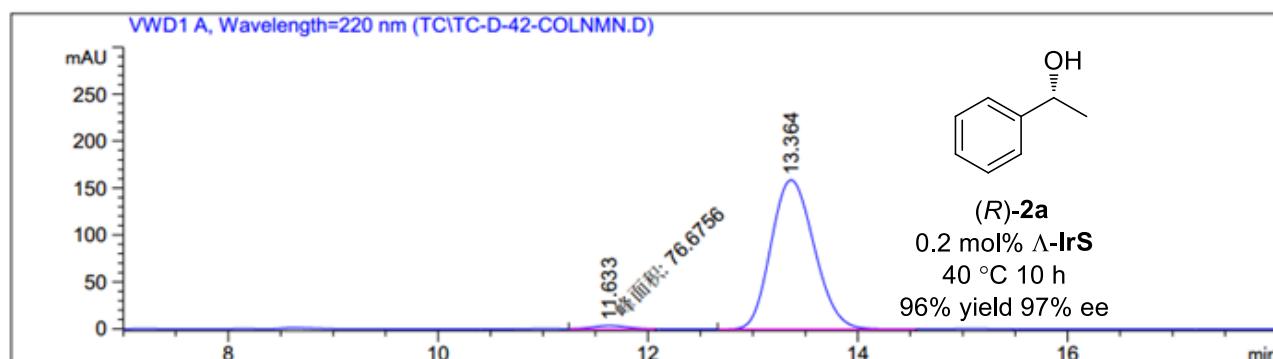
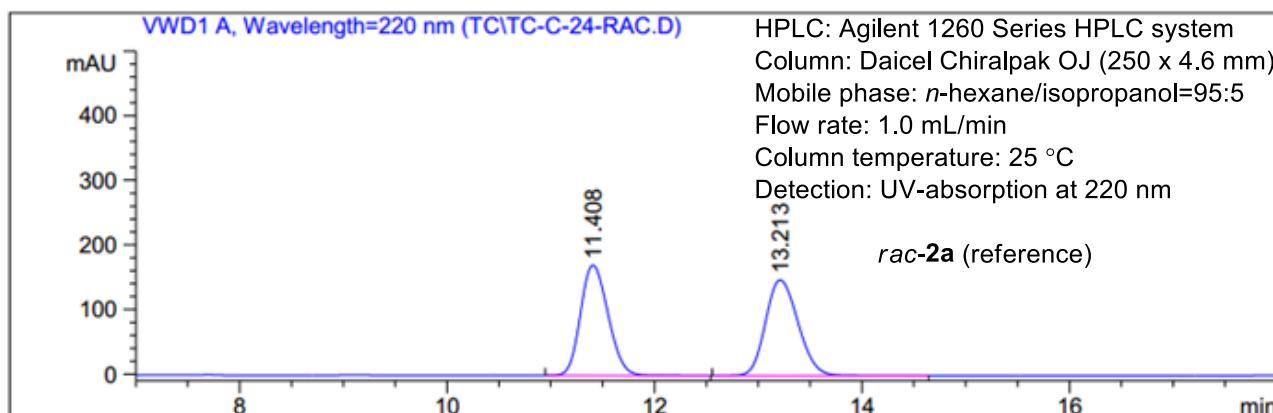
Procedures for Table 1

Entry 1: To a mixture of the ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (12.4 mg, 0.066 mmol) and the reducing agent HCOONH₄ (376.0 mg, 6.0 mmol) was added the metal catalyst **Λ-IrS** (0.20 mol%, 0.67 μ mol, 168 μ L of a 3.97 mM stock solution in THF) and THF/H₂O (168 μ L/336 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-acetyl benzothiophene (**1n**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiralpak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

Entry 2: To a mixture of the ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (12.4 mg, 0.066 mmol) and the reducing agent HCOONH₄ (376.0 mg, 6.0 mmol) was added the metal catalyst **Λ-IrS** (0.050 mol%, 0.168 μ mol, 42 μ L of a 3.97 mM stock solution in THF) and THF/H₂O (294 μ L/336 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-acetyl benzothiophene (**1n**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiralpak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

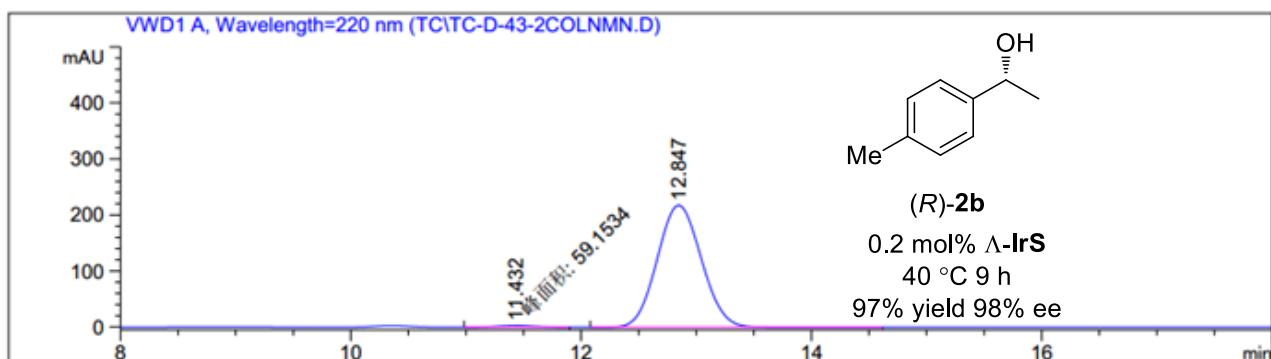
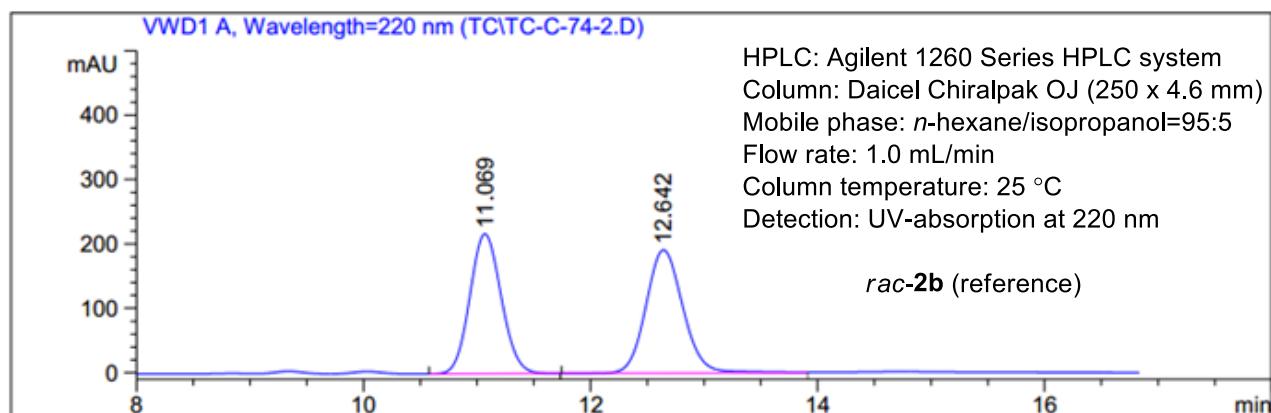
Entry 3-4: To a mixture of the ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (12.4 mg, 0.066 mmol) and the reducing agent HCOONH₄ (376.0 mg, 6.0 mmol) was added the metal catalyst

Λ-IrS (0.010 mol%, 0.034 μ mol, 64 μ L of a 0.53 mM stock solution in THF) and THF/H₂O (272 μ L /336 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-acetyl benzothiophene (**1n**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiraldak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).



Entry 5: To a mixture of the ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (12.4 mg, 0.066 mmol) and the reducing agent HCOONH₄ (376.0 mg, 6.0 mmol) was added the metal catalyst **Λ-IrS** (0.005 mol%, 0.0168 μ mol, 32 μ L of a 0.53 mM stock solution in THF) and THF/H₂O (304 μ L /336 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-acetyl benzothiophene (**1n**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiraldak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

Entry 6: To a mixture of the ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (12.4 mg, 0.066 mmol) and the reducing agent HCOONH₄ (376.0 mg, 6.0 mmol) was added the metal catalyst **Λ-IrS** (0.002 mol%, 0.0067 μ mol, 25 μ L of a 0.27 mM stock solution in THF) and THF/H₂O (311 μ L/336 μ L) in a brown glass vial. The mixture was stirred for 10 min at room temperature, then 2-acetyl benzothiophene (**1n**, 70.0 mg, 0.33 mmol) was added. The reaction solution was stirred at 40 °C or 60 °C for the indicated time. Conversion was determined by ¹H-NMR and enantiomeric excess established by HPLC analysis using a Daicel Chiraldak OJ column (250 x 4.6 mm, 220 nm, *n*-hexane/isopropanol = 95:5, flow rate: 1.0 mL/min, 25 °C).

6. Chiral HPLC Traces



6.1 Determination of enantioselectivities for the ATH reaction catalyzed by Λ -IrS with the pyrazole additive

Enantiomeric excess of the ATH products were determined with a Daicel Chiralpak OD-H, OJ, or IC column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using *n*-hexane/isopropanol as mobile phase, the temperature was 25 °C and UV-absorption was measured at 220 nm.

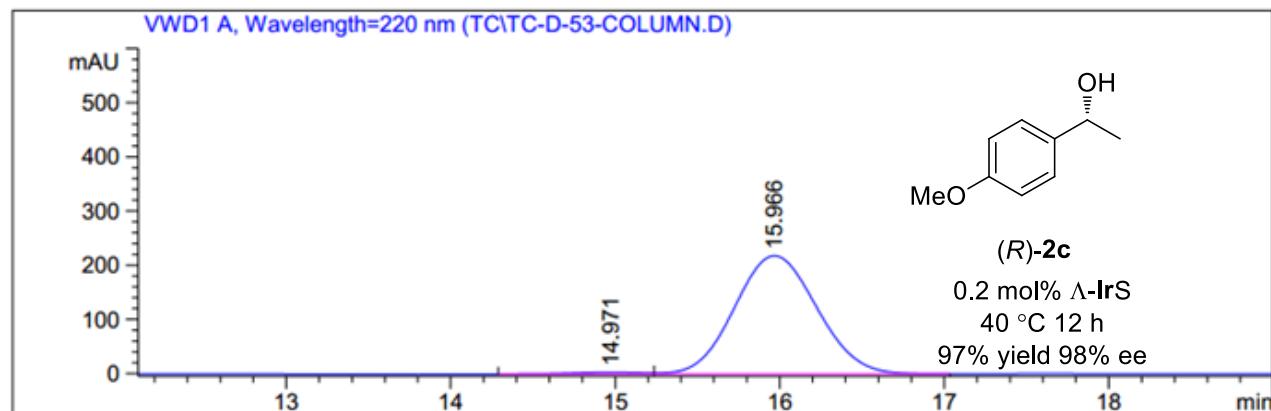
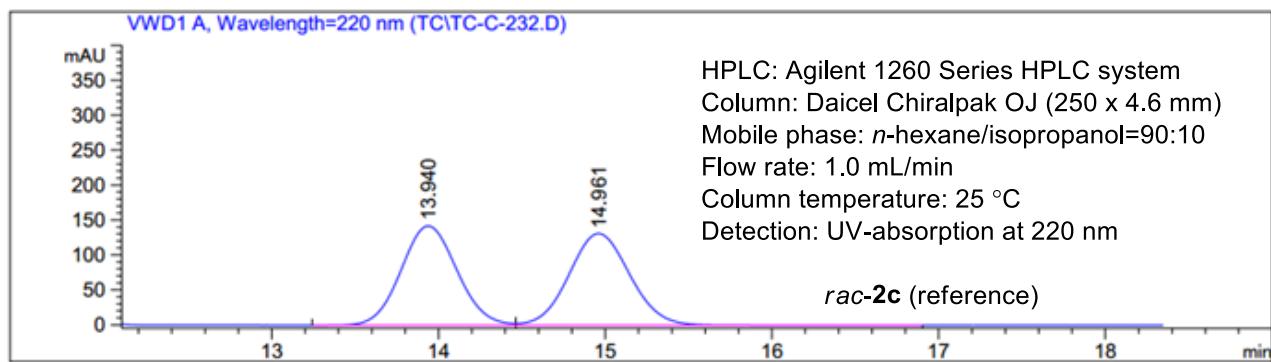


#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.633	MM	0.3662	76.67559	3.48936 1.6636
2	13.364	BV	0.4493	4532.43066	158.64536 98.3364

Figure S1. HPLC traces of transfer hydrogenation leading to (R)-2a.

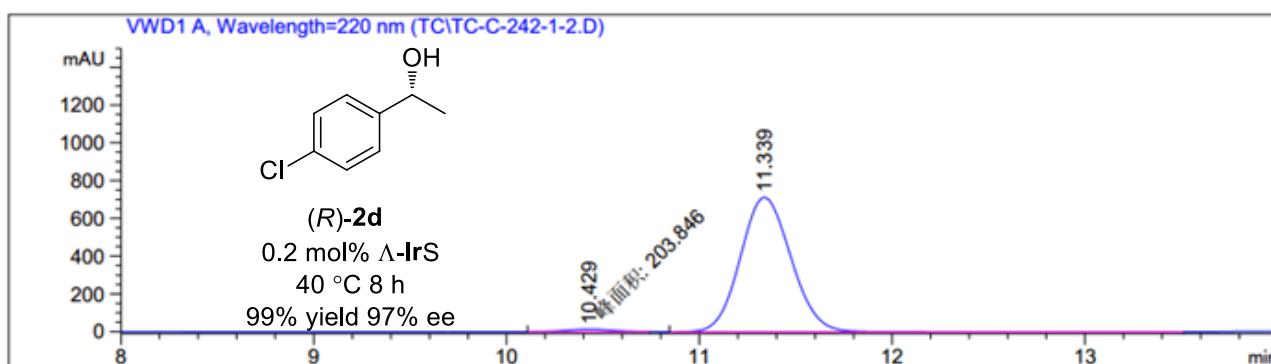
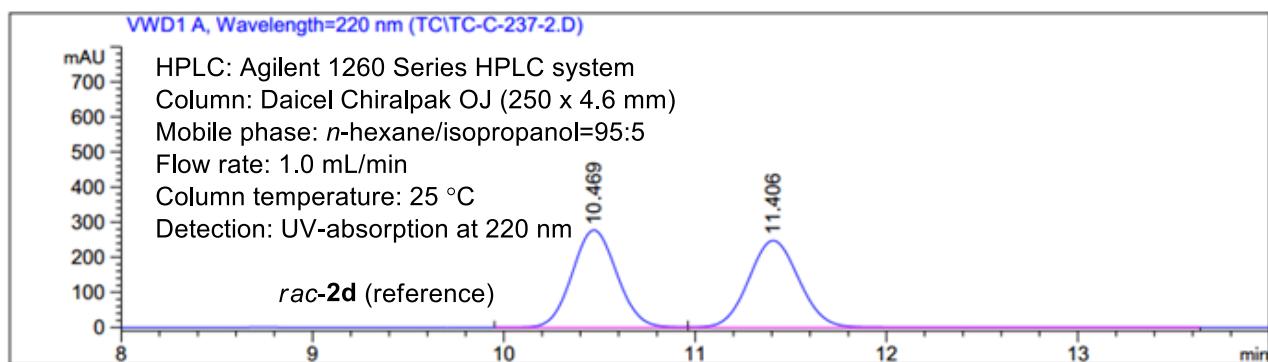


#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.432	MM	0.3726	59.15344	2.64605
2	12.847	BB	0.4192	5798.87549	217.39737

Figure S2. HPLC traces of transfer hydrogenation leading to *(R)*-2b.

