Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Multifunctionalization of C₇₀ at the two polar regions with a high regioselectivity via

oxazolination and benzylation reactions

Shu-Hui Li,^a Zong-Jun Li,^a Takafumi Nakagawa,^b Il Jeon,^b Zheng Ju,^b Yutaka Matsuo*^b and Xiang

Gao*a

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

University of Chinese Academy of Sciences, Chinese Academy of Sciences, 5625 Renmin Street,

Changchun, Jilin 130022, China

E-mail: xgao@ciac.ac.cn;

^bDepartment of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo 113-0033, Japan

E-mail: matsuo@chem.s.u-tokyo.ac.jp

Table of Contents

Experiment	tal Section	S3
Figure S1	HPLC trace of the crude reaction mixture formed from the reaction of	S 8
	OH ⁻ with C ₇₀ and PhCN quenched with PhCH ₂ Br	
Figure S2	HPLC trace of the crude reaction mixture formed from the reaction of	S9
	OH ⁻ with 1 and PhCN quenched with PhCH ₂ Br	
Figure S3	HPLC purification of the mixture of 2 and 3 over a semi-preparative	S 10
	silica column	
Figure S4	Positive ESI FT-ICR MS of compound 2	S11
Figure S5	¹ H NMR spectrum of compound 2 recorded in <i>o</i> -DCB- d_4	S12

Figure S6	¹³ C NMR spectrum of compound 2 recorded in <i>o</i> -DCB- d_4		
Figure S7	Positive ESI FT-ICR MS of compound 3	S14	
Figure S8	¹ H NMR spectrum of compound 3 recorded in <i>o</i> -DCB- d_4	S15	
Figure S9	¹³ C NMR spectrum of compound 3 recorded in <i>o</i> -DCB- d_4	S16	
Figure S10	Packing diagram of 2 viewed along the <i>bc</i> plane	S17	
Figure S11	Packing diagram of 2 viewed along the <i>ac</i> plane	S18	
Cartesian of	coordinates, the lowest frequency and total energy of 1 obtained with	S19	
Gaussian09	9 at B3LYP/6-31G level		
Figure S12	The solar cell device structure and <i>J</i> - <i>V</i> curves	S22	
Table S1	Photovoltaic table of SDFS	S23	

Experimental Section

General Methods. All reactions were carried out under an atmosphere of Ar. All reagents were obtained commercially and used without further purification, unless otherwise noted. Benzonitrile (PhCN) was distilled over P₂O₅ under vacuum at 305 K prior to use. Tetra-*n*-butylammonium perchlorate (TBAP) was recrystallized from absolute ethanol and dried under vacuum at 313 K prior to use. ¹H NMR spectra were recorded on a 600 MHz spectrometer and ¹³C NMR spectra were recorded on a 150 MHz spectrometer. Accurate MS measurement was performed using an ESI electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer (ESI FT-ICR MS).

For CV measurements, a three-electrode cell was used and a glassy carbon, a platinum wire were used as working electrode and counter electrode, and a saturated calomel electrode (SCE) was used as reference electrode.

Preparation of Compound 1. Typically, 155.4 mg of C_{70} (185.0 µmol) were put into a 1:1 (v:v) mixture of PhCN:*o*-DCB degassed with argon at 50 °C. Then 2.1-fold TBAOH (1.0 M in methanol, 389 µL, 0.39 mmol) was added into the solution and the reaction was allowed to proceed for 2 h, and was then quenched with sixty-fold PhCH₂Br (1.32 mL, 11.1 mmol). The solvent was removed under reduced pressure, and the residue was washed with methanol to remove TBAOH and PhCH₂Br. The crude product was put into toluene, and the soluble part was purified with toluene over a semi-preparative Buckyprep-M COSMOSIL Packed Column (10 mm × 250 mm) at a flow rate of 4.0 mL/min with the detector wavelength set at 380 nm, which afforded compound **1** with an isolated yield of 61% (128.4 mg) and 8.1 mg of unreacted C₇₀. The identity of compound **1** was confirmed by the ¹H NMR and UV-vis characterizations as compared with previous work.

