Supporting Information

Synthesis of benzofurans via acid catalysed transacetalistion/Fries-type $O \rightarrow C$ rearrangement/Michael addition/ring-opening aromatisation cascade of β -pyrones

Siddheshwar K. Bankar, Jopaul Mathew, and S. S. V. Ramasastry*

Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manuali PO, Punjab 140 306, INDIA

E-mail: ramsastry@iisermohali.ac.in

Contents	Page no
General experimental methods	2
General procedure for the optimisation of reaction parameters	3
TLC monitoring of the reaction between 2a and 3a	4
Large scale reactions to verify the scalability of the present method	5
Conversion of phenyl ether 1a to benzofuran 4a	5
Cross-over experiment between 1a and 1l	5
General procedure for the substrate screening	13
Crystal structure of 4l (CCDC 1437901)	26
Crystal structure of 4ag (CCDC 1441109)	30
Determination of enantiomeric excess (ee) of 4j and 4t by chiral HPLC	36
¹ H and ¹³ C-NMR spectra of all new compounds reported in this study	40

General experimental methods: Starting compounds such as furan, furfural, (S)-1-(furan-2yl)ethanol, phenols, and Lewis/Brønsted acids etc., were purchased from Sigma-Aldrich and were used without further purification. For thin layer chromatography (TLC), silica aluminum foils with fluorescent indicator 254 nm (from Aldrich) were used and compounds were visualised by irradiation with UV light and/or by treatment with a solution of *p*-anisaldehyde (23 mL), conc. H₂SO₄ (35 mL), and acetic acid (10 mL) in ethanol (900 mL) followed by heating. Column chromatography was performed using SD Fine silica gel 100-200 mesh (approximately 15–20 g per 1 g of the crude product). Dry THF was obtained by distillation over sodium and stored over sodium wire. IR spectra were recorded on a Perkin-Elmer FT IR spectrometer as thin films or KBr pellet, as indicated, with v_{max} in inverse centimetres. Melting points were recorded on a digital melting point apparatus Stuart SMP30 and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker Biospin Avance III FT-NMR spectrometer. NMR shifts are reported as delta (δ) units in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are utilised to describe peak patterns when appropriate: br=broad, s=single, d=doublet, t=triplet, q=quartet and m=multiplet. Proton chemical shifts are given in δ relative to tetramethylsilane (δ 0.00 ppm) in CDCl₃ or in (CD₃)₂SO (δ 2.50 ppm). Carbon chemical shifts are internally referenced to the deuterated solvent signals in $CDCl_3$ (δ 77.1 ppm) or in (CD₃)₂SO (δ 39.5 ppm). Single crystal X-ray analysis was carried on an XtaLabmini diffractometer. High-resolution mass spectra were recorded on a Waters QTOF mass spectrometer. Optical rotations were recorded on Rudolph APIII/2W.

General procedure for the optimisation of reaction parameters. An oven-dried 5 mL glass vial was charged with acetoxy pyranone **2a** (0.2 mmol, 1 equiv), phenol **3a** (0.22 mmol, 1.1 equiv) and an appropriate solvent (1 mL). A catalyst (10 mol%, 0.1 equiv) was then introduced at 0-5 °C. The reaction mixture was stirred at the same temperature for 30 min, and continued stirring at room temperature until starting material disappeared as monitored by TLC. The reaction mixture was quenched with aqueous sodium bicarbonate solution, diluted with ethyl acetate (1-2 mL) and the layers were separated. The aqueous layer further extracted with ethyl acetate (1-2 mL) The organic layers were combined, dried over anhydrous Na₂SO₄, concentrated, and purified by silica gel column chromatography (hexanes/ethyl acetate) to afford the product **4a** as a pale yellow oil.

1-(Benzofuran-2-yl)-3-hydroxypropan-2-one (4a).

This compound was isolated as pale yellow oil. $R_f = 0.2$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3454, 2923, 1738, 1454, 1365, 1228, 1216. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.30-7.35 (m, 2H), 6.67 (s, 1H), 4.42 (s, 2H), 3.94 (s, 2H), 3.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 204.6, 155.0, 149.2, 128.2, 124.3, 123.0, 120.8, 111.1, 105.9, 67.9, 38.9. HRMS (ESI): m/z calcd for $C_{11}H_{11}O_3$ (M+H)⁺: 191.0708; Found: 191.0711.

An intermediate during the transformation of **2a** to **4a**, the pyran-fused benzofuran **4a**' is isolable. The spectral data is given below.

4,4a-Dihydro-2*H*-pyrano[2,3-*b*]benzofuran-3(9a*H*)-one (4a').

This compound was isolated as pale yellow oil. Following the general procedure, in a separate reaction, 30 mg of **2a** afforded 18 mg of **4a**' (50% yield). $R_f = 0.4$ (EtOAc/Hexane = 3/7). **IR (thin film, neat):** v_{max}/cm^{-1} 2969, 1737, 1494, 1434, 1365, 1228, 1216, 995, 909. ¹H **NMR** (400 MHz, CDCl₃): δ 7.47 (d, J = 3.0 Hz, 1H), 7.35-7.31 (m, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.54 (d, J = 7.3 Hz, 1H), 5.19 (dt, J = 7.4 and 3.6 Hz, 1H), 3.94 (d, J = 18.1 Hz, 1H), 3.55 (d, J = 18.1 Hz, 1H), 3.10-3.05 (m, 2H). ¹³C **NMR** (100 MHz,

CDCl₃): δ 207, 160.6, 131.6, 126.9, 122.6, 121.8, 110.2, 79.2, 75.8, 68.7, 39.7. **HRMS (ESI)**: *m/z* calcd for C₁₁H₉O₃ (M–H)⁺: 189.0552; Found: 189.0547.

TLC monitoring of the reaction between 2a and 3a.

The reaction of 2a and 3a in the presence of 10 mol% TMSOTf was monitored by TLC. It can be observed from the above TLCs that 2a transforms initially to the non-polar phenyl ether 1a (TLC-1) [Note: R_f of 1a and 3a are same]. Phenyl ether 1a then slowly transforms to the pyran-fused benzofuran 4a' and 4a' converts to the benzofuran derivative 4a eventually (TLC-5), leaving behind little excess of the phenol 3a employed in the reaction (TLCs-4&5).

While **1a** is reasonably stable upon isolation; isolated samples of the pyran-fused benzofuran **4a**' were found to convert to benzofuran **4a** even at room temperature over a period of time.

Large scale reactions to verify the scalability of the present method. Two 'gram' scale reactions were carried out to demonstrate the scalability and practicality of the cascade process. Reactions performed on 0.5 g (3.2 mmol) and 1 g (6.4 mmol) scale of 2a under the optimised conditions resulted in the formation of 4a consistently in about 70% yield indicating the robustness of the present method.

Conversion of phenyl ether 1a to benzofuran 4a. The intermediate phenyl ether **1a** during the transformation of **2a** to **4a** was isolated and subjected to the optimised conditions. Benzofuran **4a** was obtained in 75%.

Cross-over experiment between 1a and 1l. In order to validate the intermolecular nature of the Fries-type $O \rightarrow C$ rearrangement step during the conversion of **2a** to **4a**, a cross-over experiment between the phenyl ethers **1a** and **1l** was planned. Accordingly, a 1:1 mixture of the phenyl ethers **1a** and **1l** was subjected to the optimised conditions. Crude reaction mixture and the fractions obtained after column chromatography purification were subjected to ¹H-NMR analysis, which gave conclusive information regarding the intermolecular nature of the Fries-type $O \rightarrow C$ rearrangement step.

¹H-NMR spectrum: Purified fraction-2

¹H-NMR spectrum: Crude reaction mixture

¹H-NMR spectrum of the crude reaction mixture (Zoomed region from 2.70 to 0.70 ppm)

¹H-NMR spectra of the crude reaction mixture (Zoomed region between 4.47 to 4.00 ppm)

General procedure for the substrate screening. An oven-dried 5 mL glass vial was charged with the acetoxy pyranones 2 (0.2 mmol, 1 equiv), phenols 3 (0.22 mmol, 1.1 equiv), 1,2-dichloroethane (1 mL) and trimethylsilyl trifluoromethanesulfonate (TMSOTf, 10 mol%, 0.1 equiv) was added at 0-5 $^{\circ}$ C. Then the reaction mixture was stirred at same temperature for 30 min, and continued at room temperature until starting material disappeared as monitored by TLC. The reaction mixture was quenched with aqueous sodium bicarbonate solution, diluted with ethyl acetate (1-2 mL) and the layers were separated. The aqueous layer further extracted with ethyl acetate (1-2 mL) The organic layers were combined, dried over anhydrous Na₂SO₄, concentrated, and purified by silica gel column chromatography (hexanes/ethyl acetate) to afford the respective product (4).