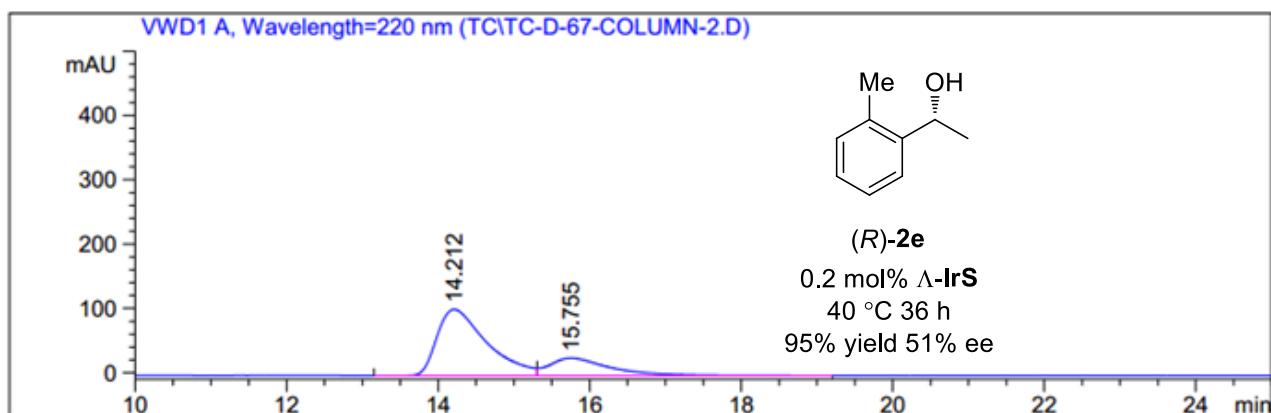
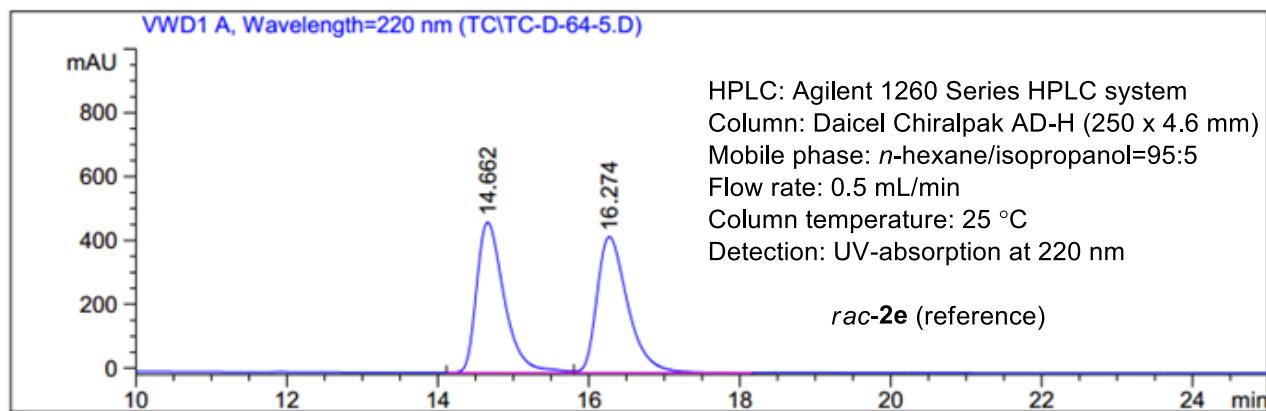


#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.971	BV	0.4466	84.52215	2.98296 1.1008
2	15.966	VB	0.5465	7593.71191	217.92250 98.8992

Figure S3. HPLC traces of transfer hydrogenation leading to (R)-2c.

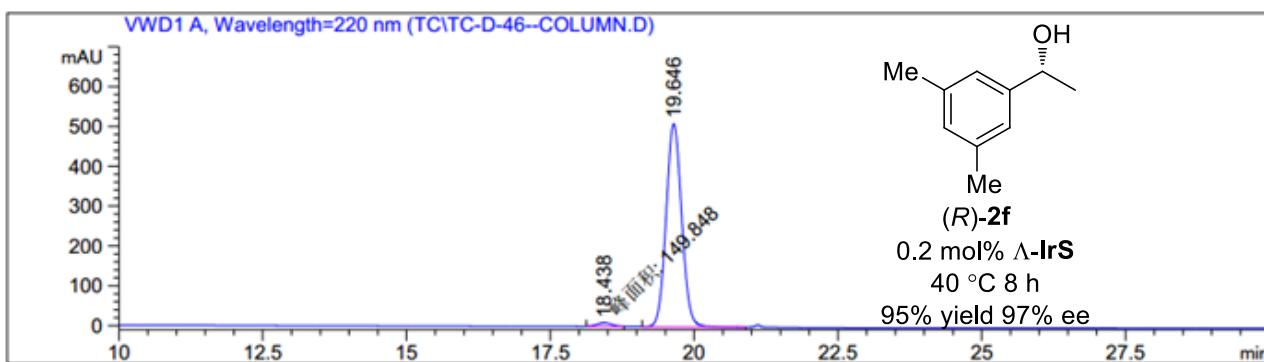
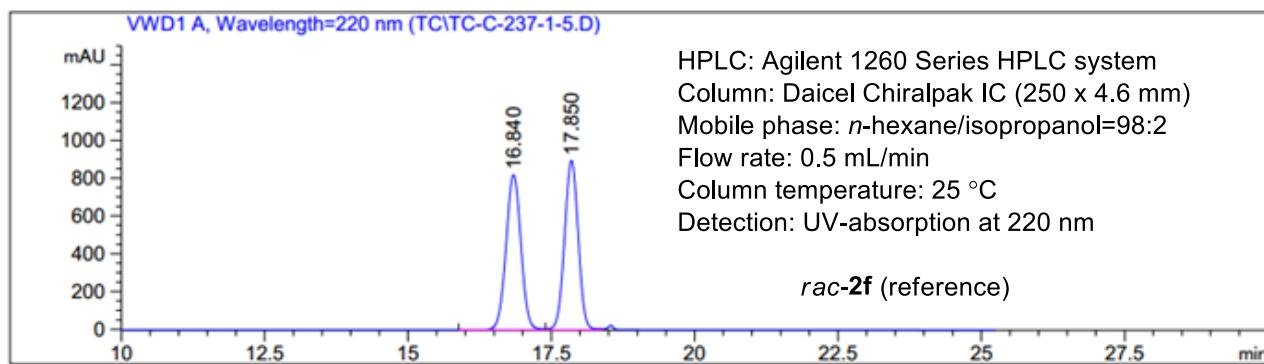


#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.429	MM	0.2587	203.84637	13.13248
2	11.339	VB	0.2854	1.30097e4	711.17682

Figure S4. HPLC traces of transfer hydrogenation leading to (R)-2d.

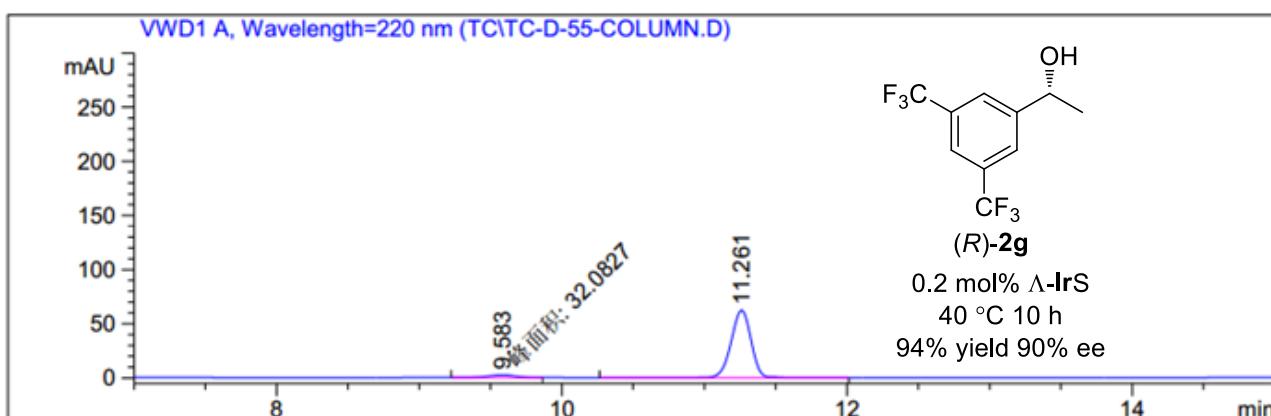
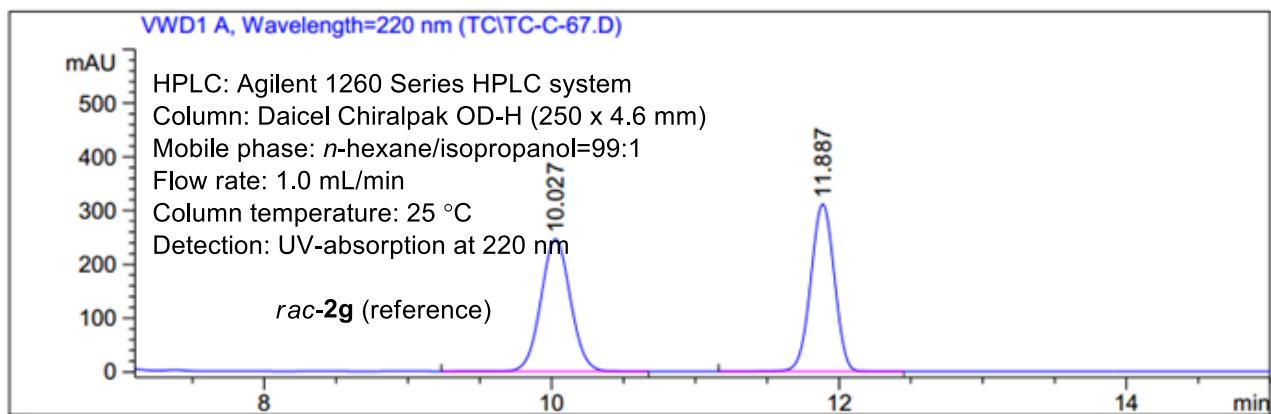


#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.212	BV	0.6818	4664.16309	102.70131
2	15.755	VB	0.7991	1498.05664	27.17680

Figure S5. HPLC traces of transfer hydrogenation leading to (*R*)-2e.

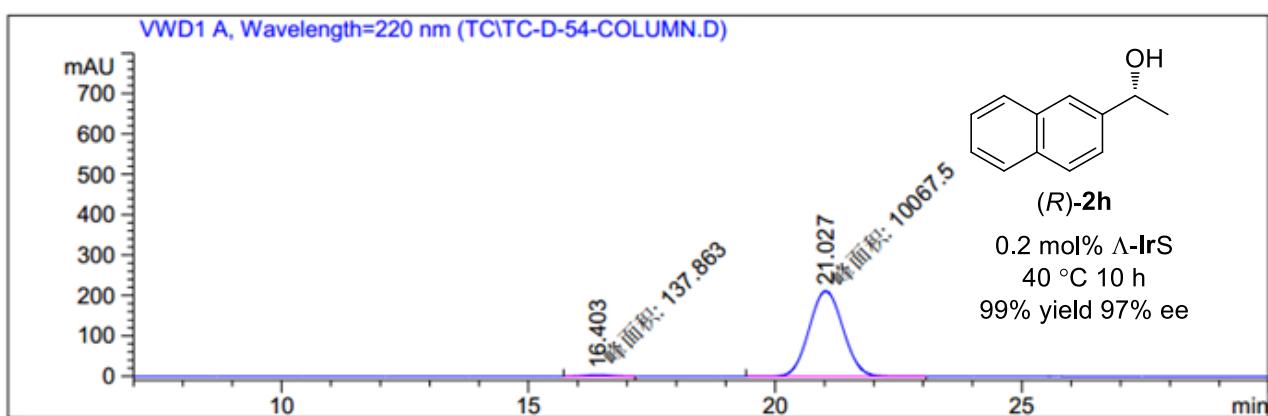
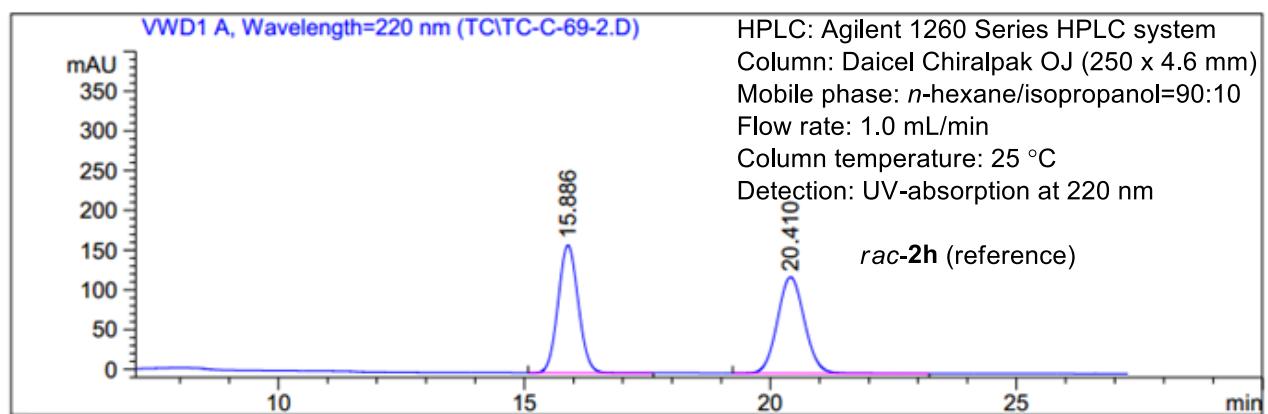


#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.438	MM	0.2851	149.84796	8.75887
2	19.646	VB	0.2946	9638.02930	509.72479

Figure S6. HPLC traces of transfer hydrogenation leading to (R)-2f.