Preparation of Compound 2 and 3. Typically, 65.0 mg of compound 1 (57.0 µmol) were put into 50 mL of freshly distilled benzonitrile solution at 50 °C, which was degassed with argon for 20 min under vigorous stirring. Then 3-fold of TBAOH (1.0 M in methanol, 171 µL, 0.17 mmol) was added into the solution and the reaction was allowed to proceed for 5 h, and was then quenched with sixty-fold PhCH₂Br (406 µL, 3.4 mmol). The solvent was removed under reduced pressure, and the residue was washed with methanol to remove TBAOH and PhCH₂Br. The crude product was put into toluene, and the soluble part was eluted with toluene over a semi-preparative Buckyprep-M COSMOSIL Packed Column (10 mm × 250 mm) at a flow rate of 4.0 mL/min with the detector wavelength set at 380 nm, which afforded a mixture of **2** and **3** and 7.9 mg of unreacted compound **1** (12%). The mixture of **2** and **3** was purified by eluting with 60:40 v/v toluene/hexane mixture over a semi-preparative COSMOSIL Packed Column 5SL-II (10 mm × 250 mm), and it afforded 20.3 mg of **2** (25%) and 20.1 mg of **3** (25%).

Spectral Characterization of 2: Positive ESI FT-ICR MS, *m/z* calcd for $C_{112}H_{39}N_2O_2^+$ [M + H]⁺ 1443.30060, found 1443.30309; ¹H NMR (600 MH*z*,*o*-DCB-*d*₄) δ ppm, 8.28-8.27 (m, 4H), 7.49-7.48 (m, 6H), 7.15 (m, 7H), 6.98-6.89 9 (m, 13H), 3.89, 3.73 (ABq, *J*_{AB} = 13 Hz, 4H), 3.29, 3.26 (ABq, *J*_{AB} = 13 Hz, 4H); ¹³C NMR (150 MH*z*, *o*-DCB-*d*₄) δ ppm, 166.10 (2C), 164.37 (2C), 162.84 (2C), 154.86 (2C), 154.32 (2C), 153.23 (2C), 152.28 (2C), 151.91 (2C), 151.80 (2C), 151.27 (2C), 151.19 (2C), 150.96 (2C), 150.55 (2C), 150.27 (2C), 149.34 (2C), 147.56 (2C), 147.42 (2C), 147.38 (2C), 146.84 (2C), 144.25 (2C), 143.60 (2C), 142.03(2C), 141.88 (2C), 139.94 (2C), 139.82 (2C), 139.57 (2C), 139.43 (2C), 138.27 (2C), 138.06 (2C), 137.56 (2C), 137.04 (2C), 135.39 (2C),

132.77 (4C, Ph), 132.35 (4C, Ph), 132.17 (2C, Ph), 131.86 (2C, Ph), 130.48 (4C, Ph), 129.84 (4C, Ph), 129.13(2C, Ph), 128.99 (2C, Ph), 128.00(2C, Ph), 127.83 (2C, Ph), 127.63 (4C, Ph), 126.98 (4C, Ph), 94.45 (2C, sp³, *C*₇₀–O), 87.24 (2C, sp³, *C*₇₀–N), 59.29 (2C, sp³, *C*₇₀–CH₂), 58.63 (2C, sp³, *C*₇₀–CH₂), 43.42 (2C, CH₂), 42.57 (2C, CH₂); UV-vis (toluene): λ_{max} 394, 475, 542 and 598 nm.

X-ray Single-Crystal Diffraction of 2. Black crystals of **2** were obtained by slowly diffusing ethanol into a carbon disulfide solution of **2** at room temperature. Single-crystal X-ray diffraction data were collected on an instrument equipped with a CCD area detector using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) in the scan range $1.73^{\circ} < \theta < 25.05^{\circ}$. The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program within WINGX. Crystal data of **2**•CS₂; C₁₁₃H₃₈N₂O₂S₂, $M_w = 1519.57$, Monoclinic, space group C2/*c*, a = 21.845(3) Å, b = 16.430(2) Å, c = 20.014(3) Å, $\alpha = 90^{\circ}$, $\beta = 107.937(2)$, $\gamma = 90^{\circ}$, V = 6834.1(16) Å³, Z = 4, $D_{calcd} = 1.477$ Mg • m⁻³, $\mu = 0.146$ mm⁻¹, T = 187(2) K, crystal size $0.21 \times 0.19 \times 0.11$ mm; reflections collected 19743, independent reflections 6041; 3323 with $I > 2\sigma$ (I); R1 = 0.0817 [$I > 2\sigma$ (I)], wR2 = 0.1779 [$I > 2\sigma$ (I)]; R1 = 0.1549 (all data), wR2 = 0.2145 (all data), GOF (on F^2) = 1.039.