1-Hydroxy-3-(5-methylbenzofuran-2-yl)propan-2-one (4b).

This compound was isolated as colourless solid. Following the general procedure, 30 mg of **2a** afforded 33 mg of **4b** (85% yield). M.P = 103-104 °C. $R_f = 0.2$ (Hexane/EtOAc = 7/3). **IR** (thin film, neat): v_{max} /cm⁻¹ 3352, 2923, 2855, 1723, 1471, 1261, 1050, 800. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.34 (m, 2H), 7.11-7.09 (m, 1H), 6.59 (q, *J* = 1.0 Hz, 1H), 4.41 (s, 2H), 3.92 (s, 2H), 3.02 (s, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ , 204.7, 153.4, 149.3, 132.5, 128.3, 125.5, 120.7, 110.5, 105.7, 67.9, 39.0, 21.5. HRMS (ESI): *m/z* calcd for $C_{12}H_{11}O_3$ (M–H)⁺: 203.0708; Found: 203.0709.

1-Hydroxy-3-(5-phenylbenzofuran-2-yl)propan-2-one (4c).

This compound was isolated as colourless solid. Following the general procedure, 30 mg of **2a** afforded 41 mg of **4c** (80% yield). M.P = 97-99 °C. $R_f = 0.2$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3453, 2924, 2855, 1737, 1460, 1365, 1216, 764. ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.74 (m, 1H), 7.64-7.61 (m, 2H), 7.53-7.50 (m, 2H), 7.49-7.47 (m, 2H), 7.39-7.37 (m, 1H), 6.72 (d, J = 0.5 Hz, 1H), 4.44 (s, 2H), 3.96 (s, 2H), 3.10 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 204.5, 154.6, 150.0, 141.4, 136.8, 128.8, 128.7 (2C), 127.4 (2C), 126.9,

124.0, 119.4, 111.2, 106.2, 68.0, 38.9. HRMS (ESI): m/z calcd for $C_{17}H_{13}O_3$ (M–H)⁺: 265.0865; Found: 265.0858.

1-Hydroxy-3-(5-methoxybenzofuran-2-yl)propan-2-one (4d).

This compound was isolated as pale yellow liquid. Following the general procedure, 30 mg of **2a** afforded 32 mg of **4d** (75% yield). $R_f = 0.2$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3424, 2924, 1730, 1476, 1206, 1030. ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 6.90 (dd, J = 8.8 and 2.4 Hz, 1H), 6.60 (d, J = 0.7 Hz, 1H), 4.41 (s, 2H), 3.91 (s, 2H), 3.86 (s, 3H), 3.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 204.6, 156.0, 150.05, 150.02, 128.8, 112.9, 112.5, 106.1, 103.3, 67.9, 55.9, 39.0 HRMS (ESI): m/z calcd for C₁₂H₁₃O₄ (M+H)⁺: 221.0814; Found: 221.0818

3-Hydroxy-1-(5-methylbenzofuran-2-yl)heptan-2-one (4e).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **2c** afforded 29 mg of **4e** (78%). $R_f = 0.5$ (EtOAc/Hexane = 1/4). IR (thin film, neat): v_{max}/cm^{-1} 3429, 2925, 2856, 1721, 1515, 1472, 1267, 1082, 822. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.32 (m, 2H), 7.09 (dd, J = 8.6 and 1.2 Hz, 1H), 6.58 (d, J = 0.7 Hz, 1H), 4.37-4.35 (m, 1H), 3.98 (s, 2H), 3.33 (d, J = 4.6 Hz, 1H), 2.45 (s, 3H), 1.94-1.90 (m, 1H), 1.68-1.63 (m, 2H) 1.47-1.40 (m, 3H) 0.95-0.91 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.2, 153.3, 149.8, 132.3, 128.4, 125.4, 120.6, 110.5, 105.5, 76.2, 38.2, 33.2, 26.8, 22.4, 21.3, 13.9. HRMS (ESI): m/z calcd for C₁₆H₂₁O₃ (M+H)⁺: 261.1491; Found: 261.1496.

1-Hydroxy-3-(5-methylbenzofuran-2-yl)-1-phenylpropan-2-one (4f).

This compound was isolated as Pale yellow oil. Following the general procedure, 30 mg of 2d afforded 29 mg of 4f (80% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat):

 v_{max} /cm⁻¹ 3467, 2923, 2853, 1724, 1452, 1261, 1044, 800. ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.36 (m, 5H), 7.32-7.30 (m, 2H), 7.09 (dd, J = 8.4 and 1.6 Hz, 1H), 6.44 (d, J = 0.7 Hz, 1H) 5.31 (s, 1H), 4.26 (s, 1H), 3.92-3.75 (m, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.3, 153.3, 149.5, 137.2, 132.3, 129.1, 129.0, 128.43, 128.41, 127.6, 125.3, 120.6, 110.5, 105.6, 79.4, 38.0, 21.3. HRMS (ESI): *m*/*z* calcd for C₁₈H₁₅O₃ (M–H)⁺: 279.1021; Found: 279.1025.

(S)-1-(Benzofuran-2-yl)-3-hydroxybutan-2-one (4g).

This compound was isolated as yellow oil. Following the general procedure, 30 mg of **2e** afforded 27 mg of **4g** (75% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3435, 2925, 1723, 1455, 1614, 1252, 952, 795. ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.54 (m, 1H), 7.47-7.45 (m, 1H), 7.31-7.22 (m, 2H), 6.67-6.65 (m, 1H), 4.46 (q, *J* = 7.1 Hz, 1H), 4.02 (dd, *J* = 2.2 and 0.7 Hz, 2H), 3.43 (s, 1H), 1.49 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 154.9, 149.7, 128.3, 124.2, 122.9, 120.8, 111.0, 105.8, 72.5, 37.9, 19.7. HRMS (ESI): *m/z* calcd for C₁₂H₁₁O₃ (M–H)⁺: 203.0708; Found: 203.0702. **Optical rotation:** [α]_D²³ +9.239 (*c* 0.02, CHCl₃).

(S)-3-Hydroxy-1-(5-methylbenzofuran-2-yl)butan-2-one (4h).

This compound was isolated as yellow oil. Following the general procedure, 30 mg of **2e** afforded 31 mg of **4h** (80% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3445, 2925, 1723, 1474, 1264, 1053, 952. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.32 (m, 2H),7.09 (dd, J = 8.3 and 1.2 Hz, 1H), 6.58 (d, J = 0.7 Hz, 1H), 4.44 (q, J = 7.1 Hz, 1H), 3.99 (s, 2H), 2.45 (s, 3H), 3.41 (s, 1H), 1.48 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.4, 153.3, 149.8, 132.3, 128.4, 125.4, 120.6, 110.5, 105.5, 72.5, 38.0, 21.3, 19.7. HRMS (ESI): m/z calcd for C₁₃H₁₃O₃ (M–H)⁺: 217.0865; Found: 217.0869. Optical rotation: $[\alpha]_D^{23}$ +7.048 (*c* 0.06, CHCl₃).

(S)-3-Hydroxy-1-(5-phenylbenzofuran-2-yl)butan-2-one (4i).

This compound was isolated as Pale brown oil. Following the general procedure, 30 mg of **2e** afforded 36 mg of **4i** (72% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3441, 2935, 1724, 1602, 1464, 1233, 796, 763. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (t, *J* = 1.2 Hz, 1H), 7.64-7.61 (m, 2H), 7.52-7.45 (m, 5H), 6.72 (s, 1H), 4.47 (q, *J* = 7.1 Hz, 1H), 4.04 (d, *J* = 2.2 Hz, 2H), 3.39 (s, 1H), 1.51 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.2, 154.5, 150.5, 141.5, 136.7, 128.9, 128.7 (2C), 127.4 (2C), 126.9, 123.9, 119.3, 111.2, 106.0, 72.5, 37.9, 19.7. HRMS (ESI): *m*/*z* calcd for C₁₈H₁₅O₃ (M–H)⁺: 279.1021; Found: 279.1014. **Optical rotation:** [α]_D²³ –5.993 (*c* 0.03, CHCl₃).