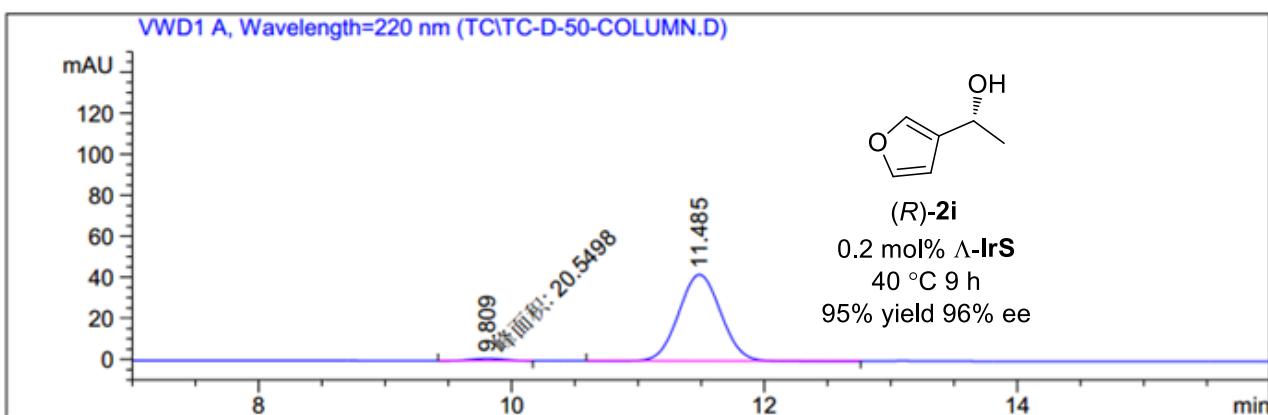
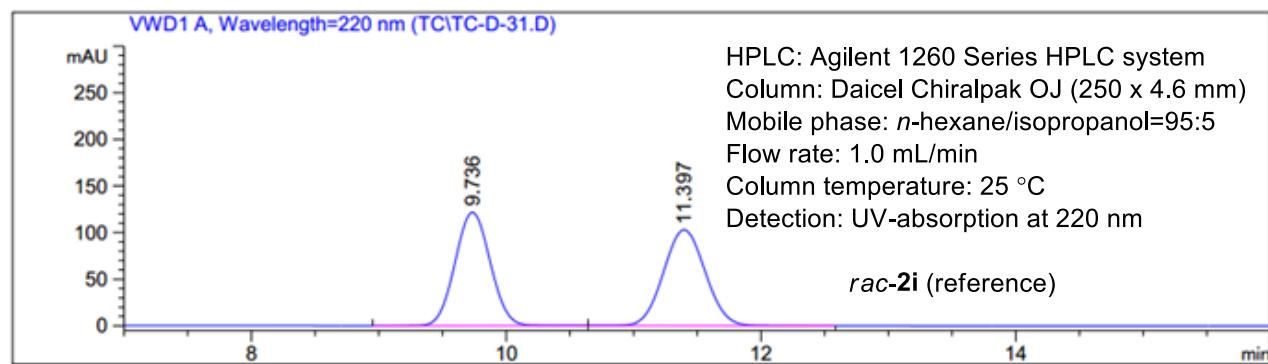


#	[min]	[min]	[mAU*s]	[mAU]	%
1	9.583	MM	0.2279	32.08267	2.34627 5.0391
2	11.261	VB	0.1536	604.59760	62.08014 94.9609

Figure S7. HPLC traces of transfer hydrogenation leading to (R)-2g.

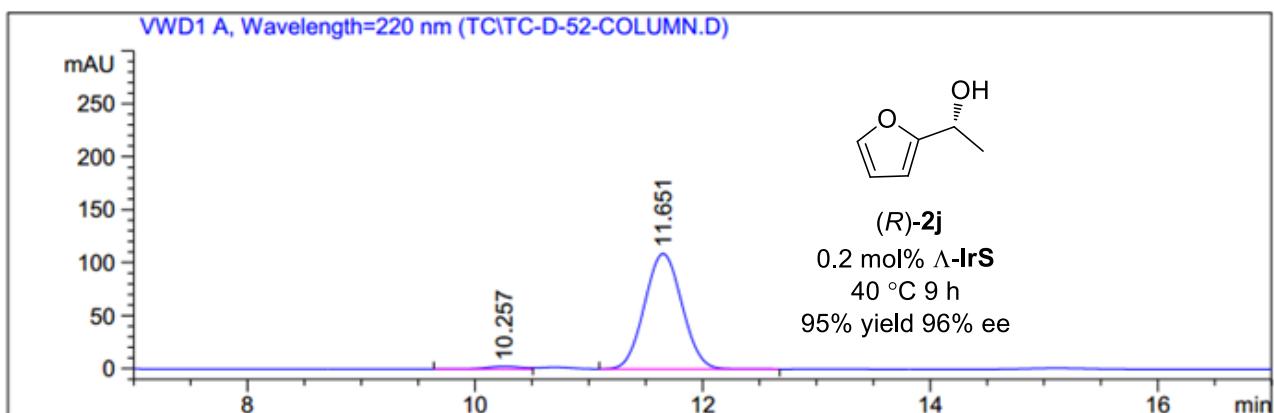
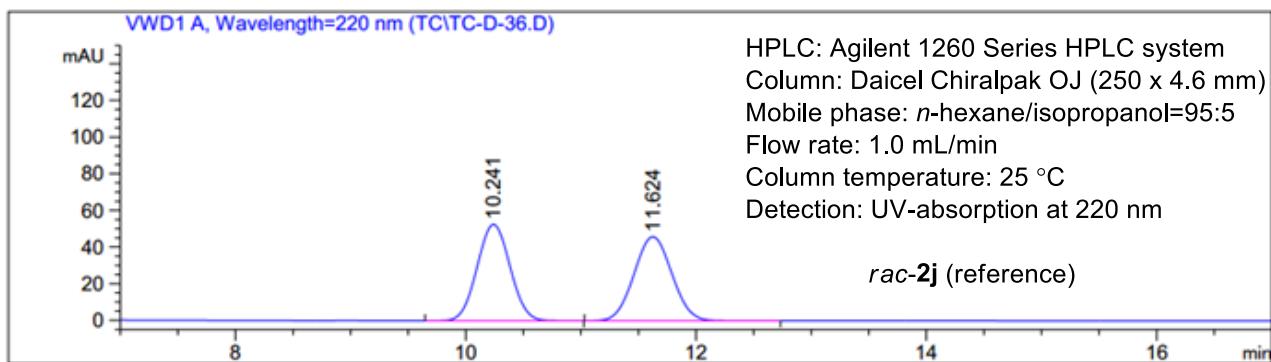


#	[min]	[min]	[mAU*s]	[mAU]	%
1	16.403	MM	0.6052	137.86325	3.79645
2	21.027	MM	0.7943	1.00675e4	211.23257

Figure S8. HPLC traces of transfer hydrogenation leading to (R) -2h.

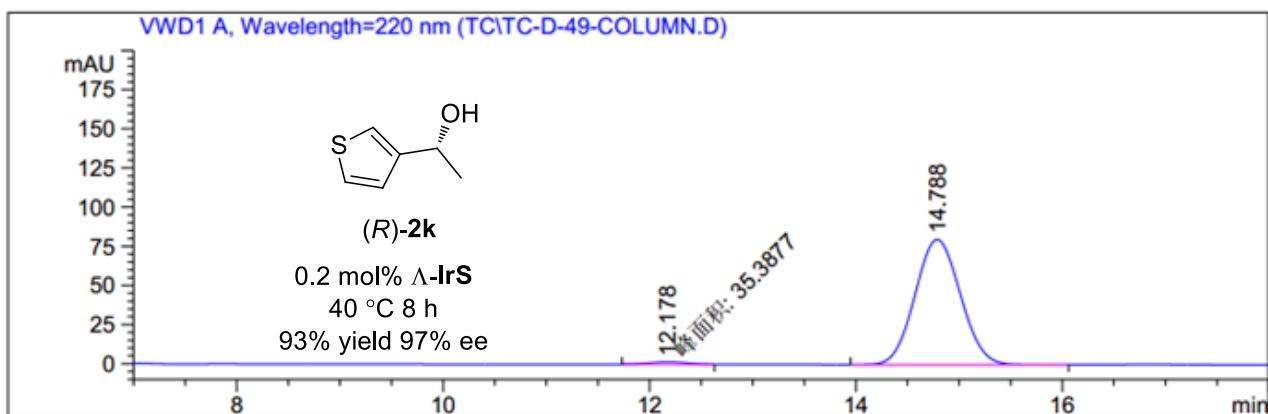
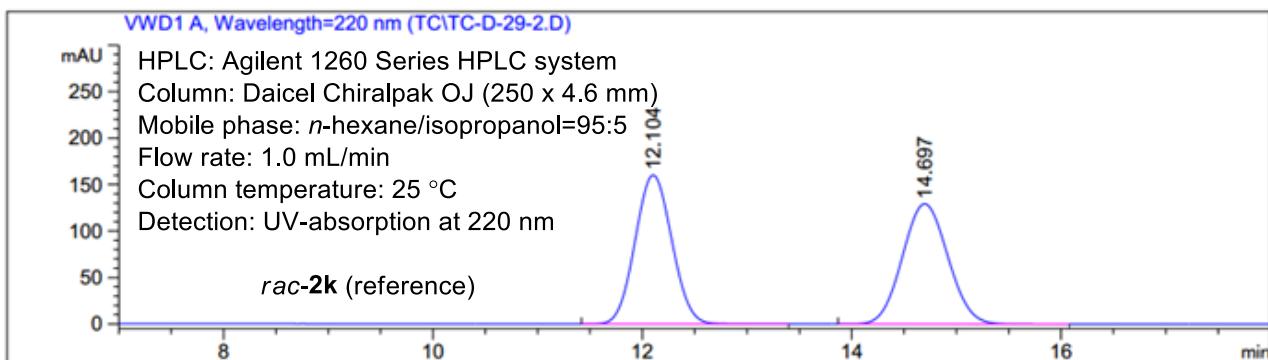


	1	9.809	MM	0.3165	20.54984	1.08200	2.0501
	2	11.485	VV	0.3639	981.84662	42.12702	97.9499

Figure S9. HPLC traces of transfer hydrogenation leading to (R)-2i.

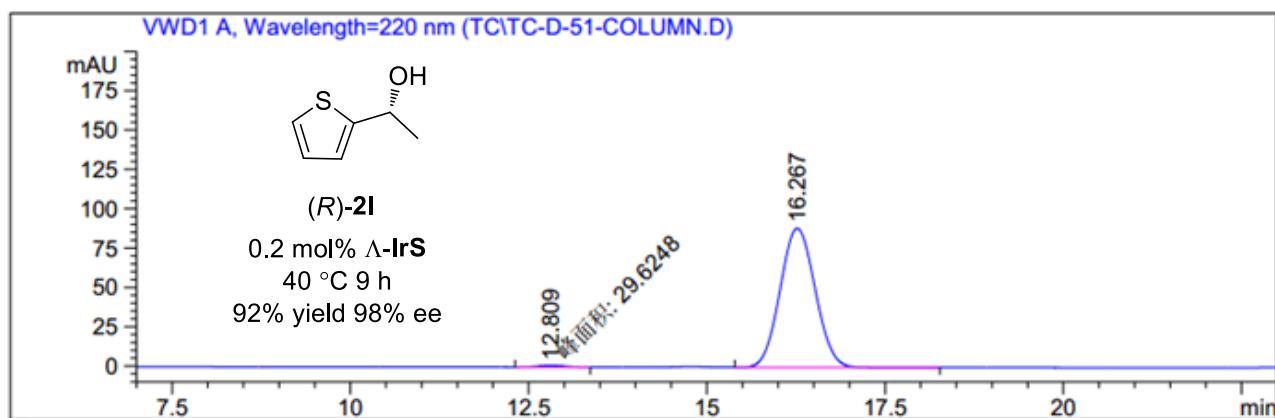
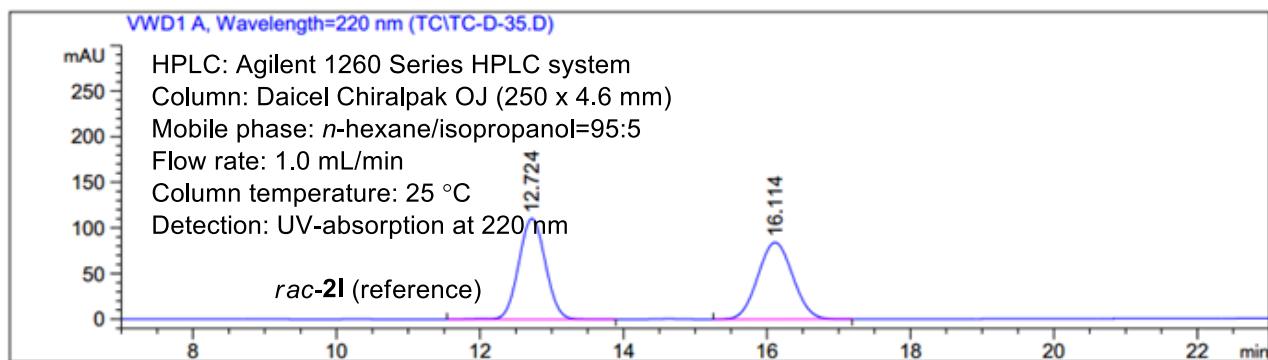


1	10.257	BV	0.3153	53.53700	2.61043	2.0973	
2	11.651	VB	0.3596	2499.08472	108.94597	97.9027	

Figure S10. HPLC traces of transfer hydrogenation leading to *(R)*-**2j**.

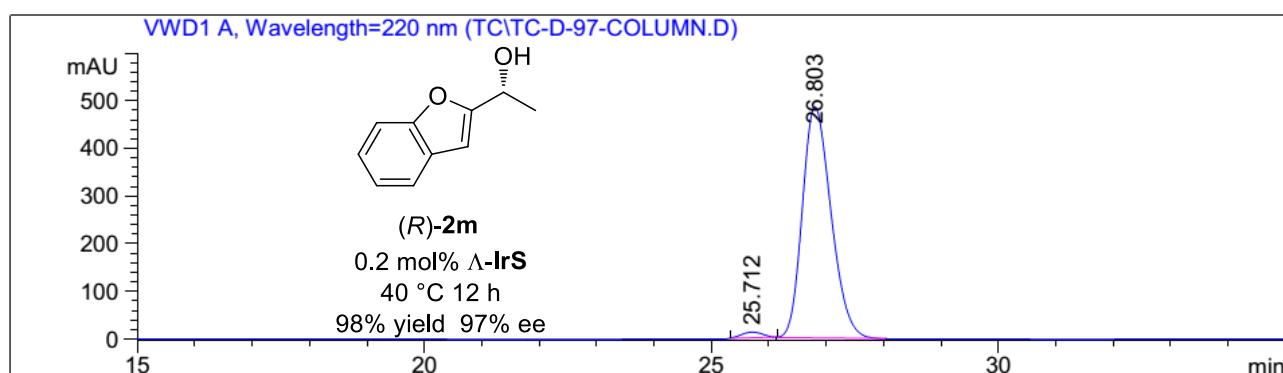
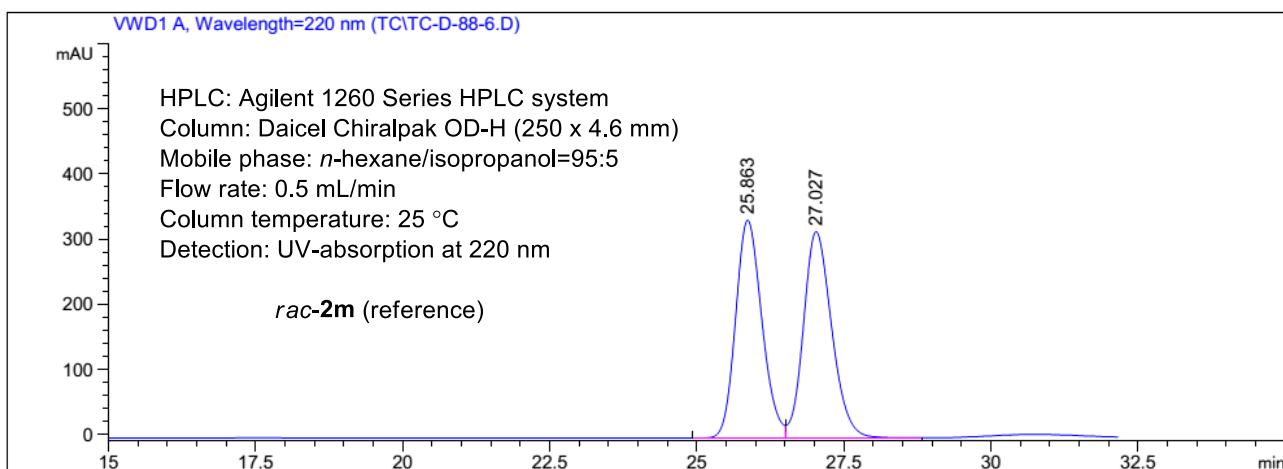


#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.178	MM	0.3946	35.38769	1.49464	1.4296
2	14.788	BB	0.4805	2439.97192	79.85620	98.5704

Figure S11. HPLC traces of transfer hydrogenation leading to (R)-2k.

