Supporting Information for

Facile synthesis of 1-benzoazepine derivatives *via* gold-catalyzed regioselective cycloisomerization reactions of *N*-(*o*-alkynylaryl)-*N*-vinyl sulfonamides

Sridhar Undeela,^a Gurram Ravikumar,^a Jagadeesh Babu Nanubolu,^b Kiran Kumar Singarapu^c and Rajeev S. Menon^{*d}

^aMedicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.

^bCentre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.

^cCentre for Nuclear Magnetic Resonance, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.

^dDepartment of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123 029, India. E-mail: rajeevmenon@cuh.ac.in

Table of Contents

1	General Information	Page 3
2	Substrate Preparation	Page 3
2.1	CS_2CO_3 -mediated reaction of 2-bromoallyl sulfones 3a-b with N-	Page 3
	arylsulfonamides 4a-b	
2.2	Sonogashira Coupling of 5a-d with various alkynes	Page 5
2.3	Gold-catalyzed cycloisomerization reaction of aza-enynes 1a-s	Page 16
2.4	Isolation of the labile intermediate 7 and its conversion to	Page 24
	benzoazepine 2d	
2.5	Preparation and cycloisomerization of the aliphatic 3-aza-1,6-	Page 26
	enyne 8	
3	Crystallographic data for 7 and 2r	Page 27
4	Variable temperature NMR study of the isomerization of 7 into 2d	Page 30
5	NMR spectra of new compounds	Page 33

1. General Information

All ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solvent on Varian Bruker 300 MHz. a Varian Unity 400 MHz and Avance 500 MHz spectrometer at ambient temperature, chemical shift δ are given in ppm on a scale downfield from TMS, and the coupling constant J are in Hz. The signal patterns are indicated as follows: s, Singlet; d, doublet; t, triplet; dd, doublet of doublet; m, multiplet. FTIR spectra were recorded as neat. Mass spectra were obtained on a Finnegan Mat1020B, a micromass VG 70-70H or an Agilent technologies LC/MSD treapSL spectrometer operating at 70eV using the direct inlet system and high resolution mass spectra (HRMS) were recorded on a QSTAR XL Hybrid MS/MS mass spectrometer. Melting points were recorded on an electrothermal apparatus and are uncorrected. All the reagents and solvents were used without further purification unless specified otherwise. Technical grade ethyl acetate and petroleum ether used for column chromatography were distilled prior to use. Anhydrous solvents were prepared from locally purchased LR grade solvents by standard methods. Column chromatography was carried out using silica gel (60-120 mesh and 100-200 mesh) packed in glass columns. All reactions were performed in oven-dried glassware with magnetic stirring. The catalysts were purchased from Sigma Aldrich and were used as received. 2-Bromoallylsulfones **3a-b**.¹ *N*-(2-iodophenyl)methanesulfonamide **4a**² N-(4-chloro-2iodophenyl)methanesulfonamide $4b^3$ and N-(but-3-ynyl)-4-methylbenzenesulfonamide 9^4 were prepared as previously described.

2. Substrate Preparation

2.1. CS₂CO₃-mediated reaction of 2-bromoallyl sulfones 3a-b with N-arylsulfonamides 4a-b

Typical procedure: Cesium carbonate (1.63 g, 5.0 mmol) was added to a solution of the *N*-arylsulfonamide **4a-b** (2.0 mmol) and the bromoallyl sulfone **3a-b** (2.8 mmol) in acetonitrile (8 mL) at ambient temperature and stirred for 2 hours. The solvent was removed on a rotavapor, deionized water (20 mL) was added and the aqueous solution was extracted with ethyl acetate (3

¹ S. Undeela, S. Thadkapally, J. B. Nanubolu, K. K. Singarapu and R. S. Menon, *Chem. Commun.*, 2015, **51**, 13748.

²C. Rossy, E. Fouquet and F.-X. Felpin, Beilstein J. Org. Chem., 2013, 9, 1426.

³ M. Pal, V. Subramanian, V. R. Batchu and I. Dager, Synlett, 2004, 1965.