Spectral Characterization of 3: Positive ESI FT-ICR MS, m/z calcd for $C_{112}H_{39}N_2O_2^+$ [M + H]⁺ 1443.30060, found 1443.29934; ¹H NMR (600 MHz, *o*-DCB-*d*₄) δ ppm, 8.29-8.28 (m, 4H), 7.50-7.49 (m, 6H), 7.15(m, 7H), 6.99-6.90 (m, 13H), 3.89, 3.74 (ABq, $J_{AB} = 13$ Hz, 4H), 3.32, 3.25 (ABq, $J_{AB} = 13$ Hz, 4H); ¹³C NMR (150 MHz, *o*-DCB-*d*₄) δ ppm, 165.96 (2C), 164.56 (2C), 162.84

(2C), 154.86 (2C), 154.68 (2C), 152.94 (2C), 152.32 (2C), 152.18 (2C), 151.65 (2C), 151.24 (2C), 151.17 (2C), 151.10 (2C), 151.05 (2C), 150.72 (2C), 150.27 (2C), 149.36 (2C), 147.55 (2C), 147.31 (2C), 147.12 (2C), 146.87 (2C), 144.20 (2C), 143.58 (2C), 142.02 (2C), 141.95 (2C), 140.08 (2C), 139.84 (2C), 139.57 (2C), 139.02 (2C), 138.26 (4C), 137.76 (2C), 137.50 (2C), 132.77 (4C, Ph), 132.35 (4C, Ph), 132.16 (2C, Ph), 131.88 (2C, Ph), 130.48 (4C, Ph), 129.84 (4C, Ph), 129.13 (2C, Ph), 128.99 (2C, Ph), 128.00 (2C, Ph), 127.82 (2C, Ph), 127.62 (4C, Ph), 126.98 (4C, Ph), 94.40 (2C, sp³, C_{70} -O), 87.23 (2C, sp³, C_{70} -N), 59.33 (2C, sp³, C_{70} -CH₂), 58.60 (2C, sp³, C_{70} -CH₂), 43.40 (2C, CH₂), 42.57 (2C, CH₂); UV-vis (toluene): λ_{max} 394, 475, 542 and 598 nm.

Quantum Computational Methods. The structure of **1** was optimized with Gaussian09 at the B3LYP/6-31G level, followed by harmonic frequency calculations at the same level to confirm them as the energy minima. The NBO charge distribution and the energy of **1** was obtained at the B3LYP/6-311G(d) level.

Device Fabrication. Patterned ITO substrates (15×15 mm) with a sheet resistance of 6 Ω sq⁻¹ (Kuramoto Co., Ltd.) were used. The substrates were sonicated sequentially in cleaning surfactant (Semi Clean, M-Lo), water, acetone and 2-isopropanol for 15 min each. The substrates were then dried in an oven at 70 °C. Subsequently, ITO substrates were exposed to UV/O₃ for 15 min before depositing PEDOT:PSS dispersed in water (Clevios P VP, Heraeus Precious Metals GmbH & Co.) at a spin speed of 5000 rpm for 30 s.

For P3HT:acceptor photoactive layer deposition, P3HT and the sample mixture of 20 mg mL⁻¹ concentration in *o*-dichlorobenzene (anhydrous, 99%, Sigma-Aldrich) was prepared with a donor:acceptor ratio of 1:1. The solution was stirred for 4 h at 60 °C. The photoactive layer solution was spin coated on the substrates at 2000 rpm for 60 s.

A 1-nm-thick LiF layer was deposited on top of the active layer as an interfacial layer. An approximately 100-nm-thick Al layer was thermally evaporated at a pressure of 2×10^{-4} Pa with a shadow mask, which defined the device active area as 0.09 cm².

Characterization. The *J–V* characteristics were measured by using a software-controlled source meter (2400, Keithley) under dark conditions and 1 sun AM 1.5 G simulated sunlight irradiation (100 mW cm⁻²) with a solar simulator (EMS-35AAA, Ushio Spax Inc.), which was calibrated by using a silicon diode (BS-520BK, Bunkokeiki).

Figure 1. HPLC trace of the crude reaction mixture formed from the reaction of OH^- with C_{70} and PhCN quenched with PhCH₂Br. The crude product was eluted with toluene over a semi-preparative Buckyprep-M column at a flow rate of 4.0 mL/min with the detector wavelength set at 380 nm.