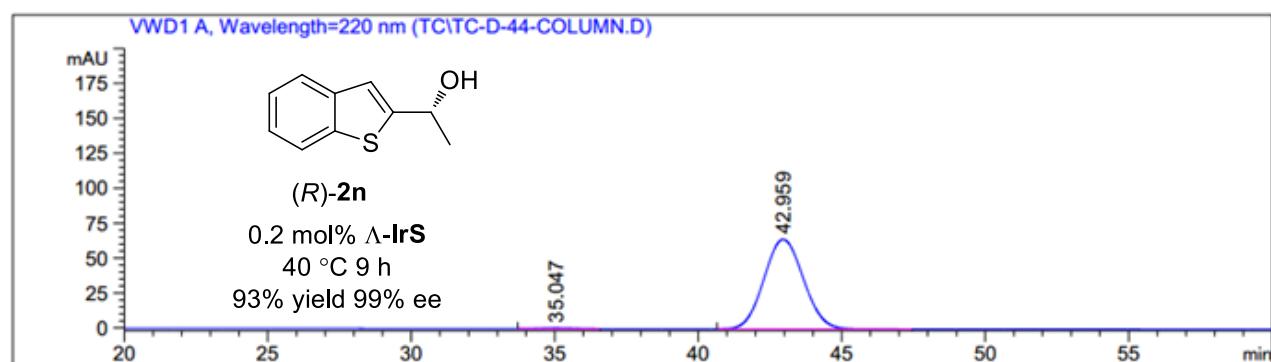
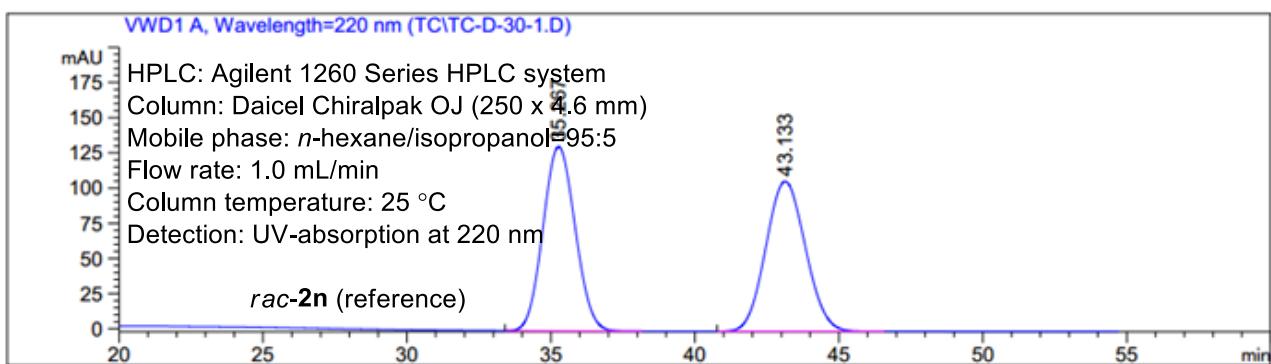


#	[min]	[min]	[mAU*s]	[mAU]	%
1	12.809	MM	0.4267	29.62483	1.15712 0.9674
2	16.267	VB	0.5400	3032.57666	88.44614 99.0326

Figure S12. HPLC traces of transfer hydrogenation leading to (R)-2l.

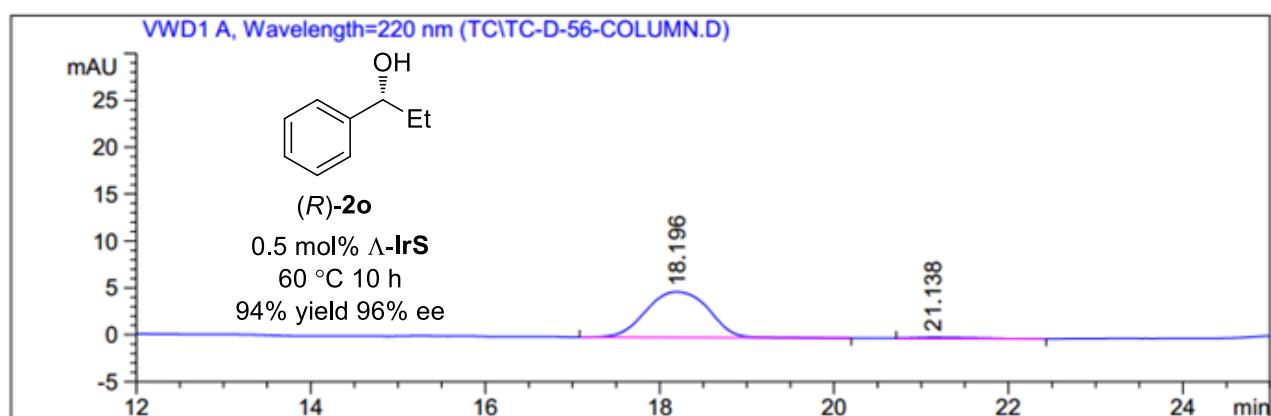
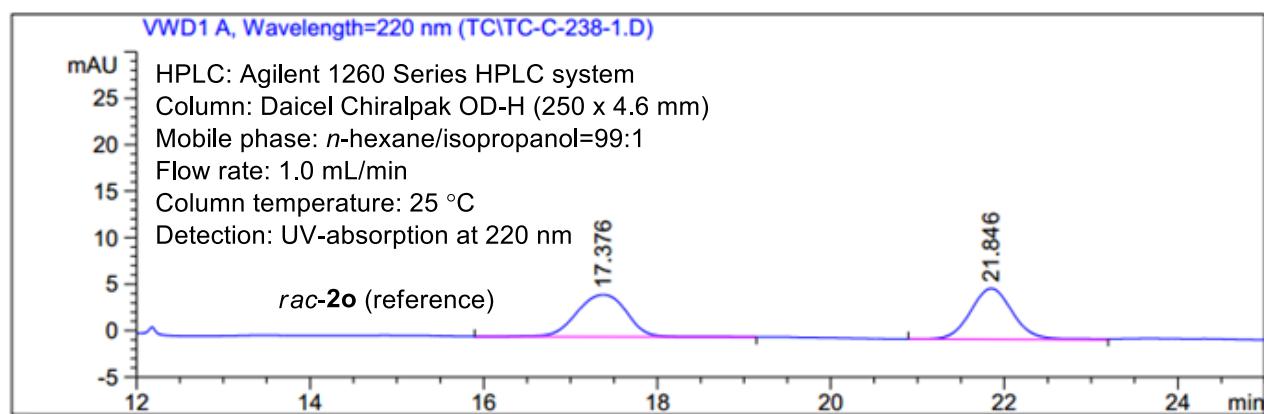


#	[min]	[min]	[mAU*s]	[mAU]	%
1	25.712	MM R	0.4177	290.51434	11.59179
2	26.803	MM R	0.5786	1.68435e4	485.18689

Figure S13. HPLC traces of transfer hydrogenation leading to (*R*)-**2m**.

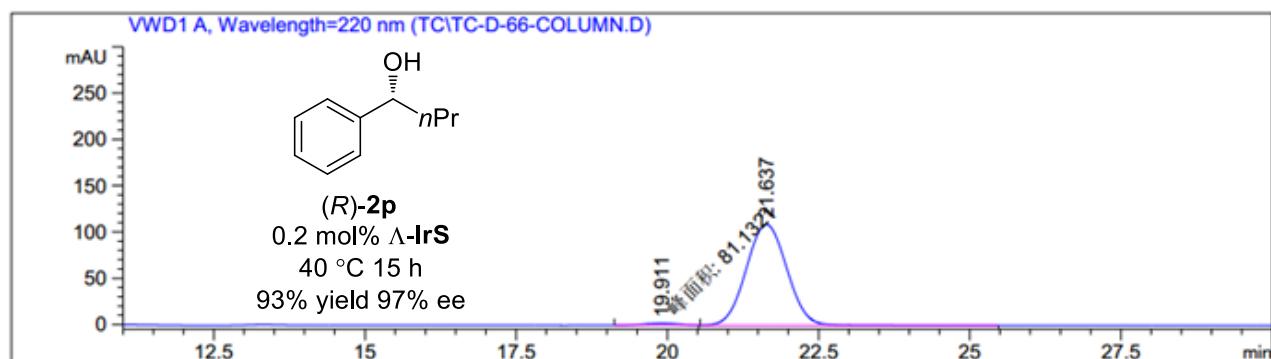
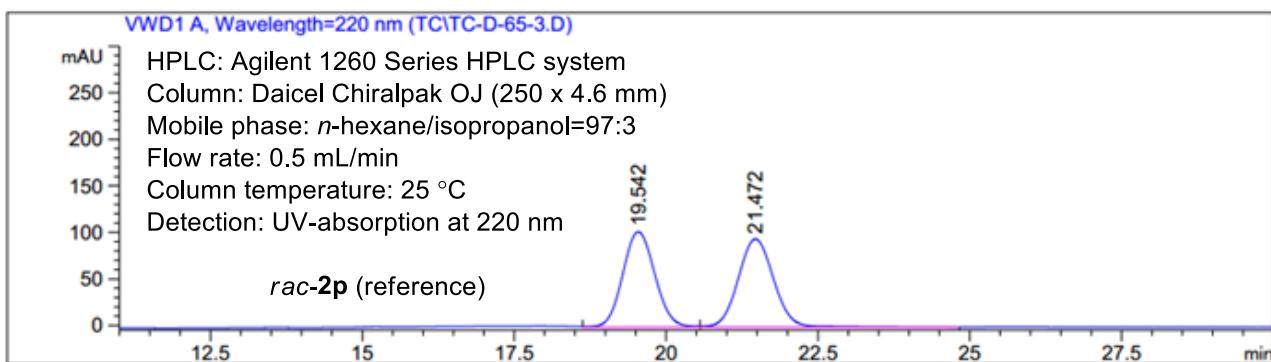


#	[min]	[min]	[mAU*s]	[mAU]	%
1	35.047	BB	0.8842	40.87154	5.47929e-1 0.6635
2	42.959	BB	1.4922	6118.88965	64.07240 99.3365

Figure S14. HPLC traces of transfer hydrogenation leading to (R)-2n.

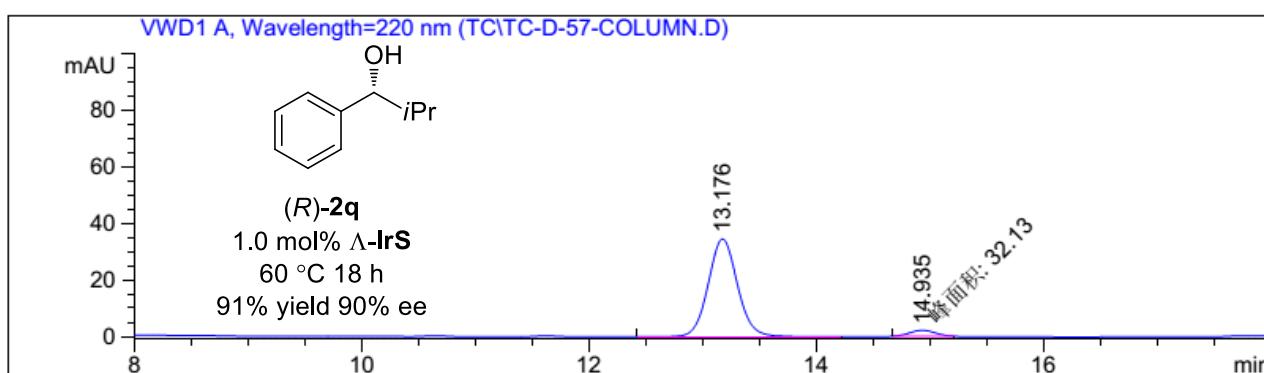
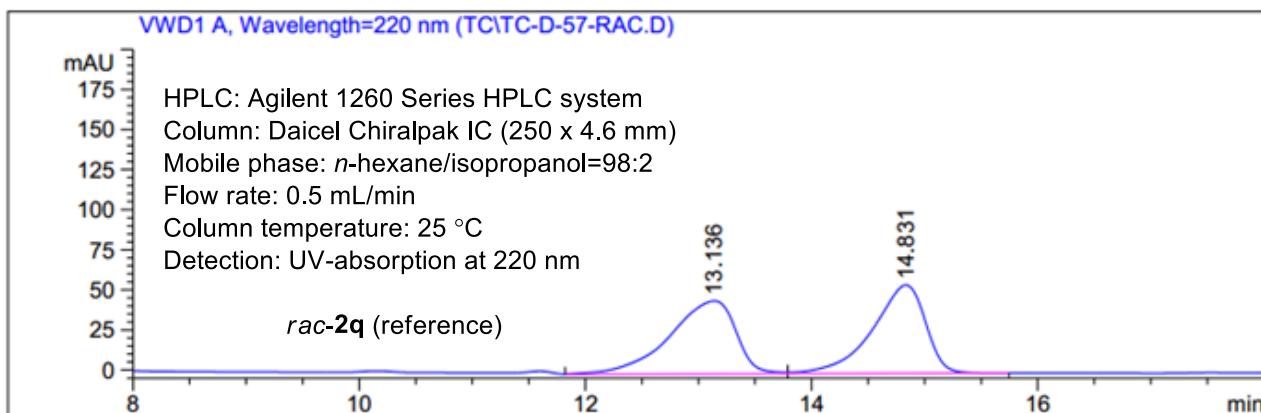


#	[min]	[min]	[mAU*s]	[mAU]	%
1	18.196	BB	0.8300	244.40448	4.86617
2	21.138	BB	0.6420	5.51348	1.14446e-1

Figure S15. HPLC traces of transfer hydrogenation leading to (R)-**2o**.