⁴ Y. Yin, W. Ma, Z. Chai and G. Zhao, J. Org. Chem., 2007, 72, 5731.

X 15 mL). The combined organic extracts was washed with brine, dried over anhydrous sodium sulfate and concentrated on a rotavapor. The residue on column chromatography on silica gel using petroleum ether-ethyl acetate as eluent afforded analytically pure samples of the products.

$$\bigcup_{\substack{N\\Ms}}^{I} SO_2 Ph$$

5a, N-(2-iodophenyl)-N-[3-(phenylsulfonyl)prop-1-en-2-yl]methanesulfonamide

White solid, 744 mg, 78%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 138-140 °C

IR (KBr) v_{max} : 3062, 2993, 2931, 1913, 1634, 1581, 1464, 1442, 1344, 1159, 967, 761, 524 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.89 (m, 3H), 7.69-7.65 (m, 1H), 7.61-7.55 (m, 3H), 7.45 (td, J = 7.7, 1.5 Hz, 1H), 7.10 (td, J = 7.7, 1.6 Hz, 1H), 5.84 (br s, 1H), 5.14 (d, J = 1.4 Hz, 1H), 3.77 (d, J = 14.6 Hz, 1H), 3.63 (d, J = 14.6 Hz, 1H), 3.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.0, 139.6, 138.4, 134.2, 132.6, 132.5, 130.9, 129.6, 129.4, 128.5, 117.0, 102.2, 59.6, 41.3.

HRMS calcd for $C_{16}H_{20}IN_2O_4S_2$ (M+NH₄⁺) 494.9909; found 494.9912.

5b, N-(2-iodophenyl)-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

White solid, 727 mg, 74%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 134-136 °C

IR (KBr) v_{max} : 3028, 2969, 2929, 1935, 1719, 1637, 1595, 1460, 1343, 1310, 1154, 1126, 765, 518 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.2 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.61 (dd, J = 7.9, 1.3 Hz, 1H), 7.45 (td, J = 7.8, 1.2 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.10 (td, J = 7.8, 1.4 Hz, 1H), 5.84 (s, 1H), 5.13 (d, J = 0.8 Hz, 1H), 3.74 (d, J = 14.6 Hz, 1H), 3.61 (d, J = 14.6 Hz, 1H), 3.39 (s, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.3, 141.0, 139.6, 135.4, 132.7, 132.5, 130.8, 130.0, 129.6, 128.5, 116.9, 102.3, 59.7, 41.3, 21.7.

HRMS calcd for $C_{17}H_{22}O_4IN_2S_2$ (M+NH₄⁺) 509.0060; found 509.0072.

5c, N-(4-chloro-2-iodophenyl)-N-[3-(phenylsulfonyl)prop-1-en-2-yl]methanesulfonamide

Colorless oil, 777 mg, 76%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max}: 3022, 2932, 1629, 1569, 1462, 1347, 1321, 1157, 1084, 968, 753, 530cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.92-7.86 (m, 3H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.61-7.51 (m, 3H), 7.42 (dd, *J* = 8.5, 2.3 Hz, 1H), 5.85 (s, 1H), 5.17 (d, *J* = 1.2 Hz, 1H), 3.76 (d, *J* = 14.6 Hz, 1H), 3.62 (d, *J* = 14.6 Hz, 1H), 3.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.3, 138.3, 136.0, 134.3, 132.9, 132.4, 129.8, 129.4, 128.4, 117.5, 102.5, 59.6, 41.3.

HRMS calcd for $C_{16}H_{16}O_4$ NClS₂I (M+H⁺) 511.9254; found 511.9254.

5d, N-(4-chloro-2-iodophenyl)-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Colorless oil, 830 mg, 79%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max} : 2926, 2854, 1726, 1630, 1597, 1462, 1348, 1320, 1156, 1085, 968, 757, 522 cm⁻¹ ¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (d, J = 2.4 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.5 Hz, 1H), 7.41 (dd, J = 8.5, 2.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 5.85 (s, 1H), 5.16 (s, 1H), 3.73 (d, J = 14.6 Hz, 1H), 3.60 (d, J = 14.6 Hz, 1H), 3.38 (s, 3H), 2.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.4, 140.2, 138.4, 136.0, 135.4, 132.9, 132.5, 130.0, 129.8, 128.4, 117.4, 102.5, 59.7, 41.3, 21.7.