(S)-3-Hydroxy-1-(5-methoxybenzofuran-2-yl)butan-2-one (4j).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **2e** afforded 29 mg of **4j** (70% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3456, 1724, 1477, 1029, 1206, 795. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 2.4 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.89 (dd, J = 8.9 and 2.6 Hz, 1H), 6.60 (d, J = 0.7 Hz, 1H), 4.44 (q, J = 7.1 Hz, 1H), 3.99 (d, J = 1.2 Hz, 2H), 3.85 (s, 3H), 3.41 (s, 1H), 1.48 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 156.0, 150.5, 149.9, 128.9, 112.8, 111.5, 105.9, 103.3, 72.5, 55.9, 38.0, 19.7. HRMS (ESI): m/z calcd for C₁₃H₁₃O₄ (M–H)⁺: 233.0814; Found: 233.0815. Optical rotation: $[\alpha]_D^{23}$ +5.992 (c 0.08, CHCl₃) for a sample with *ee* 98%. The enantiomeric excess was determined by HPLC analysis using Daicel Chiralpak AS column (90:10 *n*-Hexane/2-Propanol, 1.0 mL/min, 254 nm, $\tau_{major} = 78.8$ min, $\tau_{minor} = 36.1$ min).

1-(Benzofuran-2-yl)-3-hydroxy-3-methylbutan-2-one (4k).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **2f** afforded 25 mg of **4k** (70% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3446, 2926, 1719, 1454, 1366, 1194, 1051, 1252, 794. ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.54 (m, 1H), 7.47-7.45 (m, 1H), 7.28-7.25 (m, 2H), 6.66 (q, *J* = 1.0 Hz, 1H), 4.11 (d, *J* = 1.0 Hz, 2H), 3.48 (s, 1H), 1.51(s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 154.8, 150.4, 128.4, 124.0, 122.8, 120.7, 111.0, 105.6, 76.9, 35.9, 26.5 (2CH₃). HRMS (ESI): *m/z* calcd for C₁₃H₁₃O₃ (M–H)⁺: 217.0865; Found: 217.0860.

3-Hydroxy-3-methyl-1-(5-methylbenzofuran-2-yl)butan-2-one (4l).

This compound was isolated as pale yellow solid. Following the general procedure, 30 mg of **2f** afforded 28 mg of **4l** (74% yield). M.P = 63-68 °C. $R_f = 0.4$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3440, 2925, 2855, 1719, 1474, 1377, 1265, 1204, 1051, 952, 798. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.33 (m, 2H), 7.09 (d, J = 0.5 Hz, 1H), 6.58 (q, J = 0.8 Hz, 1H), 40.8 (d, J = 0.8 Hz, 2H), 3.47 (s, 1H), 2.45 (s, 3H), 1.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 153.2, 150.5, 132.2, 128.5, 125.2, 120.6, 110.5, 105.3, 76.8, 36.0, 26.5, 21.3 (2C). HRMS (ESI): *m/z* calcd for C₁₄H₁₅O₂ (M–OH)⁺: 215.1072; Found: 215.1064.

3-Hydroxy-1-(5-methoxybenzofuran-2-yl)-3-methylbutan-2-one (4m).

This compound was isolated as colourless oil. Following the general procedure, 30 mg of **2f** afforded 28 mg of **4m** (70% yield). $R_f = 0.4$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3451, 2927, 1719, 1612, 1476, 1206, 1168, 1031, 954,798, 842. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.8 Hz, 1H), 7.01 (d, *J* = 2.5 Hz, 1H), 6.68 (dd, *J* = 8.9 and 2.6 Hz, 1H), 6.60 (s, 1H), 4.08 (s, 2H), 3.86 (s, 3H), 3.45 (s, 1H), 1.49 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 155.9, 151.2, 149.8, 129.0, 112.6, 111.4, 105.8, 103.3, 76.8, 55.9, 36.0, 26.5 (2C). HRMS (ESI): *m/z* calcd for C₁₄H₁₅O₄ (M–H)⁺: 247.0971; Found: 247.0975.

2-(Benzofuran-2-yl)-1-(1-hydroxycyclohexyl)ethanone (4n).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **2h** afforded 21 mg of **4n** (60% yield). $R_f = 0.4$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max} /cm⁻¹ 3440, 2933, 2857, 1713, 1595, 1453, 1251, 986, 955. ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 1H), 7.46-7.44 (m, 1H), 725-7.24 (m, 2H), 6.64 (d, *J* = 0.8 Hz, 1H), 4.13 (d, *J* = 0.5 Hz, 2H), 3.15 (s, 1H), 1.86-1.69 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.3, 154.8, 150.8, 128.5, 123.9, 122.7, 120.7, 111.0, 105.5, 78.6, 36.1, 33.7 (2C), 25.1, 20.9 (2C). HRMS (ESI): *m/z* calcd for C₁₆H₁₇O₃ (M–H)⁺: 257.1178; Found: 257.1170.

1-(1-Hydroxycyclohexyl)-2-(5-methylbenzofuran-2-yl)ethanone (40).

This compound was isolated as pale brown oil. Following the general procedure, 30 mg of **2h** afforded 27.6 mg of **4o** (70% yield). $R_f = 0.3$ (Hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3451, 2924, 1704, 1204, 1174, 800. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 2H), 7.07 (d, *J* = 8.6 Hz, 1H), 6.56 (s, 1H), 4.10 (s, 2H), 3.20 (s, 1H), 2.45 (s, 3H), 1.84-1.59 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.4, 153.2, 150.8, 132.1, 128.6, 125.1, 120.5, 110.4, 105.2, 78.6, 36.2, 33.7 (2C), 25.1, 21.3, 20.9 (2C). HRMS (ESI): *m/z* calcd for C₁₇H₁₉O₃ (M–H)⁺: 271.1334; Found: 271.1322.

1-(1-Hydroxycyclohexyl)-2-(5-methoxybenzofuran-2-yl)ethanone (4p).

This compound was isolated as pale brown solid Following the general procedure, 30 mg of **2h** afforded 26 mg of **4p** (66% yield). M.P = 93-95 °C. $R_f = 0.4$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3409, 2927, 1714, 1510, 1206, 1034, 827. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 2.7 Hz, 1H), 6.86 (dd, J = 8.90 and 2.60 Hz, 1H), 6.57 (s, 1H), 4.09 (s, 2H), 3.85 (s, 3H), 3.17 (s, 1H), 1.79-1.59 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.4, 155.9, 151.6, 149.8, 129.1, 112.4, 111.4, 105.6, 103.3, 78.6, 55.9, 36.2, 33.6 (2C), 25.1, 20.9 (2C). HRMS (ESI): m/z calcd for C₁₇H₁₉O₄ (M–H)⁺: 287.1284; Found: 287.1278.

1-(1-Hydroxycycloheptyl)-2-(5-methylbenzofuran-2-yl)ethanone (4q).

This compound was isolated as light yellow solid. Following the general procedure, 30 mg of **2i** afforded 27 mg of **4q** (75% yield). M.P = 92-94 °C. $R_f = 0.5$ (Hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 3430, 2927, 1713, 1511, 1476, 1205, 1034, 828. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.32 (m, 2H), 7.09-7.06 (m, 1H), 6.56 (d, *J* = 0.7 Hz, 1H), 4.09 (d, *J* = 0.7 Hz, 2H), 3.26 (s, 1H), 2.45 (s, 3H), 2.03-1.97 (m, 2H), 1.85-1.68 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.5, 153.2, 150.9, 132.1, 125.1, 120.5, 150.0, 110.4, 105.2, 81.5, 37.6 (2C), 36.1, 29.2 (2C) 22.9 (2C), 21.3. HRMS (ESI): *m*/*z* calcd for C₁₈H₂₃O₃ (M+H)⁺: 287.1647; Found: 287.1639.

1-(1-Hydroxycycloheptyl)-2-(5-methoxybenzofuran-2-yl)ethanone (4r).

This compound was isolated as pale yellow solid. Following the general procedure, 30 mg of **2i** afforded 27.5 mg of **4r** (76% yield). M.P = 102-104 °C. $R_f = 0.5$ (Hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3430, 2927, 1713, 1511, 1476, 1205, 1034, 828. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 8.8 Hz, 1H), 7.00 (d, *J* = 2.7 Hz, 1H), 6.86 (dd, *J* = 8.9 and 2.6 Hz, 1H), 6.57 (s, 1H), 4.08 (s, 2H), 3.84 (s, 3H), 3.23 (s, 1H), 2.01-1.96 (m, 2H), 1.81-1.60 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.4, 155.9, 151.8, 149.8, 129.1, 112.4, 111.4, 105.6, 103.3, 81.5, 55.9, 37.6 (2C), 36.1, 29.2 (2C) 22.8 (2C). HRMS (ESI): *m/z* calcd for C₁₈H₂₁O₄ (M–H)⁺: 301.1440; Found: 301.1447.