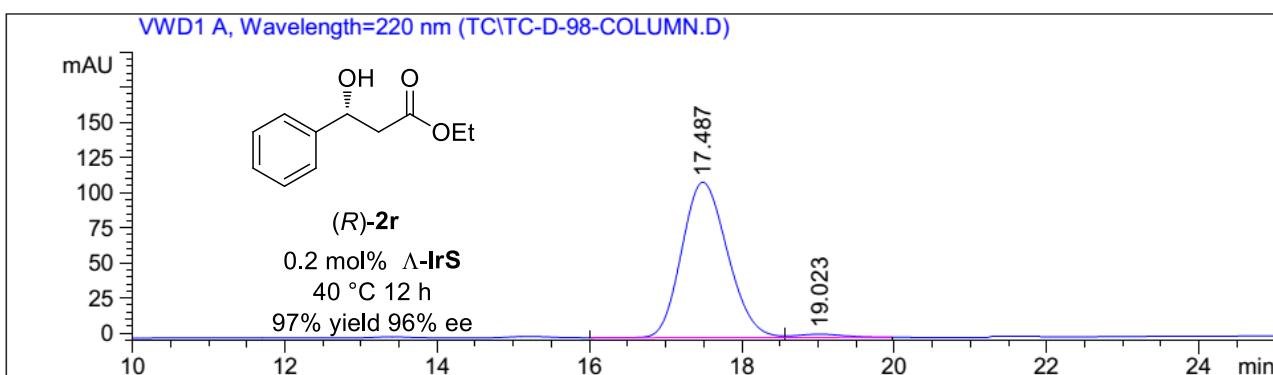
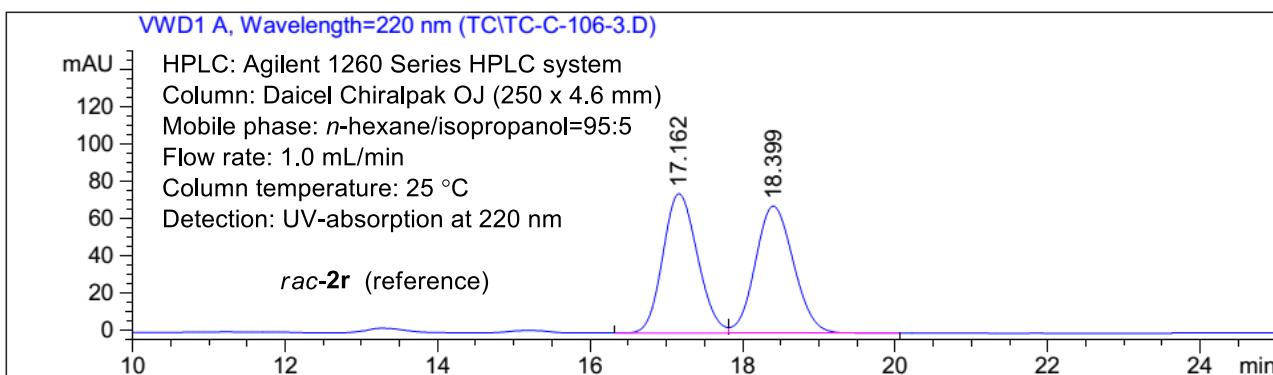


#	[min]	[min]	[mAU*s]	[mAU]	%
1	19.911	MM	0.6420	81.13206	2.10636 1.5642
2	21.637	VB	0.7382	5105.52197	109.06081 98.4358

Figure S16. HPLC traces of transfer hydrogenation leading to (*R*)-2p.

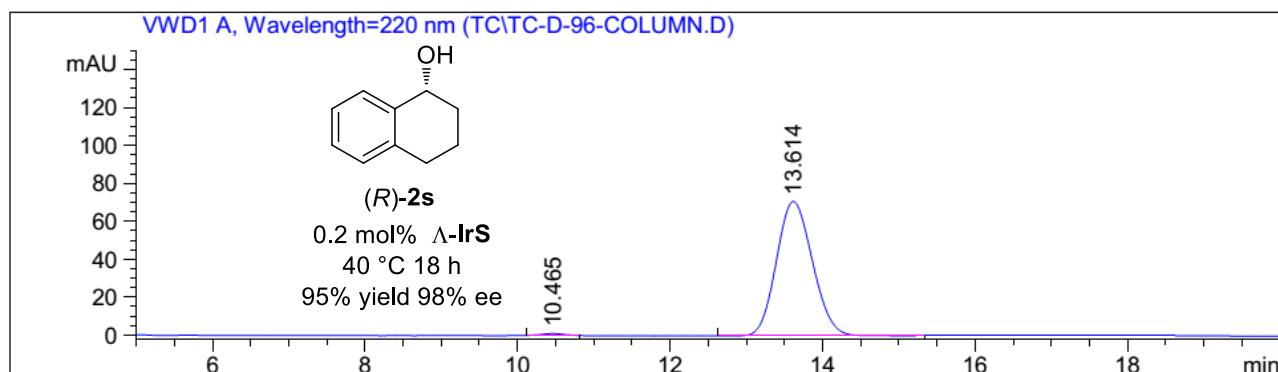
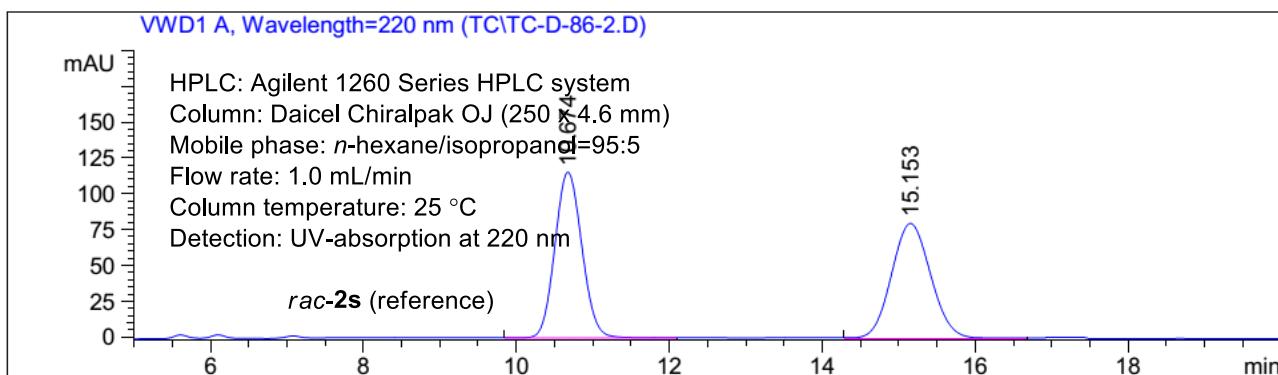


#	[min]	[min]	[mAU*s]	[mAU]	%
1	13.176	BB	0.2767	617.85956	34.53353
2	14.935	MM	0.2551	32.12996	2.09920

Figure S17. HPLC traces of transfer hydrogenation leading to (R)-2q.

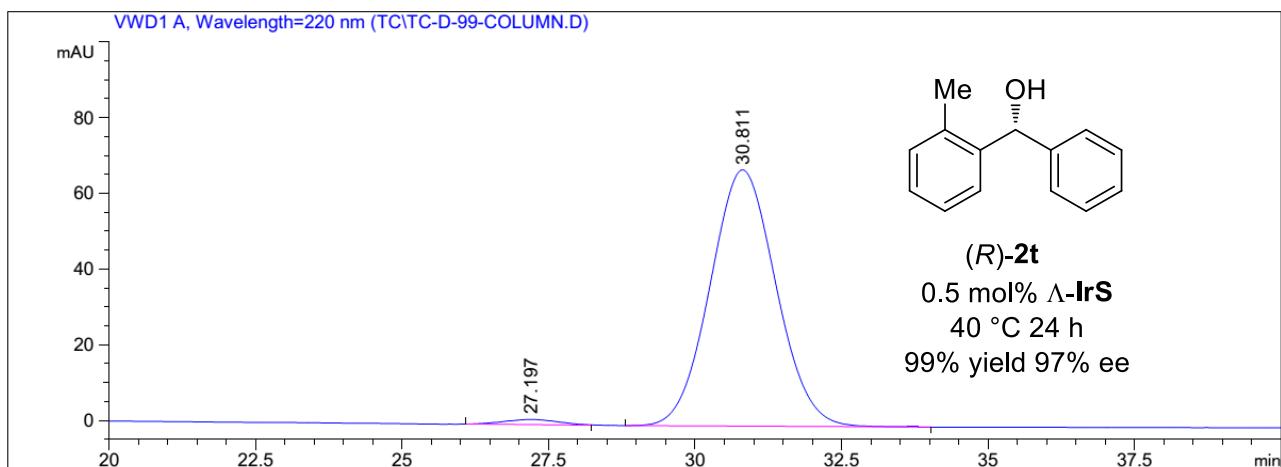
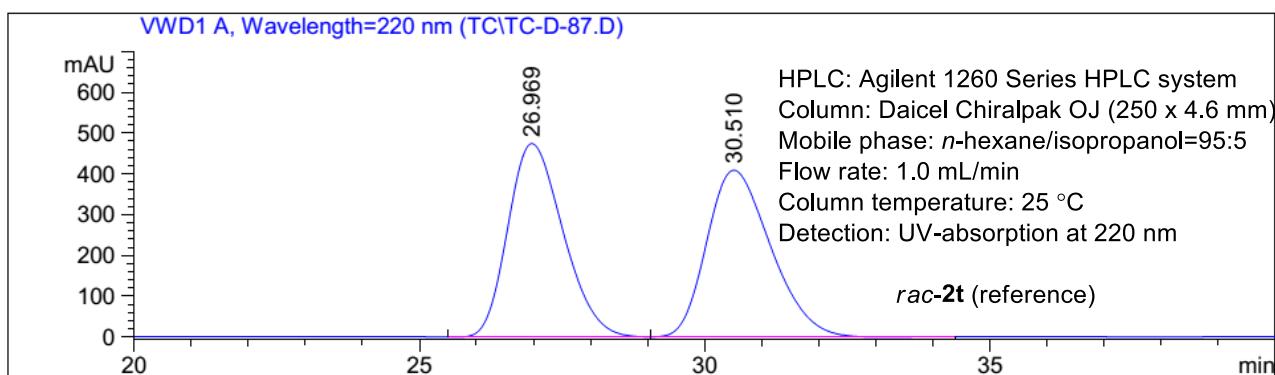


#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.487	BV	0.6527	4610.70850	110.53075	97.9830
2	19.023	VB	0.6735	94.91219	2.20801	2.0170

Figure S18. HPLC traces of transfer hydrogenation leading to (R)-**2r**.

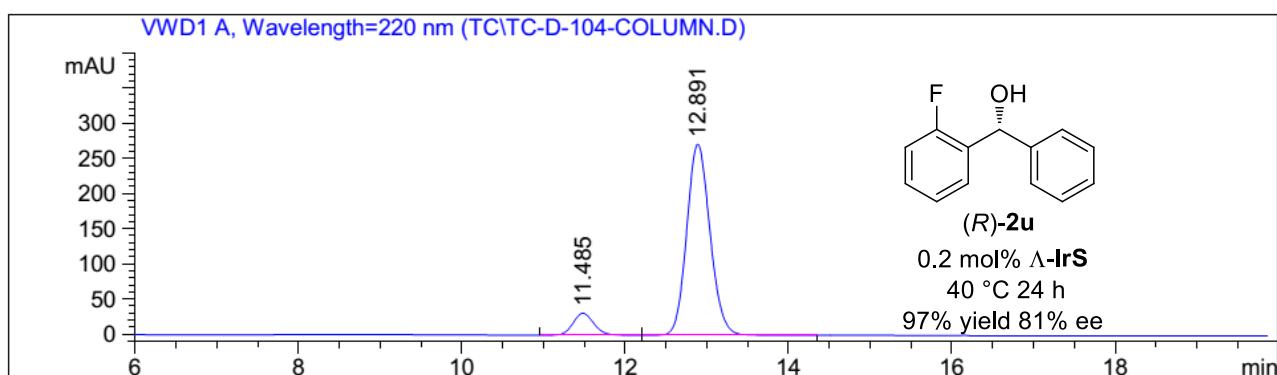
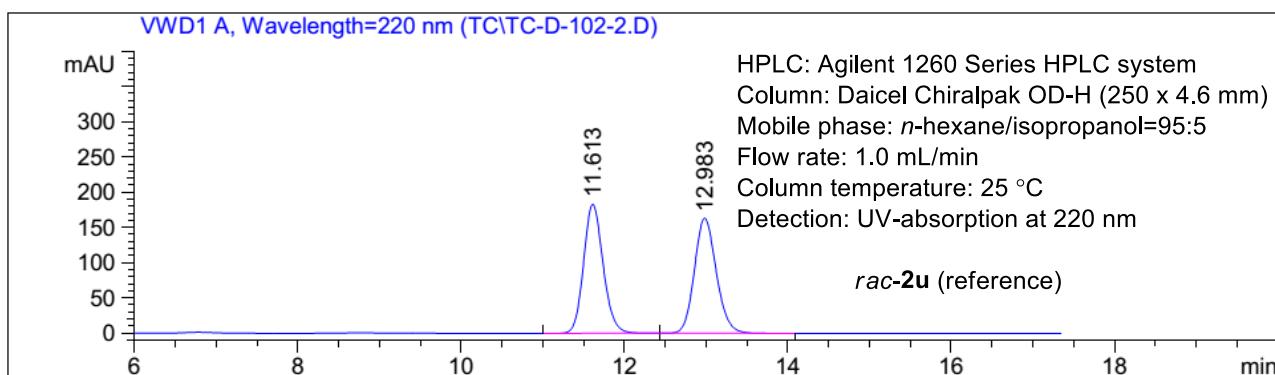


#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.465	MM R	0.3523	21.72536	1.02781 0.9243
2	13.614	MM R	0.5481	2328.70752	70.81310 99.0757

Figure S19. HPLC traces of transfer hydrogenation leading to (R)-2s.

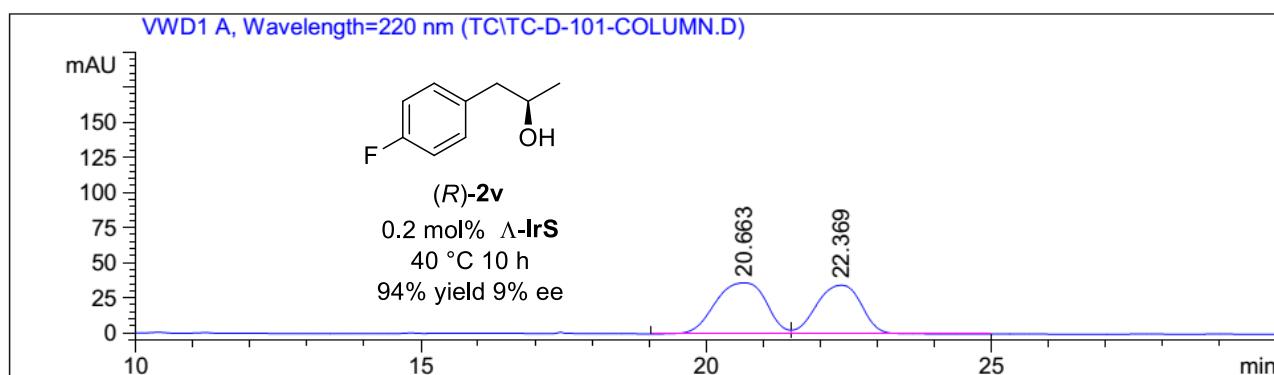
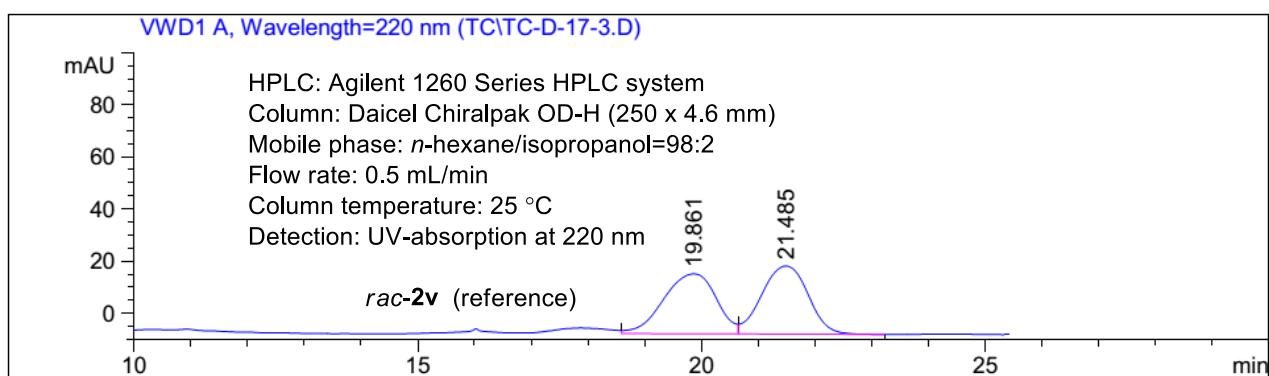


#	[min]	[min]	[mAU*s]	[mAU]	%
1	27.197	MM R	1.0458	82.88673	1.32097 1.5449
2	30.811	BB	1.2163	5282.19873	67.69466 98.4551

Figure S20. HPLC traces of transfer hydrogenation leading to (R) -2t.