HRMS calcd for C₁₇H₁₈O₄NClS₂I (M+H⁺) 525.9410; found 525.9406.

2.2. Sonogashira Coupling of 5a-d with various alkynes

To a solution of the aryl iodide **5a-d** (0.50 mmol) and alkyne (0.60 mmol) in THF (6 mL) kept under argon, $Pd(PPh_3)_2Cl_2$ (7 mg, 0.01 mmol), CuI (4 mg, 0.04 mmol) and triethylamine (0.21 mL, 1.50 mmol) were sequentially added at 25 °C and stirred for 2h. The solvent was removed

on a rotavapor and water (20 mL) was added. The aqueous solution was extracted with ethyl acetate (3X15 mL). The combined organic extracts was washed with brine, dried over anhydrous sodium sulfate and concentrated on a rotavapor. The residue on column chromatography on silica gel using petroleum ether-ethyl acetate as eluent afforded analytically pure samples of the products.

1a, N-(2-(phenylethynyl)phenyl)-N-[3-(phenylsulfonyl)prop-1-en-2-yl]methanesulfonamide

Colorless semisolid, 194 mg, 86%

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max}: 3283, 3061, 2989, 2929, 2853, 2223, 1721, 1672, 1633, 1495, 1447, 1347, 1311, 1160, 1127, 969, 527 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 1.1 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.61- 7.57 (m, 1H), 7.55- 7.50 (m, 4H), 7.46- 7.33 (m, 6H), 5.74 (s, 1H), 5.06 (d, J = 1.1 Hz, 1H), 3.75 (s, 2H), 3.33 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.2, 138.0, 134.0, 133.9, 133.6, 132.3, 131.6, 129.6, 129.3, 129.2, 129.0, 128.7, 128.6, 125.2, 122.5, 115.8, 95.2, 86.0, 60.1, 41.2. **HRMS** calcd for C₂₄H₂₂O₄NS₂ (M+H⁺) 452.0990; found 452.1006.

1b, N-(2-(phenylethynyl)phenyl)-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Colorless semisolid, 191 mg, 82%

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max}: 3026, 2929, 2218, 1629, 1597, 1495, 1346, 1322, 1156, 1087, 967, 759, 685, 515 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.59-7.47 (m, 4H), 7.40–7.26 (m, 7H), 5.75 (s, 1H), 5.06 (s, 1H), 3.73 (s, 2H), 3.33 (s, 3H), 2.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 145.1, 138.1, 135.3, 133.8, 133.8, 132.3, 131.6, 129.8, 129.6, 129.2, 128.93 128.7, 128.5, 125.3, 122.6, 115.9, 95.2, 86.1, 60.2, 41.2, 21.7.

HRMS calcd for $C_{25}H_{27}O_4N_2S_2$ (M+NH₄⁺) 483.1412; found 483.1419.

1c, $N-\{2-[(4-methoxyphenyl]phenyl]-N-[3-(phenylsulfonyl)prop-1-en-2-yl]-methanesulfonamide$

White solid, 183 mg, 76%

Melting point: 132-134 °C

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max}: 3019, 2934, 2840, 2215, 1630, 1603, 1511, 1445, 1347, 1318, 1250, 1157, 1085, 1026, 967, 757, 524 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 1.1 Hz, 1H), 7.66-7.63 (m, 1H), 7.57-7.50 (m, 3H), 7.46 (d, J = 8.9 Hz, 2H), 7.42-7.36 (m, 3H), 6.87 (d, J = 8.9 Hz, 2H), 5.73 (s, 1H), 5.06 (d, J = 1.1 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 2H), 3.33 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.2, 138.3, 137.8, 134.0, 133.7, 133.6, 133.1, 132.3, 129.3,

129.2, 128.7, 125.5, 115.7, 114.6, 114.2, 95.5, 84.9, 60.1, 55.4, 41.2.