1-Hydroxy-3-(naphtho[2,1-b]furan-2-yl)propan-2-one (4s).

This compound was isolated as light brown solid. Following the general procedure, 30 mg of **2a** afforded 42 mg of **4s** (90% yield). M.P = 97-99 °C. $R_f = 0.2$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3410, 2892, 1727, 1394, 1155, 1040, 944, 809. ¹H NMR (400

MHz, $(CD_3)_2SO$): δ 8.24 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.77 (q, J = 8.90 Hz, 2H), 7.61 (td, J = 7.60 Hz, 1H), 7.53-7.51 (m, 1H), 7.36 (s, 1H), 4.28 (s, 2H), 4.16 (s, 2H), 3.50 (s, 1H). ¹³C NMR (100 MHz, $(CD_3)_2SO$): δ 206.6, 152.0, 151.8, 130.3, 129.0, 127.4, 126.8, 125.0, 124.9, 124.0, 123.9, 112.6, 105.0, 67.9, 38.5. HRMS (ESI): m/z calcd for $C_{15}H_{13}O_3$ (M+H)⁺: 241.0865; Found: 241.0869.

(S)-3-Hydroxy-1-(naphtho[2,1-b]furan-2-yl)butan-2-one (4t).

This compound was isolated as Pale yellow semisolid. Following the general procedure, 30 mg of **2e** afforded 41 mg of **4t** (90% yield). $R_f = 0.2$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3434, 1721, 1577, 1383, 951, 807. ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.10 (m, 1H), 7.97-7.95 (m, 1H), 7.74-7.72 (m, 1H), 7.64-7.60 (m, 2H), 7.51 (ddd, J = 8.2, 6.9, and 1.3 Hz, 1H), 7.154-7.150 (m, 1H), 4.52-4.45 (m, 1H), 4.10 (dd, J = 2.8 and 0.8 Hz, 2H), 3.46 (s, 1H), 1.51-149 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 207.5, 152.4, 149.0, 130.3, 128.7, 127.4, 126.3, 125.1, 124.6, 123.6, 123.4, 112.1, 104.9, 72.5, 38.0, 19.7. HRMS (ESI): *m/z* calcd for C₁₆H₁₃O₃ (M–H)⁺: 253.0865; Found: 253.0870. **Optical rotation:** $[\alpha]_D^{23}$ +6.327 (*c* 0.06, CHCl₃) for a sample with *ee* 93%. The enantiomeric excess was determined by HPLC analysis using Daicel Chiralpak AS column (90:10 *n*-Hexane/2-Propanol, 1.0 mL/min, 254 nm, $\tau_{major} = 63.7$ min, $\tau_{minor} = 21.8$ min).

3-Hydroxy-3-methyl-1-(naphtho[2,1-b]furan-2-yl)butan-2-one (4u).

This compound was isolated as light yellow solid. Following the general procedure, 30 mg of **2f** afforded 40 mg of **4u** (92% yield). M.P = 89-91 °C. $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3500, 2922, 1713, 1463, 1385, 1191, 952, 802. ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.10 (m, 1H), 7.96 (d, *J* = 8 Hz, 1H), 7.73-7.64 (m, 1H), 7.62-7.59 (m, 2H), 7.58-7.50 (m, 1H), 7.16 (d, *J* = 0.8 Hz, 1H), 4.20 (s, 2H), 3.49 (s, 1H), 1.53 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 209.2, 152.3, 149.6, 130.3, 128.7, 127.4, 126.2, 124.9, 124.5, 123.6, 123.4, 112.1, 104.7, 76.9, 36.1, 26.5 (2C). HRMS (ESI): *m/z* calcd for C₁₇H₁₅O₃ (M–H)⁺: 267.1021; Found: 267.1011.

1-Hydroxy-3-(naphtho[2,1-b]furan-2-yl)-1,1-diphenylpropan-2-one (4v).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **2j** afforded 31 mg of **4v** (80% yield). $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3500, 2922, 1713, 1463, 1385, 1191, 952, 802. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.74-7.70 (m, 1H), 7.63-7.57 (m, 2H), 7.51-7.44 (m, 11H), 6.99 (s, 1H), 4.56 (s, 1H), 4.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 206.1, 152.3, 149.6, 141.0, 130.2, 128.7, 128.5, 128.1, 127.5, 126.2, 124.8, 124.4, 123.6, 123.4, 112.2, 104.6, 86.0, 38.4. HRMS (ESI): *m/z* calcd for C₂₇H₂₀NaO₃ (M+Na)⁺: 415.1310; Found: 415.1299.

1-(1-Hydroxycyclohexyl)-2-(naphtho[2,1-*b*]furan-2-yl)ethanone (4w).

This compound was isolated as white solid. Following the general procedure, 30 mg of **2h** afforded 37 mg of **4w** (90% yield). M.P = 125-127 °C. $R_f = 0.5$ (Hexane/EtOAc = 1/4). IR (thin film, neat): v_{max} /cm⁻¹ 3489, 2941, 1696, 1379, 1150, 993, 799. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.73-7.70 (m, 1H), 7.64-7.57 (m, 2H), 7.52-7.48 (m, 1H), 7.15 (d, J = 0.5 Hz, 1H), 4.23 (d, J = 6.5 Hz, 2H) 3.17 (s, 1H) 1.89-1.70 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.5, 152.3, 150.0, 130.2, 128.7, 127.4, 126.2, 124.8, 124.4, 123.7, 123.4, 112.1, 104.6, 78.7, 36.3, 33.7 (2C), 25.1, 21.0 (2C). HRMS (ESI): m/z calcd for C₂₀H₁₉O₃ (M–H)⁺: 307.1334; Found: 307.1342

1-(1-Hydroxycycloheptyl)-2-(naphtho[2,1-*b*]furan-2-yl)ethanone (4x).

This compound was isolated as light brown solid. Following the general procedure, 30 mg of **2i** afforded 40 mg of **4x** (92% yield). M.P = 110-112 °C. $R_f = 0.5$ (Hexane/EtOAc = 4/1). IR

(thin film, neat): v_{max}/cm^{-1} 3405, 2925, 1711, 1629, 1602, 1385, 1211, 1046, 846. ¹H NMR (400 MHz, CDCl₃): δ 8.13-8.10 (m, 1H), 7.97-7.94 (m, 1H), 7.73-7.71 (m, 1H), 7.64-7.57 (m, 2H), 7.52-7.48 (m, 1H), 7.15 (d, *J* = 0.8 Hz, 1H), 4.21 (d, *J* = 0.8 Hz, 2H), 3.23 (s, 1H), 2.07-2.01 (m, 2H) 1.88-1.68 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 209.5, 152.3, 150.1, 130.2, 128.7, 127.5, 126.2, 124.8, 124.4, 123.7, 123.4, 112.1, 104.6, 81.5, 37.7 (2C), 36.2, 29.2 (2C), 22.9 (2C). HRMS (ESI): *m/z* calcd for C₂₁H₂₁O₃ (M–H)⁺: 321.1491; Found: 321.1501.

8-Fluoro-4,4a-dihydro-2*H*-pyrano[3,2-*b*]benzofuran-3(9b*H*)-one (4y).

This compound was isolated as colorless oil. Following the general procedure, 30 mg of **2a** afforded 28 mg of **4y** (70% yield). $R_f = 0.5$ (EtOAc/Hexane = 3/7). **IR (thin film, neat):** v_{max}/cm^{-1} 1738, 1510, 1484, 1221, 1194, 794, 835. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (dd, *J* = 7.5 and 2.8 Hz, 1H), 7.04-7.03 (m, 1H), 6.80-6.77 (m, 1H), 5.52 (d, *J* = 7.3 Hz, 1H), 5.24-5.22 (m, 1H), 3.97 (d, *J* = 18.1 Hz, 1H), 3.56 (d, *J* = 18.1 Hz, 1H), 3.05 (dd, *J* = 6.0 and 3.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 157.9 (d, *J* = 238.2 Hz, 1C), 156.6 (d, *J* = 1.2 Hz, 1C), 123.7 (d, *J* = 8.1 Hz, 1C), 118.5 (d, *J* = 24.4 Hz, 1C), 113.3 (d, *J* = 24.05 Hz, 1C), 110.8 (d, *J* = 8.2 Hz, 1C), 79.9, 75.8 (d, *J* = 1.5 Hz, 1C), 68.7, 39.6. HRMS (ESI): *m/z* calcd for C₁₁H₁₀FO₃ (M+H)⁺: 209.0614; Found: 209.0608.