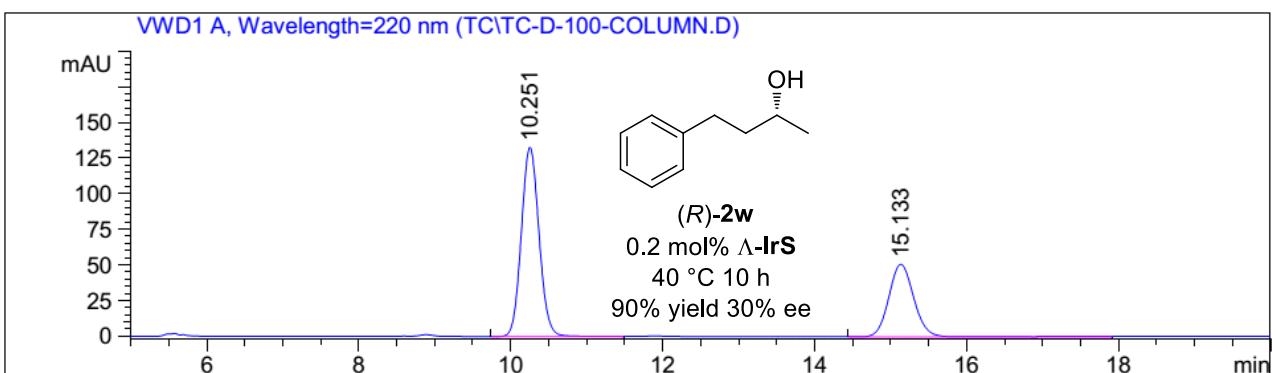
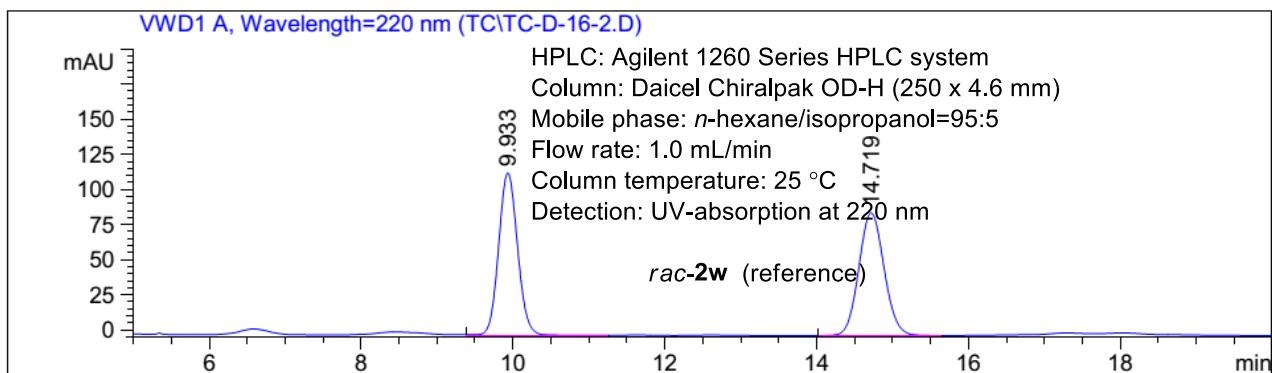


#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.485	BB	0.2750	554.28180	31.24592 9.3280
2	12.891	BV	0.3113	5387.87012	271.72314 90.6720

Figure S21. HPLC traces of transfer hydrogenation leading to (*R*)-2u.

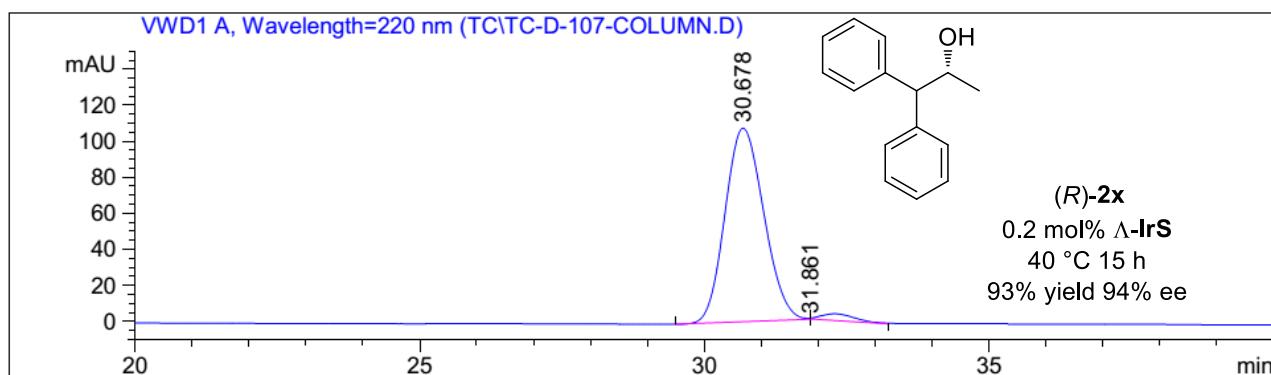
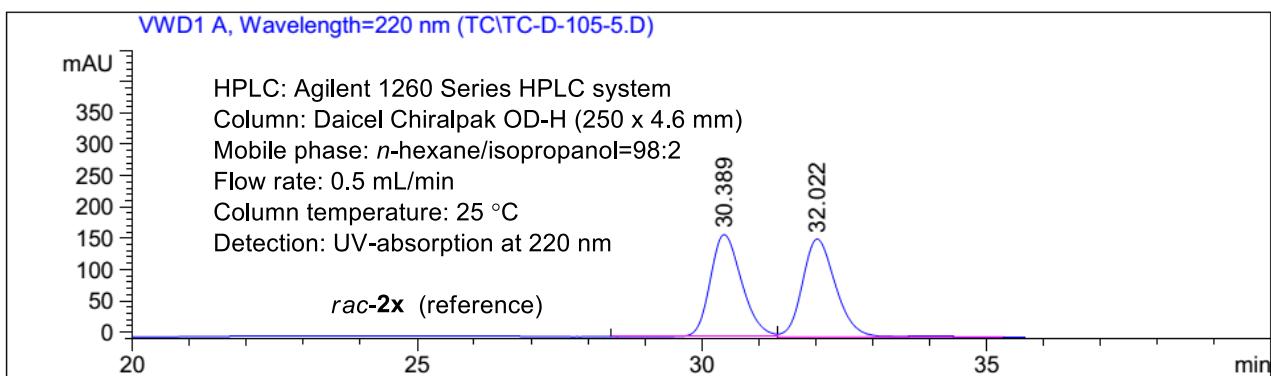
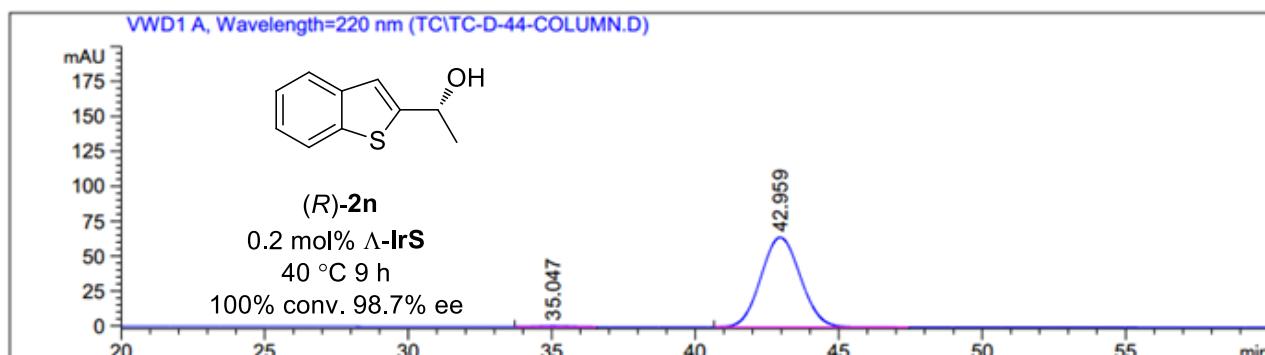


#	[min]	[min]	[mAU*s]	[mAU]	%
1	20.663	BV	1.0212	2266.16870	36.45895 54.3017
2	22.369	VB	0.8952	1907.12305	34.80742 45.6983

Figure S22. HPLC traces of transfer hydrogenation leading to (R)-2v.

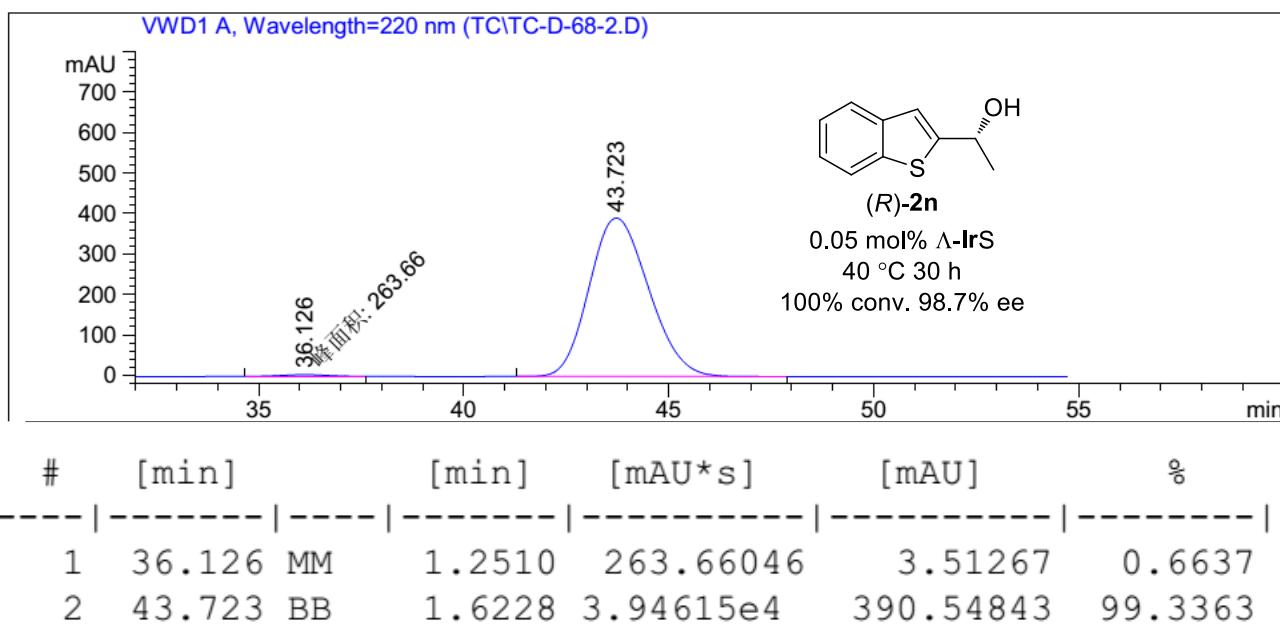
#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.251	BV	0.2536	2157.22681	132.72206
2	15.133	BB	0.3561	1171.59924	50.98032

Figure S23. HPLC traces of transfer hydrogenation leading to (R)-2w.