HRMS calcd for $C_{25}H_{27}O_5N_2S_2$ (M+NH₄⁺) 499.1361; found 499.1373.

1d, N-{2-[(4-methoxyphenyl)ethynyl]phenyl}-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

White solid, 176 mg, 71%

Melting point: 105-107 °C

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max}: 3023, 2934, 2840, 2215, 1631, 1602, 1512, 1445, 1345, 1321, 1290, 1250, 1157, 1027, 760, 518 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 2H), 7.56-7.54 (m, 1H), 7.47-7.47 (m, 3H), 7.37 (br s, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 2H), 5.74 (s, 1H), 5.05 (s, 1H), 3.82 (s, 3H), 3.7(s, 2H), 3.33 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.2, 145.1, 137.9, 135.3, 133.8, 133.6, 133.1, 132.3, 129.8, 129.2, 128.7, 125.5, 115.7, 114.6, 114.2, 95.4, 84.9, 60.2, 55.4, 41.2, 21.7. HRMS calcd for C₂₆H₂₉O₅N₂S₂ (M+NH₄⁺) 513.1518; found 513.1529.

1e, $N-\{2-[(4-bromophenyl)ethynyl]phenyl\}-N-[3-(phenylsulfonyl)prop-1-en-2-yl]-methanesulfonamide$

Colorless semisolid, 193 mg, 73%

 $\mathbf{R}_{\mathbf{f}} = (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max}: 3063, 2926, 2855, 2326, 2255, 2219, 1972, 1906, 1731, 1629, 1587, 1494, 1317, 1157, 968, 761, 516 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.3, 1.1 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.59 (dd, J = 7.0, 2.2 Hz, 1H), 7.55-7.39 (m, 9H), 5.74 (s, 1H), 5.00 (s, 1H), 3.74 (s, 2H), 3.35 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.2, 134.1, 133.8, 133.6, 133.0, 132.1, 131.8, 129.9, 129.4, 129.3, 128.6, 125.1, 123.3, 121.5, 115.9, 94.1, 87.1, 60.1, 41.1. **HRMS** calcd for C₂₄H₂₄O₄N₂S₂Br (M+NH₄⁺) 549.0340; found 549.0344.

1f, N-{2-[(4-bromophenyl)ethynyl]phenyl}-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

White solid, 215 mg, 79%

Melting point: 113-115 °C

 $\mathbf{R_f} = 0.7 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max}: 3024, 2926, 2855, 1718, 1630, 1597, 1490, 1322, 1156, 1088, 968, 818, 760, 517 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.58 (dd, J = 7.4, 1.6 Hz, 1H), 7.52-7.39 (m, 7H), 7.31 (d, J = 8.0 Hz, 2H), 5.74 (s, 1H), 4.99 (s, 1H), 3.72 (s, 2H), 3.35 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 138.3, 135.3, 133.8, 133.0, 132.1, 131.82, 129.9, 129.3, 128.6, 125.2, 123.3, 121.6, 115.8, 94.0, 87.2, 60.2, 41.1, 21.7.

HRMS calcd for $C_{25}H_{23}BrNO_4S_2$ (M+H⁺) 544.0252; found 544.0246.

1g, N-{2-[(4-fluorophenyl)ethynyl]phenyl}-N-[3-(phenylsulfonyl)prop-1-en-2-yl]-methanesulfonamide

White solid, 169 mg, 72%

Melting point: 125-127 °C

 $\mathbf{R}_{\mathbf{f}} = 0.5 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) ν_{max} : 3065, 2983, 2930, 2227, 1633, 1509, 1448, 1354, 1312, 1232, 1160, 1017, 883, 751, 530 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.58 (dd, *J* = 6.9, 2.4 Hz, 1H), 7.55-7.51 (m, 4H), 7.48-7.47 (m, 1H), 7.43-7.37 (m, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 5.74 (s, 1H), 5.01 (s, 1H), 3.75 (s, 2H), 3.35 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 162.9 (d, J = 250.1 Hz), 138.1 (d, J = 5.9 Hz), 134.1, 133.8, 133.6, 133.5, 132.1, 129.7, 129.4, 129.3, 128.6, 125.2, 118.6 (d, J = 2.7 Hz), 115.9 (d, J = 22.0 Hz), 115.8, 94.1, 85.7, 60.1, 41.1.