8-Chloro-4,4a-dihydro-2*H*-pyrano[3,2-*b*]benzofuran-3(9b*H*)-one (4z).

This compound was isolated as colourless oil. Following the general procedure, 30 mg of **2a** afforded 34 mg of **4z** (78 % yield. $R_f = 0.5$ (EtOAc/Hexane = 3/7). **IR (thin film, neat):** v_{max}/cm^{-1} 1731, 1587, 1489, 1470, 1233, 1087, 823, 605. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 2.2 Hz, 1H), 7.31-7.27 (m, 1H), 6.80-6.76 (m, 1H), 5.23 (dt, J = 7.3 and 3.7 Hz, 1H), 3.99-3.64 (m, 1H), 3.58-3.54 (m, 1H), 3.10-2.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 207.4, 159.2, 131.6, 129.4, 126.9, 116.6, 111.4, 80.0, 75.5, 68.7, 39.5. HRMS (ESI): m/z calcd for C₁₁H₈ClO₃ (M–H)⁺: 223.0162; Found: 223.0163.

8-Bromo-4,4a-dihydro-2H-pyrano[3,2-b]benzofuran-3(9bH)-one (4aa).

This compound was isolated as a pale brown oil. Following the general procedure, 30 mg of **2a** afforded 39 mg of **4aa** (75 % yield). $R_f = 0.5$ (EtOAc/Hexane = 3/7). **IR (thin film, neat):** v_{max}/cm^{-1} 1731, 1587, 1489, 1470, 1233, 1087, 823, 605. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 2.2 Hz, 1H), 7.43 (dd, J = 8.6 and 2.2 Hz, 1H), 6.76-6.73 (m, 1H), 5.52 (d, J = 7.3 Hz, 1H), 5.23 (dt, J = 7.3 and 3.7 Hz, 1H), 3.98 (d, J = 18.1 Hz, 1H), 3.26 (d, J = 18.1 Hz, 1H), 3.10-2.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 207.1, 183.6, 134.5, 129.8, 113.5, 111.9, 109.7, 79.9, 75.4, 68.7, 39.5. HRMS (ESI): m/z calcd for C₁₁H₈BrO₃ (M–H)⁺: 266.9657; Found: 266.9649.

2-(3-Hydroxy-2-oxopropyl)-4*H*-furo[3,2-*c*]chromen-4-one (4ab).

This compound was isolated as pale yellow liquid. Following the general procedure, 30 mg of **2a** afforded 35 mg of **4ab** (70% yield). $R_f = 0.2$ (Hexane/EtOAc = 7/3). **IR** (thin film, neat): v_{max}/cm^{-1} 3427, 2929, 1733, 1632, 1059, 897. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 7.8 and 1.5 Hz, 1H), 7.56-7.52 (m, 1H), 7.46-7.44 (m, 1H), 7.36 (td, J = 7.5 and 1.1 Hz, 1H), 6.89 (s, 1H), 4.45 (s, 2H), 4.01 (s, 2H) 3.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 203.6. 158.0, 157.7, 152.5, 149.8, 130.9, 124.6, 120.8, 117.4, 112.4, 111.5, 107.6, 68.1, 38.0. HRMS (ESI): m/z calcd for C₁₄H₉O₅ (M–H)⁺: 257.0450; Found: 257.0451.

2-(3-Hydroxy-3-methyl-2-oxobutyl)-4*H*-furo[3,2-*c*]chromen-4-one (4ac).

This compound was isolated as pale yellow solid. Following the general procedure, 30 mg of **2f** afforded 37 mg of **4ac** (80% yield). M.P = 132-135 °C. $R_f = 0.3$ (Hexane/EtOAc = 7/3). IR

(thin film, neat): v_{max}/cm^{-1} 3428, 2934, 2856, 1732, 1461, 1062, 974, 795. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 7.8 and 1.5 Hz, 1H), 7.52-7.43 (m, 2H), 7.36-7.32 (m, 1H), 6.87 (s, 1H), 4.19 (d, J = 0.7 Hz, 2H), 3.26 (s, 1H), 1.52 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 208.3, 158.2, 157.4, 152.4, 151.2, 130.6, 124.5, 120.8, 117.3, 112.6, 112.5, 107.3, 76.9, 35.4, 26.6 (2C). HRMS (ESI): m/z calcd for C₁₆H₁₄NaO₅ (M+Na)⁺: 309.0739; Found: 309.0729.

2-(2-(1-Hydroxycyclohexyl)-2-oxoethyl)-4H-furo[3,2-c]chromen-4-one (4ad).

This compound was isolated as Pale yellow solid. Following the general procedure, 30 mg of **2h** afforded 28 mg of **4ad** (63% yield). M.P = 131-133 °C. $R_f = 0.5$ (Hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻ 3457, 2934, 1734, 1632, 1448, 1164, 1100, 947. ¹H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 7.8 and 1.5Hz, 1H), 7.54-7.50 (m, 1H), 7.45-7.43 (m, 1H), 7.36-7.32 (m, 1H), 6.84 (s, 1H), 4.20 (s, 2H), 3.20 (s, 1H), 1.86-1.65 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 208.7, 158.2, 157.3, 152.4, 151.6, 130.6, 124.5, 120.8, 117.3, 112.6, 111.5, 107.1, 78.7, 35.7, 33.7 (2C), 25.1, 20.9 (2C). HRMS (ESI): *m*/*z* calcd for C₁₉H₁₉O₅ (M+H)⁺: 327.1232; Found: 327.1222.

3-Bromo-3*H*,3'*H*-spiro[benzofuran-2,2'-furan]-4'(5'*H*)-one (4ae).

This compound was isolated as pale yellow oil. Following the general procedure, 30 mg of **4a** afforded 31 mg of **4ae** (73% yield. $R_f = 0.6$ (EtOAc/Hexane = 2/8). **IR (thin film, neat**): v_{max}/cm^{-1} 2918, 1770, 1594, 1467, 1322, 1284, 1166, 1034, 906, 880, 751, 672. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 8.9 Hz, 1H), 7.08-7.05 (m, 1H), 6.93-6.90 (m, 1H), 5.49 (s, 1H), 4.34-4.33 (m, 2H), 3.29-3.24 (m, 1H), 3.04 (d, J = 18.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 209.5, 157.3, 134.2, 131.2, 126.0, 122.7, 117.5, 111.1, 72.5, 50.6, 46.2. **HRMS (ESI)**: m/z calcd for C₁₁H₁₀BrO₃ (M+H)⁺: 268.9813; Found: 268.9802.

3-Bromo-5-methyl-3H,3'H-spiro[benzofuran-2,2'-furan]-4'(5'H)-one (4af).

This compound was isolated as yellow oil. Following the general procedure, 30 mg of **4b** afforded 32 mg of **4af** (76% yield. $R_f = 0.6$ (EtOAc/Hexane = 2/8). **IR (thin film, neat):** v_{max}/cm^{-1} 2918, 1771, 1491, 1307, 1277, 1036, 909, 795. ¹H NMR (400 MHz, CDCl₃): δ 7.28 7.26 (m, 1H), 7.13 (t, *J* = 8.9 Hz, 1H), 6.80 (dd, *J* = 8.2 and 4.3 Hz, 1H), 5.39 (m, 1H), 4.37-4.25 (m, 2H), 3.27-2.91 (m, 2H), 2.35 (d, *J* = 3.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 209.6, 155.5, 132.0, 126.2, 118.0, 110.7, 72.4, 61.8, 50.9, 46.2, 29.7, 20.8. HRMS (ESI): *m/z* calcd for C₁₂H₁₀BrO₃ (M–H)⁺: 280.9814; Found: 280.9802.

4ag (dr = 7:1)

3-Bromo-5,5',5'-trimethyl-3H,3'H-spiro[benzofuran-2,2'-furan]-4'(5'H)-one (4ag).