Figure S2. HPLC trace of the crude reaction mixture formed from the reaction of OH^- with 1 and PhCN quenched with PhCH₂Br. The crude product was eluted with toluene over a semi-preparative Buckyprep-M column at a flow rate of 4.0 mL/min with the detector wavelength set at 380 nm.

Figure S3. HPLC purification of the mixture of **2** and **3** over a semi-preparative column 5SL-II eluted with a 60:40 v/v mixture of toluene/hexane at a flow rate of 4.0 mL/min with detector wavelength set at 380 nm.

Figure S4. Positive ESI FT-ICR MS of compound 2.

Figure S5. ¹H NMR spectrum (600 MHz) of compound 2 recorded in o-DCB- d_4 .

Figure S6. ¹³C NMR spectrum (150 MHz) of compound 2 recorded in *o*-DCB-*d*₄.

Figure S7. Positive ESI FT-ICR MS of compound 3.

Figure S8. ¹H NMR spectrum (600 MHz) of compound 3 recorded in o-DCB- d_4 .

Figure S9. ¹³C NMR spectrum (150 MHz) of compound 3 recorded in o-DCB- d_4 .

Figure S10. Packing diagram of 2 viewed along the *bc* plane. The solvent molecules and hydrogen atoms were removed for clarity.

Figure S11. Packing diagram of 2 viewed along the *ac* plane. The solvent molecules and hydrogen atoms were removed for clarity.

Cartesian coordinates, the lowest frequency and total energy of 1 obtained with Gaussian09 at B3LYP/6-31G level.

Geometry of 1			
Charge = 0 Multipl	icity = 1		
0	4.03979700	-1.77171200	0.56655200
Ν	4.03985800	-1.06520400	-1.61407100
С	2.63901100	-1.27245100	0.40240800
С	2.65717600	-0.75055700	-1.15796500
С	2.28632200	0.78395700	-1.44950700
С	1.66131900	1.48534200	-0.23592700
С	1.67428900	1.04787400	1.05549900
С	2.31346200	-0.24790400	1.57502800
С	4.69528600	-1.63400800	-0.66145700
С	6.06450600	-2.14514300	-0.72827400
С	6.78493200	-2.03076700	-1.93197900
Н	6.30585400	-1.56945400	-2.78771900
С	8.09176600	-2.51140500	-2.01006900
Н	8.64388700	-2.42245800	-2.93979900
С	8.69007700	-3.10957500	-0.89216300
Н	9.70672400	-3.48404800	-0.95606200
С	7.97466500	-3.22638900	0.30544200
Н	8.43506700	-3.69129900	1.17091800
С	6.66511100	-2.74707100	0.39120300
Н	6.10308900	-2.83833000	1.31256900
С	3.58356600	1.54833600	-1.94718500
Н	4.33613900	1.44972300	-1.15746400
Н	3.96566500	0.99534800	-2.80789500
С	3.40812000	3.01058000	-2.29889100
С	3.61567400	4.01616400	-1.33912300
Н	3.89296200	3.73692700	-0.32620200
С	3.47484100	5.36794400	-1.67129200
Н	3.64003300	6.12977000	-0.91573000
С	3.12706400	5.73712700	-2.97558900
Н	3.02034400	6.78528600	-3.23632500
С	2.92590700	4.74656400	-3.94420800
Н	2.66352600	5.02443400	-4.96026300
С	3.06792700	3.39647900	-3.60760600
Н	2.91618400	2.63313100	-4.36543200
С	3.63116000	0.04847300	2.40861700
Н	3.98215600	-0.90765000	2.80417800
Н	4.39109800	0.39331400	1.70070600
С	3.49399400	1.05251500	3.53435800