HRMS calcd for $C_{24}H_{24}O_4N_2FS_2$ (M+NH₄⁺) 487.1162; found 487.1167.

1h, N-{2-[(4-fluorophenyl)ethynyl]phenyl}-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Colorless semisolid, 184 mg, 76%

 $\mathbf{R}_{\mathbf{f}} = 0.5 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max}: 2926, 2854, 2220, 1725, 1631, 1597, 1508, 1346, 1321, 1291, 1229, 1157, 1087, 970, 839, 762, 514 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.3 Hz, 2H), 7.58 (dd, *J* = 7.0, 2.3 Hz, 1H), 7.54-7.49 (m, 3H), 7.43-7.37 (m, 2H), 7.31 (d, *J* = 7.4 Hz, 2H), 7.04 (t, *J* = 7.9 Hz, 2H), 5.75 (s, 1H), 5.00 (s, 1H), 3.73 (s, 2H), 3.35 (s, 3H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.9 (d, J = 250.1 Hz), 145.2, 138.2, 135.3, 133.8 (d, J = 8.6 Hz), 133.6, 133.6, 132.1, 129.8, 129.7, 129.3, 128.6, 125.3, 118.7 (d, J = 3.2 Hz), 115.9 (d, J = 21.8 Hz), 115.8, 94.1, 85.8, 60.2, 41.1, 21.7.

HRMS calcd for $C_{25}H_{26}O_4N_2FS_2$ (M+NH₄⁺) 501.1318; found 501.1324.

1i, *N*-[3-(phenylsulfonyl)prop-1-en-2-yl]-*N*-[2-(p-tolylethynyl)phenyl]methanesulfonamide Colorless semisolid, 188 mg, 81%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

IR (KBr) ν_{max}: 3064, 2927, 2856, 2216, 1720, 1594, 1512, 1445, 1357, 1321, 1157, 1084, 816, 760, 531 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (d, J = 7.9 Hz, 2H), 7.666-7.61 (m, 1H), 7.58-7.50 (m, 3H), 7.41- 7.37 (m, 5H), 7.15 (d, J = 7.9 Hz, 2H), 5.73 (s, 1H), 5.07 (s, 1H), 3.74 (s, 2H), 3.31 (s, 3H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.3, 138.2, 137.9, 134.0, 133.8, 133.6, 132.4, 131.4, 129.4, 129.3, 129.3, 129.2, 128.7, 125.3, 119.4, 115.8, 95.6, 85. 5, 60.1, 41.2, 21.6. **HRMS** calcd for C₂₅H₂₇O₄N₂S₂ (M+NH₄⁺) 483.1412; found 483.1420.

1j, N-[2-(p-tolylethynyl)phenyl]-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Colorless semisolid, 201 mg, 84%

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

IR (KBr) v_{max} : 2924, 2856, 1720, 1597, 1512, 1396, 1326, 1155, 1086, 967, 815, 767, 518 cm⁻¹ ¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, J = 7.4 Hz, 2H), 7.56 (s, 1H), 7.44-7.38 (m, 5H), 7.29 (d, J = 7.4 Hz, 2H), 7.15 (d, J = 7.1 Hz, 2H), 5.73 (s, 1H), 5.06 (s, 1H), 3.73 (s, 2H), 3.32 (s, 3H), 2.43 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.0, 139.2, 138.0, 135.3, 133.7, 132.4, 131.5, 129.8, 129.4, 129.3, 129.2, 128.7, 125.4, 119.5, 115.8, 95.5, 85.5, 60.2, 41.2, 21.7, 21.6. HRMS calcd for C₂₆H₂₉O₄N₂S₂ (M+NH₄⁺) 497.1569; found 497.1577.