This compound was isolated as white solid. Following the general procedure, 30 mg of 41 afforded 32 mg of 4ag (80% yield.) M.P = 103-104 °C R_f = 0.6 (EtOAc/Hexane = 1/9). IR (thin film, neat): v_{max} /cm⁻¹ 2923, 1761, 1489, 1304, 1108, 839, 814. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.25 (m, 1H), 7.11-7.02 (m, 1H), 6.80-6.77 (m, 1H), 5.39 (s, 1H), 3.41-3.36 (m, 1H), 3.11-3.06 (m, 1H), 2.34 (s, 3H), 1.45 (s, 3H) 1.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 213.5, 155.3, 132.0, 131.8, 126.8, 126.1, 115.0, 110.6, 85.3, 52.3, 45.3, 25.1, 25.0, 20.8. HRMS (ESI): *m/z* calcd for C₁₄H₁₄BrO₃ (M-H)⁺: 309.0127; Found: 309.0138.

Crystal structure of 4l (CCDC 1437901): Structure of the benzofuran derivative **4l** was confirmed by single crystal X-ray diffraction analysis.

Fig. 1S ORTEP diagram of 4l with 30% ellipsoidal probability.

Crystal Data for C₁₄H₁₆O₃ (M=232.28 g/mol): monoclinic, space group P2₁/n (no. 14), a = 14.498(2) Å, b = 5.9876(8) Å, c = 14.857(2) Å, $\beta = 103.208(7)^{\circ}$, V = 1255.6(3) Å³, Z = 4, T = 293 K, μ (Mo K α) = 0.086 mm⁻¹, Dcalc = 1.2287 g/cm³, 12978 reflections measured (7.08° $\leq 2\Theta \leq 54.94^{\circ}$), 2864 unique ($R_{int} = 0.0530$, $R_{sigma} = 0.0293$) which were used in all calculations. The final R_1 was 0.0546 (I>=2u(I)) and wR_2 was 0.1671 (all data).

Table 1. Crystal data and structure refinement for JP-02-10.					
Identification code	JP-02-10				
Empirical formula	$C_{14}H_{16}O_3$				
Formula weight	232.28				
Temperature/K	293				
Crystal system	monoclinic				
Space group	$P2_1/n$				
a/Å	14.498(2)				
b/Å	5.9876(8)				
c/Å	14.857(2)				
α/°	90				
β/°	103.208(7)				
γ/°	90				
Volume/Å ³	1255.6(3)				
Z	4				
$\rho_{calc}g/cm^3$	1.2287				
μ/mm^{-1}	0.086				
F(000)	496.3				
Crystal size/mm ³	0.3 imes 0.22 imes 0.16				
Radiation	Mo K α (λ = 0.71075)				
2Θ range for data collection/°	7.08 to 54.94				
Index ranges	$-18 \le h \le 18, -7 \le k \le 7, -19 \le l \le 19$				
Reflections collected	12978				
Independent reflections	2864 [$R_{int} = 0.0530$, $R_{sigma} = 0.0293$]				
Data/restraints/parameters	2864/0/157				
Goodness-of-fit on F^2	1.033				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0546, wR_2 = 0.1515$				
Final R indexes [all data]	$R_1 = 0.0688, wR_2 = 0.1671$				
Largest diff. peak/hole / e Å ⁻³	0.22/-0.17				

Table 2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic DisplacementParameters ($\mathring{A}^2 \times 10^3$) for JP-02-10.

Atom	x	у	Z	U(eq)
01	1776.5(5)	4548.3(6)	3605.2(5)	52.7(3)
02	-363.8(5)	3694.0(6)	3063.8(5)	70.4(4)
03	-225.5(5)	-1828.9(6)	3735.3(5)	72.5(4)
C4	2341.1(5)	6873.3(6)	4809.8(5)	46.9(3)
C5	-437.1(5)	-270.7(6)	2995.2(5)	50.0(4)
C6	-21.1(5)	1955.1(6)	3399.4(5)	49.0(4)
C7	1727.0(6)	5241.0(6)	5081.6(5)	52.4(4)
C8	2884.6(5)	8678.2(6)	5227.0(5)	54.2(4)
С9	1415.0(5)	3906.6(6)	4346.5(5)	49.3(4)
C10	3399.7(5)	9914.3(6)	4726.9(6)	55.6(4)
C11	2339.7(5)	6369.5(6)	3903.1(5)	47.7(3)
C12	3984.2(6)	11874.8(6)	5163.0(6)	76.9(6)
C13	57.5(6)	-928.2(6)	2237.2(6)	64.8(5)
C14	3367.4(6)	9335.4(6)	3814.6(6)	61.3(4)
C15	2838.9(6)	7568.1(6)	3382.1(5)	59.0(4)
C16	827.1(6)	1862.9(6)	4195.7(6)	57.2(4)
C17	-1492.0(6)	-81.2(6)	2623.3(6)	81.4(6)

Table 3. Anisotropic Displacement Parameters	$(\text{\AA}^2 \times 10^3)$) for JP-02-10.	The Anisotropic
displacement factor exponent takes the form: -2π	r ² [h ² a* ²]	U ₁₁ +2hka*b*U ₁	2 ⁺].

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
01	63.6(7)	48.0(6)	46.6(6)	-6.3(5)	12.5(5)	-4.9(4)
02	78.0(8)	33.6(5)	87.1(9)	3.0(5)	-7.0(7)	3.3(5)
03	120.5(11)	34.6(6)	65.5(8)	-9.1(6)	27.6(7)	4.1(5)
C4	49.1(8)	44.5(7)	45.8(8)	4.3(6)	8.0(6)	-0.2(5)
C5	59.6(9)	33.2(7)	57.8(9)	-2.5(6)	15.0(7)	-0.8(6)
C6	58.5(9)	32.2(7)	56.7(9)	0.5(6)	14.0(7)	0.4(6)
C7	60.2(9)	52.5(8)	44.5(8)	-1.6(7)	11.8(6)	2.1(6)
C8	54.0(8)	53.5(8)	52.2(9)	0.9(7)	6.5(7)	-7.6(7)
С9	55.6(8)	41.9(7)	48.8(8)	1.2(6)	8.5(6)	4.4(6)
C10	43.1(8)	46.9(8)	71.8(11)	1.3(6)	2.5(7)	-0.8(7)
C11	49.4(8)	43.6(7)	48.4(8)	-0.6(6)	7.7(6)	-0.5(6)
C12	60.9(11)	58.5(10)	104.4(16)	-9.4(8)	4.5(10)	-12.3(10)
C13	76.6(12)	54.7(9)	65.4(10)	8.7(8)	21.5(9)	-3.8(8)
C14	53.2(9)	61.5(9)	68.8(11)	-6.8(7)	13.1(7)	8.2(8)
C15	62.9(9)	65.8(9)	49.5(9)	-6.3(8)	15.2(7)	2.4(7)
C16	68.3(10)	39.8(7)	59.6(9)	-2.7(7)	6.9(7)	6.0(6)
C17	59.0(11)	69.0(11)	117.1(18)	-10.4(9)	22.3(11)	-20.8(11)

Table 4	4. Bond	Lengths for JP-02-10.			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C9	1.3781(11)	C5	C17	1.5070(11)
01	C11	1.3735(7)	C6	C16	1.5000(10)
O2	C6	1.2109(7)	C7	C9	1.3454(9)
O3	C5	1.4212(9)	C8	C10	1.3825(11)
C4	C7	1.4406(9)	C9	C16	1.4788(8)
C4	C8	1.3964(8)	C10	C12	1.5050(8)
C4	C11	1.3800(11)	C10	C14	1.3894(12)
C5	C6	1.5281(7)	C11	C15	1.3761(11)
C5	C13	1.5186(12)	C14	C15	1.3765(8)

Table	5. Bond	Angles	for JP-02-10.				
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	O1	C9	105.70(6)	C10	C8	C4	119.67(7)
C8	C4	C7	136.29(8)	C7	C9	01	111.37(6)
C11	C4	C7	105.20(5)	C16	C9	01	114.89(6)
C11	C4	C8	118.51(7)	C16	C9	C7	133.61(8)
C6	C5	O3	105.81(6)	C12	C10	C8	120.42(7)
C13	C5	O3	110.40(5)	C14	C10	C8	119.27(5)
C13	C5	C6	107.86(6)	C14	C10	C12	120.31(7)
C17	C5	O3	110.77(6)	C4	C11	01	110.87(6)
C17	C5	C6	110.78(5)	C15	C11	01	125.67(7)
C17	C5	C13	111.05(6)	C15	C11	C4	123.46(5)

C5	C6	O2	120.00(6)	C15	C14	C10	122.56(7)
C16	C6	O2	122.80(5)	C14	C15	C11	116.53(7)
C16	C6	C5	117.18(4)	C9	C16	C6	115.43(5)
С9	C7	C4	106.86(7)				