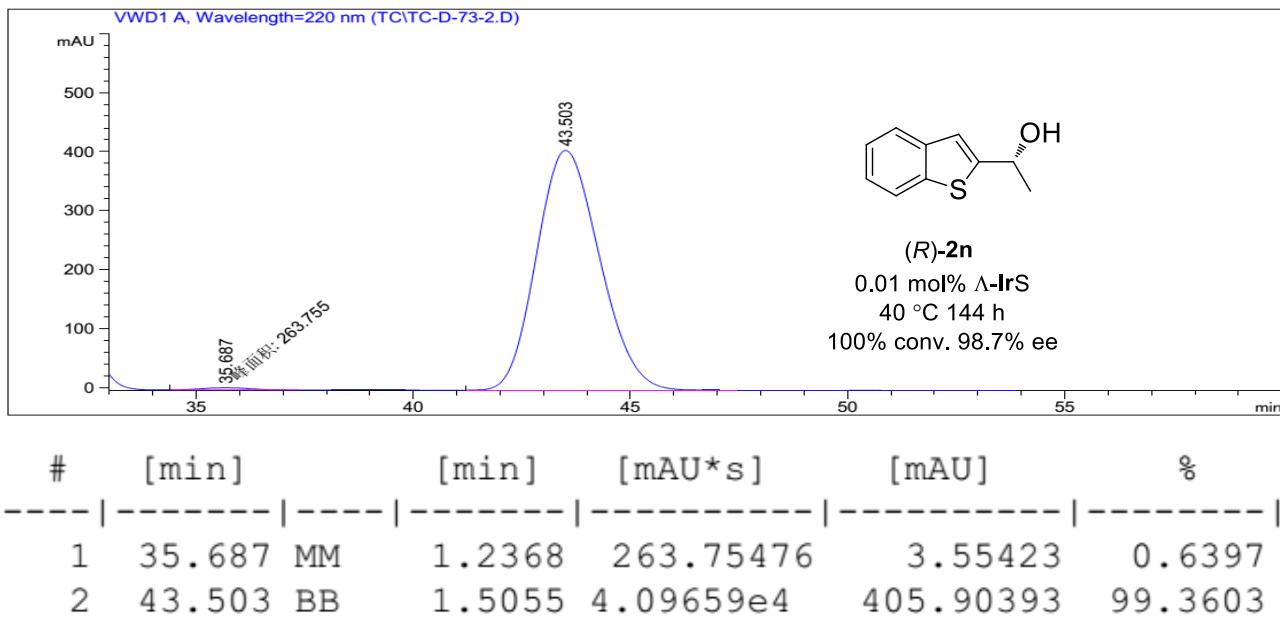


#	[min]	[min]	[mAU*s]	[mAU]	%
1	30.678	MM R	0.7883	5080.43848	107.40982
2	31.861	MM R	0.6759	150.24834	4.66038e-1

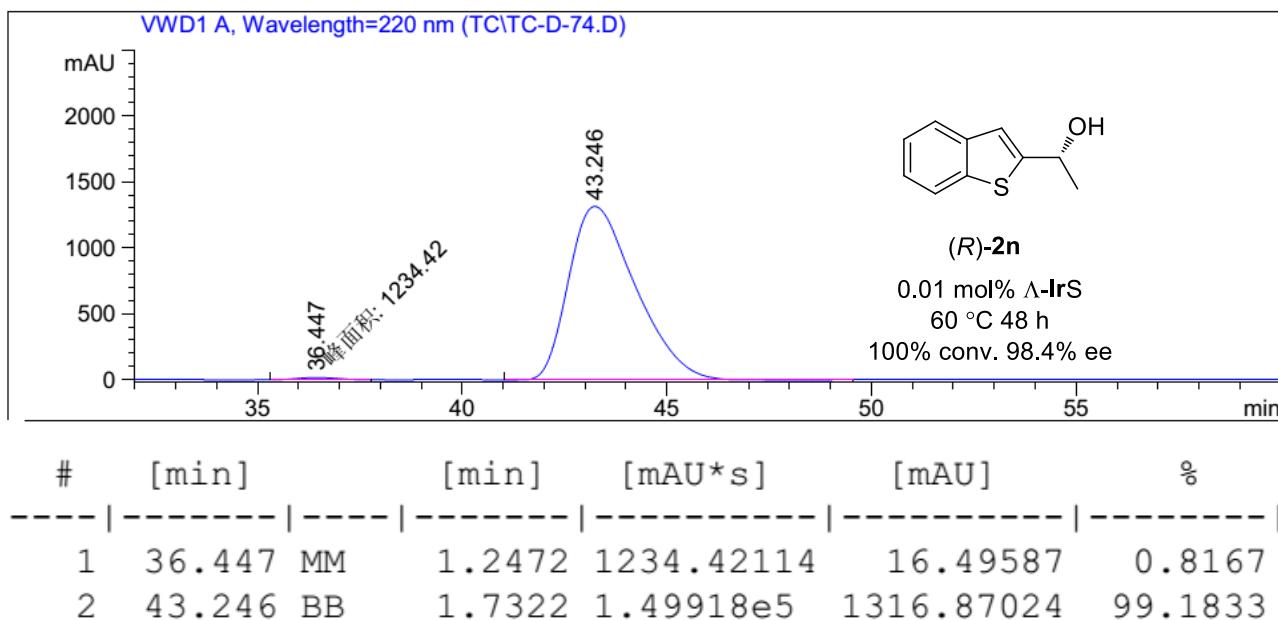
Figure S24. HPLC traces of transfer hydrogenation leading to (R)-2x.

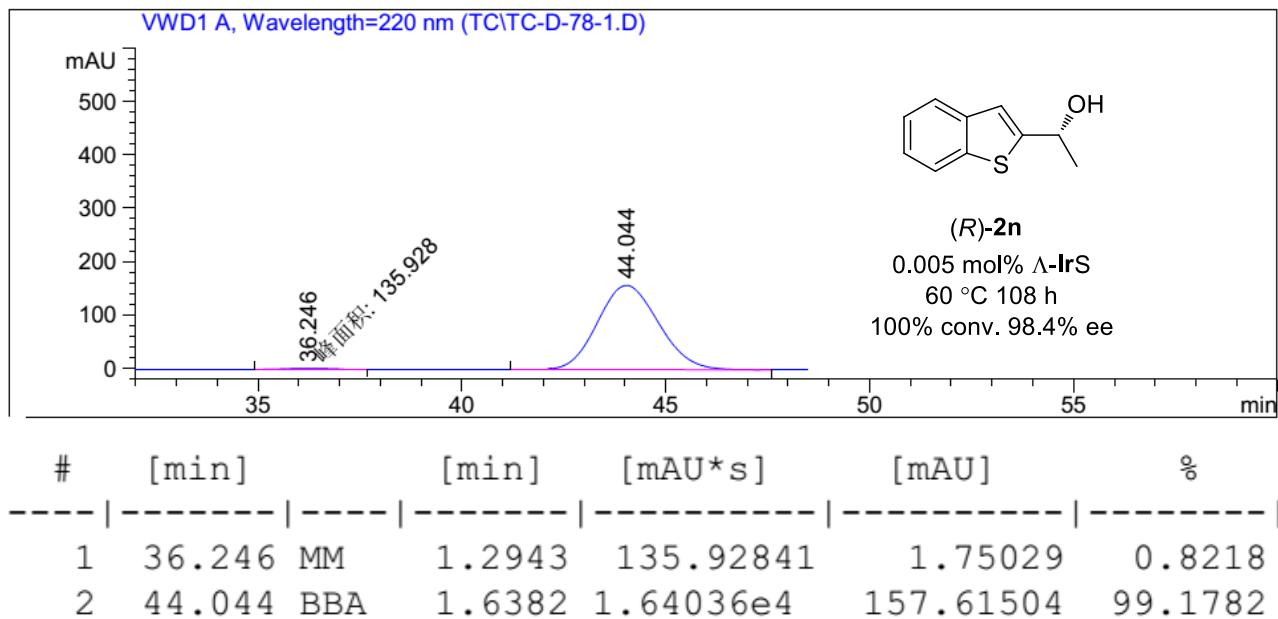

6.2 Determination of enantioselectivities for the ATH reaction of ketone **1n** at lower catalyst loadings

Enantiomeric excess were determined with a Daicel Chiralpak OJ column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using *n*-hexane/isopropanol = 95:5 as mobile phase, the flow rate was 1.0 mL/min, the temperature was 25 °C and UV-absorption was measured at 220 nm.



#	[min]	[min]	[mAU*s]	[mAU]	%
1	35.047	BB	0.8842	40.87154	5.47929e-1
2	42.959	BB	1.4922	6118.88965	64.07240


Figure S25. HPLC trace of the asymmetric transfer hydrogenation leading to (*R*)-**2n** catalyzed by 0.2 mol% Λ-IrS at 40°C and the standard conditions (Table1, entry 1).


Figure S26. HPLC trace of the asymmetric transfer hydrogenation leading to (R)-2n catalyzed by 0.05 mol% Λ-IrS at 40°C and the standard conditions (Table1, entry 2).

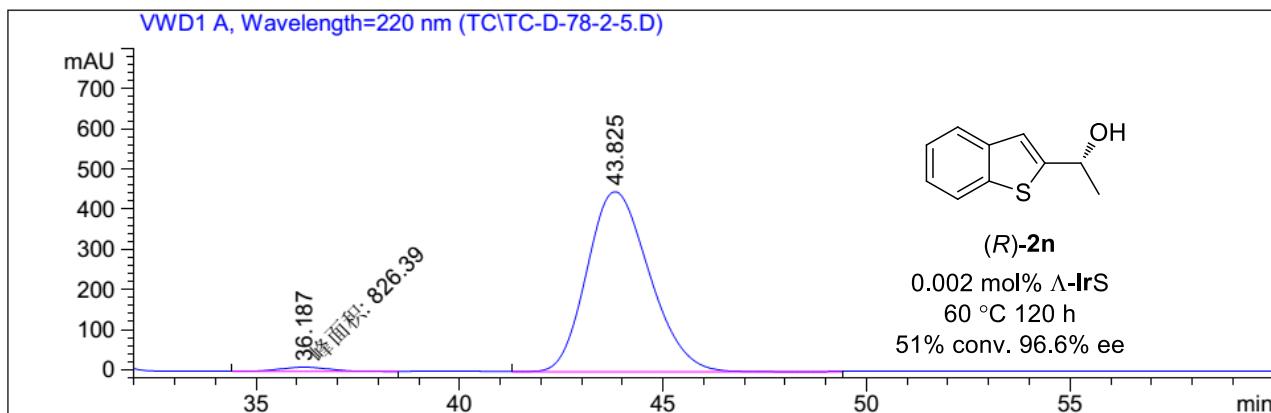
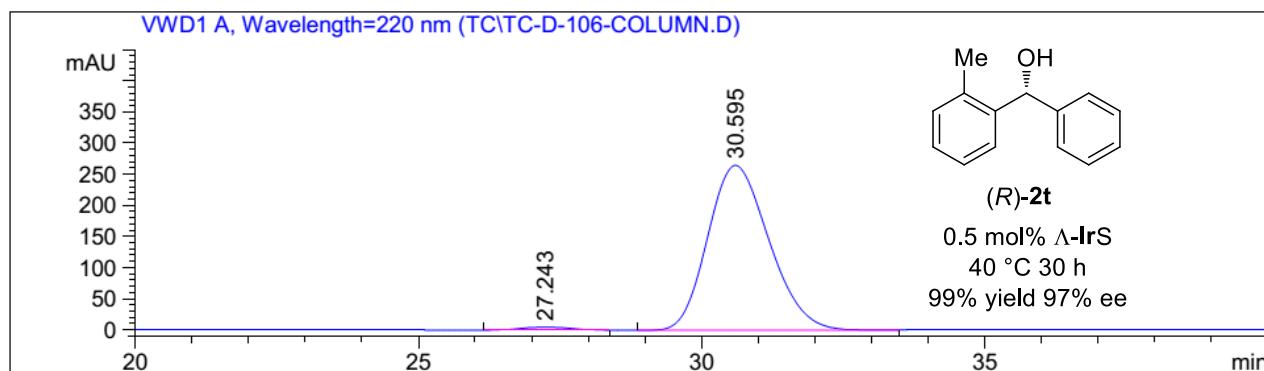

Figure S27. HPLC trace of the asymmetric transfer hydrogenation leading to (R)-2n catalyzed by 0.01 mol% Λ-IrS at 40°C and the standard conditions (Table1, entry 3).

Figure S28. HPLC trace of the asymmetric transfer hydrogenation leading to **(R)-2n** catalyzed by 0.01 mol% Λ -IrS at 60°C and the standard conditions (Table1, entry 4).

Figure S29. HPLC trace of the asymmetric transfer hydrogenation leading to **(R)-2n** catalyzed by 0.005 mol% Λ -IrS at 60°C and the standard conditions (Table1, entry 5).

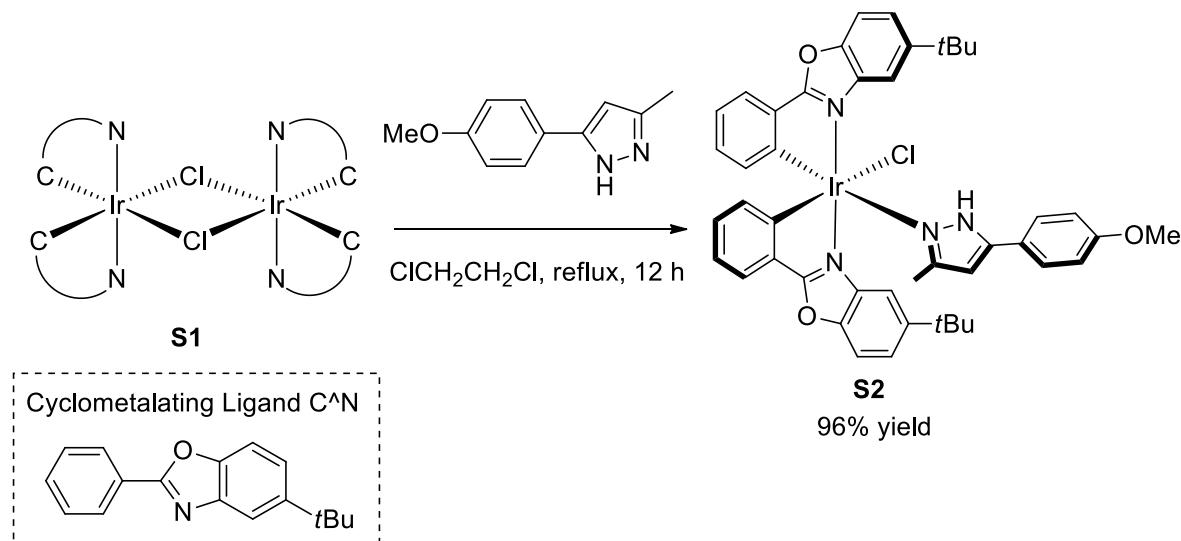


#	[min]		[min]	[mAU*s]	[mAU]	%
1	36.187	MM	1.3765	826.38983	10.00611	1.7023
2	43.825	BB	1.6038	4.77180e4	447.59573	98.2977

Figure S30. HPLC trace of the asymmetric transfer hydrogenation leading to *(R)*-2n catalyzed by 0.002 mol% Λ-IrS at 60°C and the standard conditions (Table1, entry 6).

6.3 Determination of enantioselectivity for the ATH reaction of ketone 1t on gram-scale

Enantiomeric excess was determined with a Daicel Chiralpak OJ column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using *n*-hexane/isopropanol = 95:5 as mobile phase, the flow rate was 1.0 mL/min, the temperature was 25 °C and UV-absorption was measured at 220 nm.