С	3.73191100	2.42020400	3.31530300
Н	4.00361200	2.76156900	2.32019200
С	3.62835400	3.34404200	4.36078300
Н	3.81676200	4.39630200	4.17199300
С	3.28848800	2.91186400	5.64777000
Н	3.21063100	3.62661200	6.46078300
С	3.05744800	1.55119400	5.88207100
Н	2.80086900	1.20649000	6.87889800
С	3.16187400	0.63102700	4.83390100
Н	2.98650500	-0.42416100	5.02347400
С	1.11839100	0.96618500	-2.44716800
С	0.93748400	-2.90525000	1.40712000
С	-1.29673300	-3.24208100	2.07980100
С	-3.92407700	1.78378200	-2.54716800
С	-5.56126500	1.21860900	-0.77900400
С	-3.57731000	-0.40866000	-3.29543500
С	-1.01073300	0.21728200	3.35434700
С	-2.81740500	3.37432900	0.43757700
С	-0.36700100	2.90907600	0.21863900
С	-4.98573900	1.80793800	1.43283100
С	-4.75947500	-1.85846900	1.83595200
С	1.71855300	-1.74492600	-1.84713200
С	-3.03767500	0.92523700	-3.32021300
С	-1.06972700	2.21281500	-2.51283100
С	-1.35337800	-1.30701400	-3.60674800
С	-4.98704400	-0.50319200	2.30944900
С	-2.72559400	-1.54832600	-3.30279700
С	-5.11629000	-1.45202700	-1.67926000
С	-0.30664200	-2.20486000	-3.15353500
С	-5.09414500	-2.20401900	0.53167800
С	1.37504000	-2.82977900	-0.98184700
С	-4.22008700	-2.59799900	-1.60463000
С	0.58065700	-0.03404200	-3.21867100
С	-1.89921500	1.31634000	3.19855900
С	-4.20668100	-3.06179900	-0.24238000
С	-0.81225200	0.02438200	-3.63459500
С	-1.99459400	-3.97385200	-0.57529200
С	-2.67533300	-3.25598600	1.71628500
С	-0.26368500	-3.67081800	1.15379900
С	1.16594400	-0.71724600	2.50172900
С	-3.38968500	2.79544800	-1.75631800
С	-0.35310300	2.43901500	1.60096600
С	-3.86698300	-0.16135200	3.17075500
С	-2.80432300	2.92612100	1.75599900

С	-3.52010800	-2.35308700	2.42076400
С	-1.59868500	3.33425400	-0.35279900
С	0.23448800	-3.62556400	-1.24039000
С	-0.74721900	-2.20042400	2.90427500
С	-2.00818000	-3.51057500	-1.93829300
С	-3.34063700	1.12588200	3.15142300
С	-5.89167600	0.09605900	0.08854100
С	-4.80276600	-0.38101300	-2.50841000
С	-3.03582700	-3.63127100	0.33266100
С	-0.60478000	-4.03808800	-0.14617700
С	0.59803600	2.36656900	-0.67155400
С	-0.62680600	-3.29267200	-2.34428700
С	0.26281400	2.04288300	-2.02547700
С	-2.97205700	-1.30775400	3.24392300
С	-3.91124900	2.13197300	2.26691800
С	-3.93823000	3.05000100	-0.43178300
С	-4.99946300	2.27809300	0.05061900
С	0.31200000	0.38874600	2.84055700
С	0.63705000	-1.98404500	2.51274600
С	-5.03048600	0.98072600	-2.05292900
С	-1.94827600	2.98349400	-1.70320000
С	-5.67416400	-1.21376700	-0.35915800
С	-3.06369200	-2.69179100	-2.42934200
С	-1.56500100	-1.14022400	3.38736900
С	0.89648800	-1.43647100	-2.91148100
С	0.62437400	1.47201400	1.95745300
С	-1.63263700	1.15417600	-3.35695100
С	-1.57180300	2.41921500	2.33526100
С	-5.53907800	0.45911500	1.45448300
С	1.74033800	-2.49763100	0.35950400

Lowest frequency = 17.31 cm^{-1} Total energy = -3608.0482 hartree (1 hartree = 627.51 kcal/mol)

Figure S12. The solar cell device structure used for this manuscript and the corresponding J-V curves under 1 sun (100 mW cm⁻²) and in dark.

Acceptors	<i>V</i> _{OC} (V)	$J_{\rm SC}$ (mA•cm ⁻²)	FF	$R_{\rm S}\left(\Omega ight)$	$R_{ m SH}\left(\Omega ight)$	PCE (%)
Compound 1	0.71	1.96	0.39	3.7×10^{1}	1.2×10^{7}	0.54
Compound 2	0.95	1.69	0.29	1.3×10^{3}	3.0×10^{5}	0.46
Compound 3	0.95	1.69	0.34	1.6 × 10 ³	1.3×10^{7}	0.55

 Table S1. Optimized photovoltaic parameters of the solar cell devices fabricated using the

 organofullerene acceptor compounds (ITO/PEDOT:PSS/P3HT: organofullerenes/LiF/Al)