Table 6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for JP-02-10.					
Atom	x	у	Z	U(eq)	
H3	-164.3(5)	-3077.7(6)	3530.0(5)	108.8(6)	
H7	1575.2(6)	5130.9(6)	5655.3(5)	62.9(5)	
H8	2900.0(5)	9046.9(6)	5838.4(5)	65.0(5)	
H12a	4172.6(6)	11657.6(6)	5819.7(6)	115.3(9)	
H12b	4537.5(6)	12000.8(6)	4914.1(6)	115.3(9)	
H12c	3615.3(6)	13216.7(6)	5033.4(6)	115.3(9)	
H13a	726.1(6)	-1057.8(6)	2492.5(6)	97.1(7)	
H13b	-186.0(6)	-2335.6(6)	1977.3(6)	97.1(7)	
H13c	-55.0(6)	193.0(6)	1762.8(6)	97.1(7)	
H14	3716.6(6)	10174.5(6)	3483.2(6)	73.6(5)	
H15	2820.1(6)	7203.2(6)	2769.8(5)	70.9(5)	
H16a	611.5(6)	1552.8(6)	4754.8(6)	68.6(5)	
H16b	1223.0(6)	622.5(6)	4097.2(6)	68.6(5)	
H17a	-1736.0(6)	-1480.5(6)	2354.9(6)	122.0(9)	
H17b	-1790.0(6)	291.5(6)	3117.9(6)	122.0(9)	
H17c	-1622.1(6)	1065.9(6)	2160.1(6)	122.0(9)	

Crystal structure of 4ag (CCDC 1441109): Structure of the spiroketal **4ag** was confirmed by single crystal X-ray diffraction analysis.

Fig. 2S ORTEP diagram of 4ag with 30% ellipsoidal probability.

Crystal Data for C₁₄H₁₅BrO₃ (M=311.18 g/mol): triclinic, space group P-1 (no. 2), a = 7.839(2) Å, b = 11.990(3) Å, c = 15.335(2) Å, a = 102.87(3)°, β = 98.14(3)°, γ = 90.09(3)°, V = 1390.1(6) Å³, Z = 4, T = 293 K, μ (Mo K α) = 2.954 mm⁻¹, *Dcalc* = 1.4867 g/cm³, 14261 reflections measured (6.2° ≤ 2 Θ ≤ 55.32°), 6245 unique (R_{int} = 0.0658, R_{sigma} = 0.0900) which were used in all calculations. The final R_1 was 0.1126 (I>=2u(I)) and wR_2 was 0.3416 (all data).

Identification code	SB-04-132-2
Empirical formula	$C_{14}H_{15}BrO_3$
Formula weight	311.18
Temperature/K	293
Crystal system	Triclinic
Space group	P-1
a/Å	7.839(2)
b/Å	11.990(3)
c/Å	15.335(2)
α/°	102.87(3)
β/°	98.14(3)
γ/°	90.09(3)
Volume/Å ³	1390.1(6)
Ζ	4
ρ _{calc} g/cm ³	1.4867
μ/mm ⁻¹	2.954
F(000)	631.2
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	Mo K α ($\lambda = 0.71075$)
20 range for data collection/°	6.2 to 55.32
Index ranges	$-9 \le h \le 10, -15 \le k \le 15, -19 \le l \le 19$
Reflections collected	14261
Independent reflections	$6245 [R_{int} = 0.0658, R_{sigma} = 0.0900]$
Data/restraints/parameters	6245/0/330
Goodness-of-fit on F ²	1.548
Final R indexes [I>=2σ (I)]	$R_1 = 0.1126, wR_2 = 0.2676$
Final R indexes [all data]	$R_1 = 0.1847, wR_2 = 0.3416$
Largest diff. peak/hole / e Å ⁻³	2.25/-2.42

 Table 1. Crystal data and structure refinement for SB-04-132-2

Table 2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for SB-04-132-2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor

Atom	X	У	Z	U(eq)
Br1	1804.4(16)	9578.8(10)	9134.9(7)	74.7(5)
Br2	6518.9(18)	7898.0(11)	9143.6(7)	86.9(5)
01	5185(8)	5326(5)	7462(4)	49.7(15)
02	282(8)	11084(5)	7475(4)	53.7(16)
03	-2407(9)	10687(5)	7752(4)	60.0(17)
C4	380(11)	9142(7)	7275(5)	44.0(19)
05	2479(8)	5912(5)	7746(4)	55.2(16)
C6	5427(10)	7173(7)	7259(5)	46(2)
C7	4208(12)	6008(7)	8123(6)	50(2)
С9	-126(12)	9571(7)	8185(6)	50(2)
C10	4778(12)	7259(7)	8134(6)	52(2)
C11	5654(13)	6016(8)	6925(6)	58(3)
C12	669(11)	10071(8)	6886(6)	52(2)

C14	5731(13)	7970(9)	6766(7)	65(3)
015	2618(15)	3928(7)	9112(6)	112(3)
C16	754(11)	8074(7)	6793(6)	51(2)
C17	-713(14)	10786(7)	8111(6)	57(3)
C18	2883(13)	4689(8)	8766(7)	60(3)
C19	1250(14)	10004(10)	6082(6)	69(3)
C20	1317(14)	7952(10)	5976(7)	74(3)
C21	1665(13)	5015(9)	7966(7)	62(3)
C22	-2138(16)	12397(8)	8813(8)	72(3)
C23	4388(13)	5530(8)	8961(6)	59(3)
O24	-2371(11)	13353(6)	9232(6)	93(3)
C25	-461(11)	11770(7)	8968(6)	53(2)
C26	1554(13)	8890(11)	5641(6)	69(3)
C27	-3291(15)	11722(9)	8023(7)	72(3)
C28	1594(17)	6737(11)	5389(8)	98(4)
C29	6607(16)	6450(15)	5653(7)	94(4)
C31	6356(13)	7563(12)	5948(8)	73(3)
C32	6274(17)	5619(11)	6127(7)	86(4)
C33	-3622(16)	12320(10)	7254(9)	88(4)
C34	6640(20)	8441(14)	5373(8)	113(5)
C35	1252(17)	3965(10)	7212(8)	88(4)
C38	-5009(15)	11393(11)	8324(10)	101(5)
C42	-26(13)	5422(11)	8332(10)	93(4)

Table 3. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for SB-04-132-2. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Br1	86.5(9)	76.3(8)	61.7(7)	24.6(6)	12.8(6)	15.0(6)
Br2	112.0(11)	83.8(9)	57.5(7)	-26.7(7)	8.1(6)	3.3(6)
01	69(4)	39(3)	47(3)	8(3)	24(3)	13(3)
02	67(4)	37(3)	62(4)	8(3)	21(3)	14(3)
03	69(4)	45(3)	63(4)	25(3)	8(3)	7(3)
C4	49(5)	50(5)	33(4)	7(4)	7(4)	6(4)
05	54(4)	51(3)	63(4)	8(3)	-1(3)	24(3)
C6	39(4)	48(5)	45(4)	-9(4)	-7(4)	4(4)
C7	58(6)	41(4)	47(4)	15(4)	3(4)	2(4)
C9	60(6)	41(5)	54(5)	3(4)	13(4)	19(4)
C10	49(5)	39(4)	69(6)	1(4)	20(5)	7(4)
C11	64(6)	58(6)	50(5)	18(5)	22(5)	0(4)
C12	45(5)	67(6)	48(5)	3(4)	11(4)	17(4)
C14	64(6)	67(6)	58(6)	-2(5)	-12(5)	18(5)
015	197(11)	66(5)	79(5)	15(6)	5(6)	43(5)
C16	52(5)	45(5)	49(5)	7(4)	-4(4)	-2(4)
C17	84(7)	45(5)	49(5)	32(5)	17(5)	20(4)
C18	52(6)	51(5)	89(7)	10(4)	33(5)	25(5)
C19	75(7)	88(8)	46(5)	13(6)	13(5)	16(5)
C20	60(6)	85(8)	65(6)	27(6)	-1(5)	-5(6)