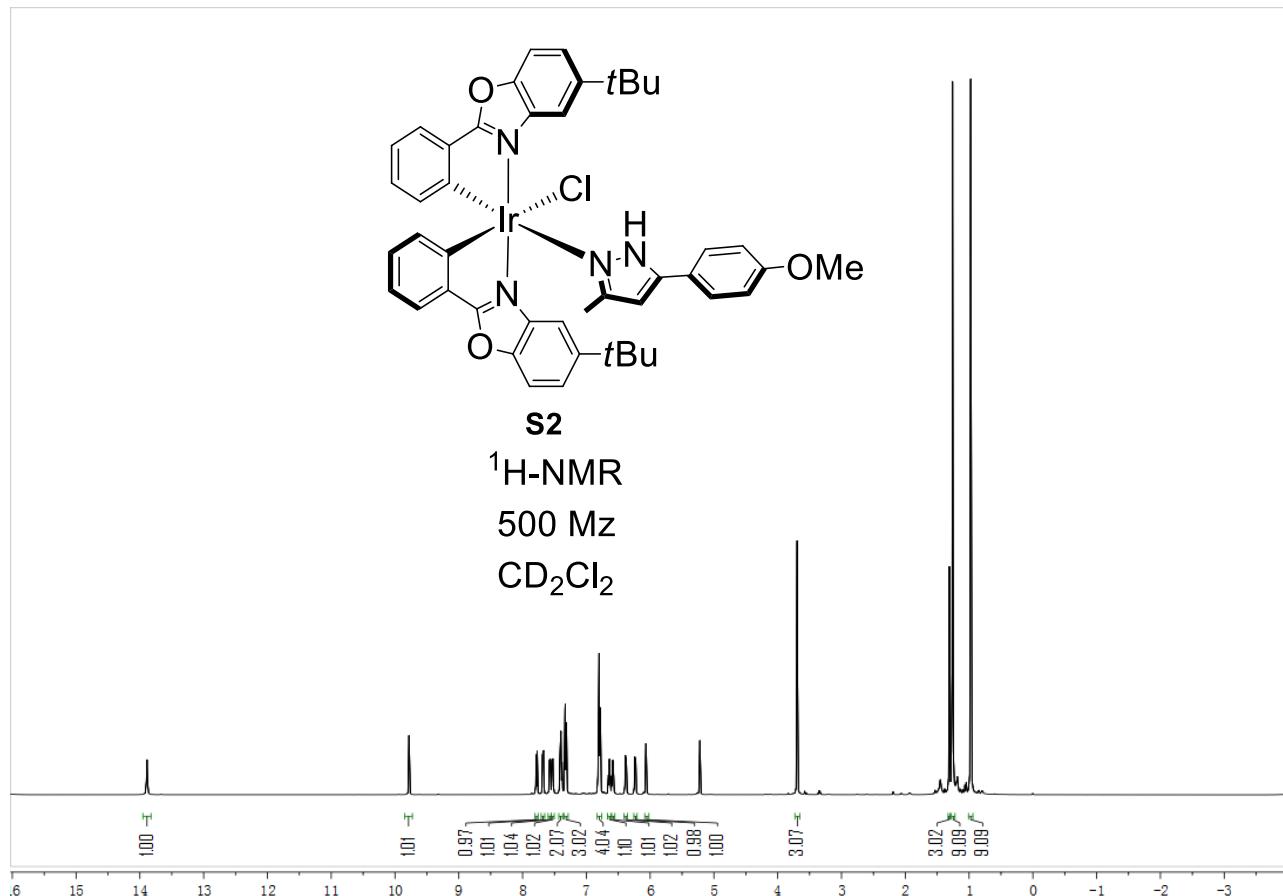


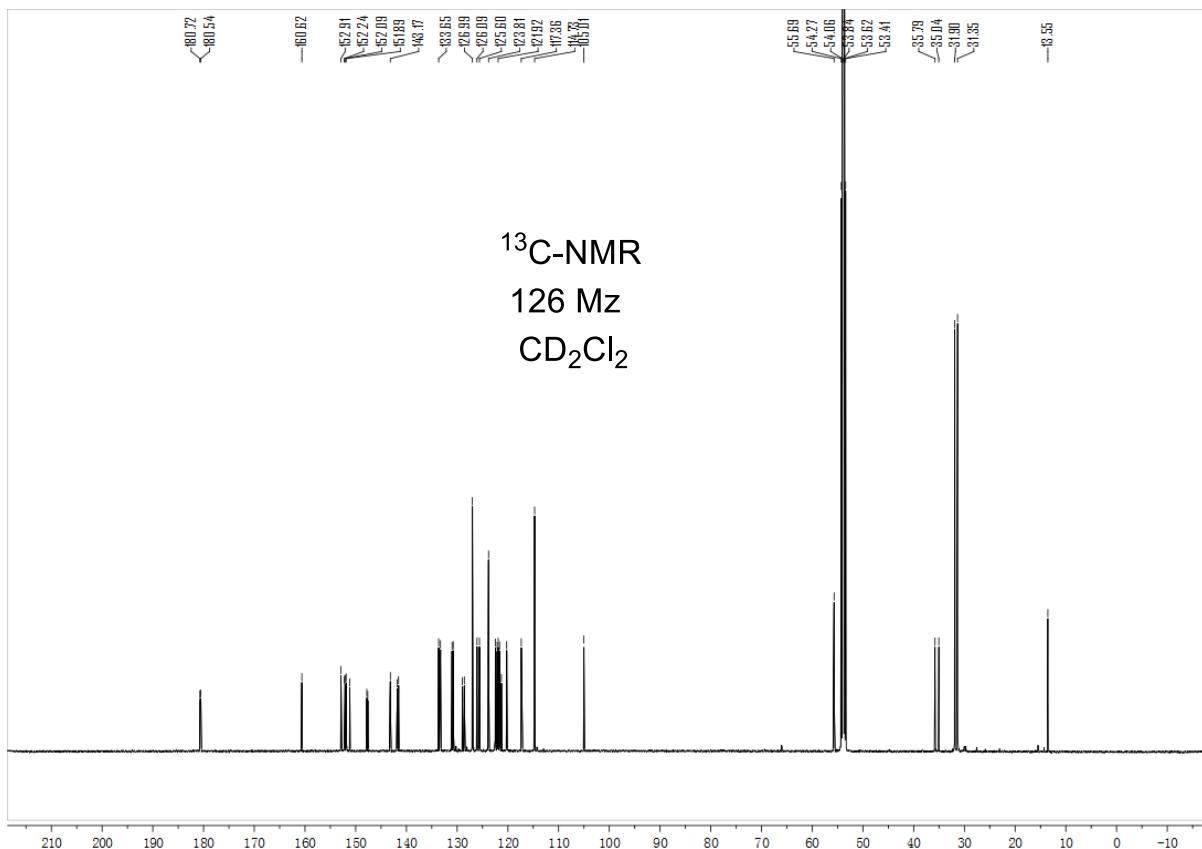
#	[min]	[min]	[mAU*s]	[mAU]	%
1	27.243	MM R	1.0229	315.61676	5.14250 1.5586
2	30.595	BB	1.1574	1.99349e4	265.07941 98.4414

Figure S31. HPLC trace of the asymmetric transfer hydrogenation in gram-scale leading to **(R)-2t**.

7. Single Crystal Diffraction

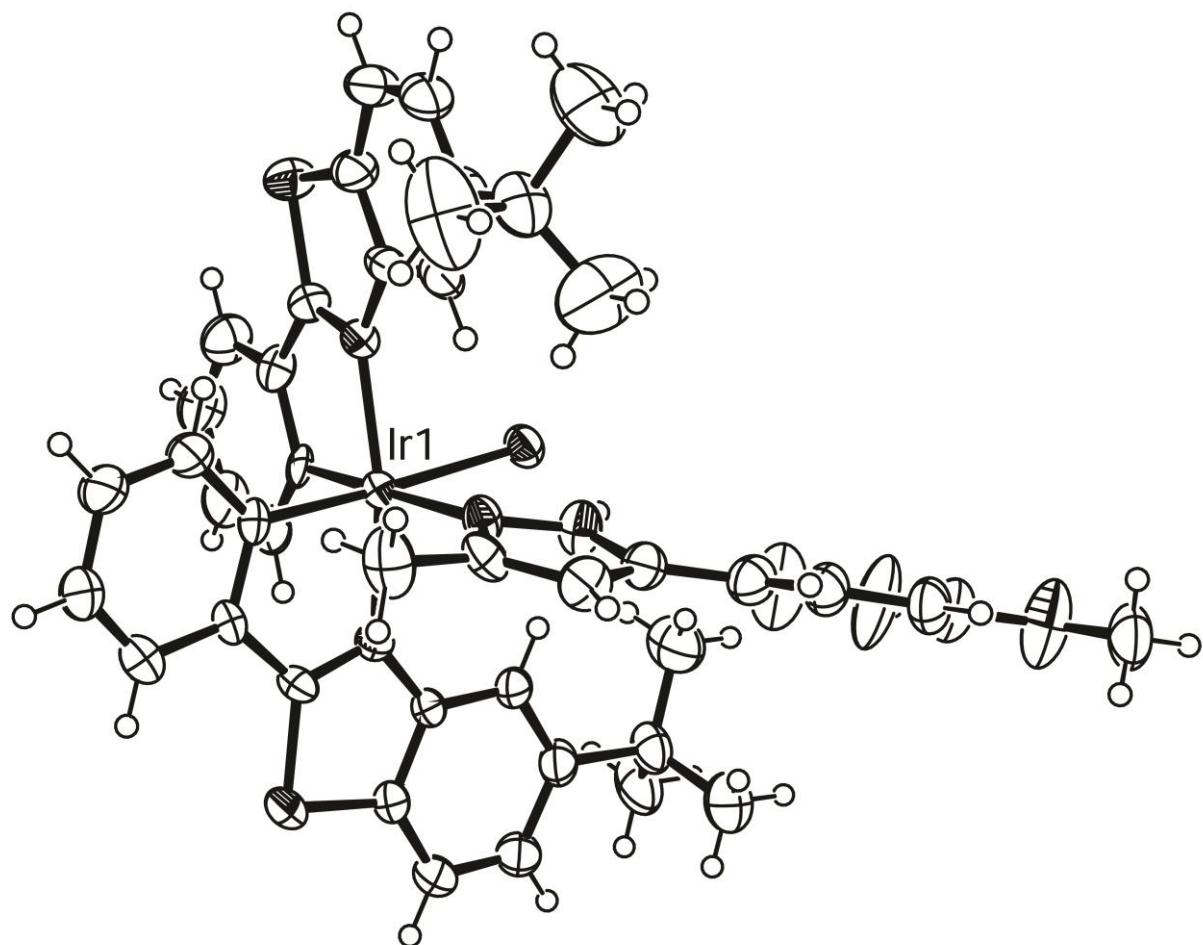
7.1 Synthesis of an iridium(III) pyrazole complex for crystallization


The iridium (III) pyrazole complex **S2** was synthesized following a modified procedure.¹³ Accordingly, a mixture of iridium dimer **S1**³ (200.0 mg, 0.13 mmol) and ligand 5-(4-methoxyphenyl)-3-methyl-1*H*-pyrazole (50.0 mg, 0.26 mmol) in $\text{ClCH}_2\text{CH}_2\text{Cl}$ (10 mL) was heated at reflux (oil bath temperature: 100 °C) for 12 h under argon atmosphere. The reaction solution was cooled down to room temperature, then concentrated into 2 mL, to which diethyl ether (2 mL) was added to afford a yellow precipitate. The solid was collected after centrifuge, washed with diethyl ether (2 mL x 3) and dried under vacuum. The analytically pure product was obtained by recrystallization from dichloromethane/*n*-hexane. Yield: 120 mg (96%)


¹H-NMR (500 MHz, CD_2Cl_2): δ 13.89 (s, 1H), 9.78 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.42-7.38 (m, 2H), 7.34-7.31 (m, 3H), 6.81-6.78 (m, 4H), 6.65-6.62 (m, 1H), 6.60-6.57 (m, 1H), 6.38 (d, J = 7.8 Hz, 1H), 6.24 (d, J = 7.5 Hz, 1H), 6.04 (s, 1H), 3.69 (s, 3H), 1.31 (s, 3H), 1.26 (s, 9H), 0.97 (s, 9H).

¹³C-NMR (126 MHz, CD_2Cl_2): δ 180.7, 180.5, 160.6, 152.9, 152.2, 152.1, 151.9, 151.2, 147.8, 147.6, 143.2, 141.8, 141.6, 133.7, 133.3, 131.0, 130.8, 129.0, 128.6, 127.0, 126.9, 126.1, 125.6, 123.8, 123.7, 122.5, 122.1, 121.9, 121.7, 121.3, 120.3, 117.4, 114.7, 105.0, 55.7, 35.8, 35.0, 31.9, 31.4, 13.6.

IR (film): ν (cm⁻¹) 3643, 2957, 2920, 2849, 2349, 2304, 2029, 1959, 1692, 1659, 1614, 1581, 1552, 1536, 1510, 1469, 1439, 1413, 1295, 1084, 996, 833, 758, 738, 672, 522.


HRMS (ESI, m/z) calcd for IrC₄₅H₄₄S₂N₄ClONa (M+Na)⁺: 971.2172, found: 971.2173.

7.2 Crystallography with the iridium(III) pyrazole complex S2

Crystals of compound **S2** were obtained by slow diffusion from the solution in dichloromethane layered with *n*-hexane. Diffraction data were collected on a Bruker Apex CCD area detector employing graphite-monochromated Mo-K α radiation ($= 0.71073 \text{ \AA}$). The crystal was kept at 200 K during data collection. The structure was solved by SHELXL-97.¹⁴ Refinement was done by full-matrix least squares based on F^2 data of one twin domain using SHELXL-97. The structure is shown in Figure S32. Data collection and refinement statistics are given in Table S2. Crystallographic data (excluding structure factors) for **S2** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1450140.

Figure S32. Crystal structure of complex **S2**. ORTEP drawings with 50% thermal ellipsoids. The complex was crystallized as a racemate but only the L-enantiomer is shown.

Table S2. Data collection and refinement statistics for the compounds **S2**.

	S2
Empirical formula	$C_{45}H_{44}ClIrN_4OS_2$
Formula weight	948.61
Temperature (K)	173(2) K
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2(1)/c
Cell dimensions	
a, b, c (Å)	18.999, 13.938, 18.330
α, β, γ (°)	90, 100.52, 90
Volume (Å ³)	4772.4(17)
Z	4
Density (calculated, mg/m ³)	1.320
Absorption coefficient (mm ⁻¹)	2.975
F(000)	1904
Crystal size (mm ³)	0.20 x 0.17 x 0.14
Theta range for data collection	2.18 to 26.00°
Index ranges	-23≤h≤23, -17≤k≤17, -22≤l≤22
Reflections collected	28219
Independent reflections	8827 [R(int) = 0.0727]
Completeness	94.0 %
Absorption correction	Empirical
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8827 / 0 / 487
Goodness-of-fit on F^2	0.999
Final R indices [I>2sigma(I)]	R1 = 0.0597, wR2 = 0.1642
R indices (all data)	R1 = 0.0751, wR2 = 0.1909
Largest diff. peak and hole (e.Å ⁻³)	1.322 and -2.400

8. References

1. (a) V. Gautam, V. Chawla, P. K. Sonar and S. K. Saraf, *E-J. Chem.* 2010, **7**, 1190–1195; (b) B. Lee, P. Kang, K. H. Lee, J. Chob, W. Nam, W. K. Lee and N. W. Hura, *Tetrahedron Lett.*, 2013, **54**, 1384–1388.
2. C. Wang, L.-A. Chen, H. Huo, X. Shen, K. Harms, L. Gong and E. Meggers, *Chem. Sci.*, 2015, **6**, 1094–1100.
3. H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt and E. Meggers, *Nature*, 2014, **515**, 100–103.
4. J. Guo, J. Chen and Z. Lu, *Chem. Commun.*, 2015, **51**, 5725–5727.
5. X. Ren, G. Li, S. Wei and H. Du, *Org. Lett.*, 2015, **17**, 990–993.
6. R. Hodgkinson, V. Jurčík, A. Zanotti-Gerosa, H. G. Nedden, A. Blackaby, G. J. Clarkson and M. Wills, *Organometallics*, 2014, **33**, 5517–5524.
7. Y.-N. Cheng, H.-L. Wu, P.-Y. Wu, Y.-Y. Shen and B.-J. Uang, *Chem. Asian J.*, 2012, **7**, 2921–2924.
8. S. Phothongkam and B.-J. Uang, *Asian J. Org. Chem.*, 2015, **4**, 794–799.
9. Z. Zuo, L. Zhang, X. Leng and Z. Huang, *Chem. Commun.*, 2015, **51**, 5073–5076.
10. L. Zhu, T. Kitanosono, P. Xu and S. Kobayashi, *Chem. Commun.*, 2015, **51**, 11685–11688.
11. N. A. Salvi and S. Chattopadhyay, *Tetrahedron*, 2011, **22**, 1512–1515.
12. T. Inagaki, A. Ito, J.-i. Ito and H. Nishiyama, *Angew. Chem. Int. Ed.*, 2010, **49**, 9384–9387.
13. T. Hajra, S. Ghosh, J. Bera and V. Chandrasekhar, *Indian J. Chem.*, 2011, **50A**, 1290–1297.
14. G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112–122.