C21	54(6)	62(6)	78(7)	3(5)	19(5)	31(5)
C22	98(8)	41(5)	81(7)	23(5)	33(7)	8(5)
C23	74(7)	54(5)	55(5)	10(5)	13(5)	21(5)
O24	110(7)	56(4)	108(6)	23(4)	39(5)	-3(4)
C25	47(5)	47(5)	65(6)	2(4)	13(4)	8(4)
C26	54(6)	117(10)	40(5)	-4(6)	20(4)	16(6)
C27	88(8)	65(6)	74(7)	36(6)	32(6)	25(6)
C28	100(9)	102(9)	65(7)	43(8)	6(7)	-30(7)
C29	77(8)	153(13)	46(6)	21(9)	16(6)	3(8)
C31	45(6)	112(10)	62(6)	-22(6)	-9(5)	30(7)
C32	121(10)	79(8)	58(6)	24(7)	33(7)	0(6)
C33	76(8)	80(8)	104(9)	7(6)	-13(7)	29(7)
C34	130(12)	162(14)	61(7)	-24(11)	15(7)	58(9)
C35	112(10)	66(7)	81(8)	-23(7)	-18(7)	22(6)
C38	71(8)	85(9)	153(13)	12(7)	61(9)	10(8)
C42	41(6)	99(9)	156(13)	-17(6)	18(7)	58(9)

Table 4. Bond Lengths for SB-04-132-2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C9	1.944(9)	C12	C19	1.359(13)
Br2	C10	1.928(10)	C14	C31	1.398(16)
01	C7	1.461(9)	O15	C18	1.185(11)
01	C11	1.374(11)	C16	C20	1.364(14)
02	C12	1.405(10)	C17	C25	1.547(12)
02	C17	1.435(11)	C18	C21	1.567(14)
03	C17	1.358(12)	C18	C23	1.503(13)
03	C27	1.431(11)	C19	C26	1.393(15)
C4	C9	1.486(11)	C20	C26	1.360(16)
C4	C12	1.409(12)	C20	C28	1.566(14)
C4	C16	1.383(11)	C21	C35	1.507(15)
05	C7	1.390(10)	C21	C42	1.550(14)
05	C21	1.377(11)	C22	O24	1.210(11)
C6	C10	1.483(12)	C22	C25	1.532(14)
C6	C11	1.389(12)	C22	C27	1.479(16)
C6	C14	1.383(13)	C27	C33	1.505(14)
C7	C10	1.561(12)	C27	C38	1.561(15)
C7	C23	1.509(12)	C29	C31	1.335(17)
C9	C17	1.551(11)	C29	C32	1.401(18)
C11	C32	1.367(13)	C31	C34	1.549(16)

Table 5. Bond Angles for SB-04-132-2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C11	01	C7	108.0(6)	C25	C17	O2	107.7(8)
C17	O2	C12	108.4(6)	C25	C17	03	108.9(7)
C27	O3	C17	112.1(8)	C25	C17	C9	119.2(7)
C12	C4	C9	109.7(7)	C21	C18	O15	125.2(10)
C16	C4	C9	133.9(8)	C23	C18	015	129.9(11)

C16	C4	C12	116.1(7)	C23	C18	C21	104.8(8)
C21	O5	C7	110.6(7)	C26	C19	C12	113.6(10)
C11	C6	C10	106.0(8)	C26	C20	C16	119.8(10)
C14	C6	C10	133.2(8)	C28	C20	C16	120.9(12)
C14	C6	C11	120.8(9)	C28	C20	C26	119.1(11)
05	C7	01	107.8(6)	C18	C21	05	106.6(8)
C10	C7	01	102.6(7)	C35	C21	05	115.6(9)
C10	C7	05	104.7(7)	C35	C21	C18	109.2(8)
C23	C7	01	109.6(7)	C42	C21	05	109.7(8)
C23	C7	05	108.2(8)	C42	C21	C18	106.7(8)
C23	C7	C10	123.1(7)	C42	C21	C35	108.6(10)
C4	C9	Br1	111.3(6)	C25	C22	O24	123.3(11)
C17	C9	Br1	113.5(6)	C27	C22	O24	126.4(11)
C17	C9	C4	100.5(7)	C27	C22	C25	109.9(8)
C6	C10	Br2	111.6(6)	C18	C23	C7	102.7(8)
C7	C10	Br2	112.7(6)	C22	C25	C17	100.0(8)
C7	C10	C6	104.6(7)	C20	C26	C19	124.0(9)
C6	C11	01	113.8(7)	C22	C27	03	104.7(8)
C32	C11	01	124.0(9)	C33	C27	03	110.1(9)
C32	C11	C6	122.1(10)	C33	C27	C22	113.0(10)
C4	C12	O2	108.5(7)	C38	C27	03	107.5(9)
C19	C12	O2	125.7(9)	C38	C27	C22	109.7(9)
C19	C12	C4	125.8(9)	C38	C27	C33	111.5(11)
C31	C14	C6	117.0(10)	C32	C29	C31	123.4(10)
C20	C16	C4	120.6(9)	C29	C31	C14	121.0(11)
03	C17	O2	109.3(7)	C34	C31	C14	117.4(12)
C9	C17	O2	104.2(7)	C34	C31	C29	121.5(12)
C9	C17	O3	107.2(8)	C29	C32	C11	115.7(11)

Table 6. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for SB-04-132-2.

Atom	X	У	Ζ	U(eq)
H16	621(11)	7433(7)	7028(6)	62(3)
H26	1944(13)	8782(11)	5084(6)	83(4)
H19	1427(14)	10640(10)	5848(6)	82(3)
H14	5529(13)	8742(9)	6970(7)	78(3)
H29	7025(16)	6214(15)	5106(7)	113(5)
H32	6461(17)	4847(11)	5912(7)	104(4)
H9	-1097(12)	9108(7)	8266(6)	60(3)
H10	3771(12)	7742(7)	8154(6)	63(3)
H23a	5473(13)	5152(8)	9043(6)	71(3)
H23b	4312(13)	6127(8)	9496(6)	71(3)
H25a	-371(11)	11484(7)	9517(6)	64(3)
H25b	545(11)	12254(7)	8991(6)	64(3)
H28a	2530(80)	6380(40)	5690(30)	146(7)
H28b	560(50)	6270(30)	5300(60)	146(7)
H28c	1870(120)	6810(13)	4810(30)	146(7)
H33a	-2544(17)	12500(70)	7080(40)	132(6)
H33b	-4320(100)	11830(30)	6750(20)	132(6)

H33c	-4220(110)	13010(40)	7440(20)	132(6)
H34a	5700(80)	8370(70)	4890(50)	169(8)
H34b	6680(150)	9201(15)	5750(20)	169(8)
H34c	7700(70)	8300(60)	5130(60)	169(8)
H35a	390(80)	4140(20)	6750(30)	133(6)
H35b	2280(30)	3730(50)	6960(40)	133(6)
H35c	820(110)	3360(30)	7448(15)	133(6)
H38a	-5730(50)	10930(70)	7815(17)	152(7)
H38b	-4758(17)	10970(70)	8790(50)	152(7)
H38c	-5590(60)	12076(11)	8550(60)	152(7)
H42a	236(17)	6040(50)	8860(40)	140(6)
H42b	-780(50)	5680(70)	7870(20)	140(6)
H42c	-580(60)	4800(20)	8490(60)	140(6)

Determination of enantiomeric excess (ee) of 4j and 4t by chiral HPLC.

Reported by User: System Report Method: Vishnu Report Method II 4230 Page: 1 of 1 Project Name: YR_01 Date Printed: 04+11-2015 20:53:06 Asia/Calcutta

Empower 3

Vishnu

Reported by User: System Report Method: Vishnu Report Method II 4230 Page: 1 of 1

Project Name: YR_01 Date Printed 04-11-2015 20:56:S1 Asia/Calcutta

Empower 3

Vishnu

	SAMPLE	INFORMATIO	NC	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	sb-04-48 np chir-AS10% Unknown 1 6 10.00 ul 120.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	System Bishnu MBH sb448npchiral 254.0nm PDA 254.0 nm	
Date Acquired: Date Processed:	04-11-2015 17:19:11 IST 04-11-2015 20:55:20 IST			

-		Area	% Area	Height
1	21.897	2097106	3.30	36077
2	63.726	61473269	96.70	222088

Reported by User. System Report Method: Vishnu Report Method II 4230 Page: 1 of 1

Project Name: YR_01 Date Printed: 04-11-2015 20:56:47 Asia/Calcutta

¹H and ¹³C-NMR spectra of all new compounds reported in this study

(Note: In general, in a ¹H NMR spectrum recorded in CDCl₃, a peak at around δ 1.6 refers to moisture in the solvent/sample and a peak at about δ 1.2 refers to oil/grease present in the sample. In a ¹³C NMR spectrum recorded in CDCl₃, a peak at about δ 29.7 usually represents oil/grease)

Page **52** of **73**

Page **63** of **73**