1k, N-[3-(phenylsulfonyl)prop-1-en-2-yl]-N-[2-(m-tolylethynyl)phenyl]methanesulfonamide

Brown solid, 188 mg, 81%

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

Melting point: 122-124 °C

IR (KBr) v_{max}: 3025, 2927, 2211, 1629, 1590, 1484, 1446, 1347, 1312, 1158, 965, 753, 684, 537 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 7.4 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.58-7.56 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.44-7.38 (m, 3H), 7.32-7.31 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 5.73 (s, 1H), 5.08 (s, 1H), 3.75 (s, 2H), 3.31 (s, 3H), 2.34 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 138.3, 137.9, 134.0, 133.8, 133.6, 132.4, 132.0, 129.9, 129.6, 129.3, 129.2, 128.8, 128.6, 128.5, 126.7, 125.1, 115.9, 114.9, 95.5, 85.6, 60.1, 41.2, 21.3.

HRMS calcd for $C_{25}H_{24}O_4NS_2$ (M+H⁺) 466.1147; found 466.1140.

11, N-[2-(m-tolylethynyl)phenyl]-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Brown solid, 192 mg, 80%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 150-152 °C

IR (KBr) v_{max}: 3060, 2922, 2207, 1718, 1640, 1594, 1489, 1387, 1341, 1321, 1233, 1159, 1125, 965, 767, 521 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.57 (dd, *J* = 6.9, 1.9 Hz, 1H), 7.46 (d, *J* = 6.9 Hz, 1H), 7.41-7.36 (m, 2H), 7.33-7.29 (m, 4H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 5.73 (s, 1H), 5.06 (s, 1H), 3.73 (s, 2H), 3.32 (s, 3H), 2.43 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.1, 138.3, 138.0, 135.3, 133.8, 133.7, 132.4, 132.0, 129.9, 129.8, 129.6, 129.2, 128.7, 128.7, 128.4, 125.3, 122.4, 115.9, 95.4, 85.7, 60.2, 41.2, 21.7, 21.3. **HRMS** calcd for C₂₆H₂₉O₄N₂S₂ (M+NH₄) 497.1563; found 497.1575.

1m, N-{2-[(4-tert-butylphenyl]phenyl}-N-[3-(phenylsulfonyl)prop-1-en-2-yl]-methanesulfonamide

Brown solid, 188 mg, 74%

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

Melting point: 169-171 °C

IR (KBr) v_{max} : 3065, 3033, 2964, 1637, 1508, 1446, 1389, 1346, 1317, 1162, 1127, 965, 769, 527 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 7.3 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.58-7.56 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.40- 7.35 (m, 5H), 5.73 (s, 1H), 5.08 (s, 1H), 3.75 (s, 2H), 3.31 (s, 3H), 1.31 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 152.4, 138.2, 137.9, 134.0, 133.8, 133.7, 132.4, 131.3, 129.4, 129.3, 129.2, 128.8, 125.6, 125.3, 119.5, 115.8, 95.6, 85.5, 60.1, 41.3, 34.9, 31.2.

HRMS calcd for $C_{28}H_{33}O_4N_2S_2$ (M+NH₄⁺) 525.1882; found 525.1876.

 $1n, N-\{2-[(4-tert-butylphenyl)ethynyl]phenyl\}-N-(3-tosylprop-1-en-2-yl)methanesulfonamide$

Brown solid, 180 mg, 69%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 191-193 °C

IR (KBr) v_{max} : 2956, 2865, 2146, 1916, 1664, 1601, 1493, 1462, 1389, 1363, 1263, 1200, 1100, 883, 559 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.3 Hz, 2H), 7.58-7.56 (m, 1H), 7.46-7.43 (m, 3H), 7.39-7.35 (m, 4H), 7.29 (d, J = 8.0 Hz, 2H), 5.73 (s, 1H), 5.06 (s, 1H), 3.73 (s, 2H), 3.31 (s, 3H), 2.43 (s, 3H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.3, 145.0, 138.0, 135.3, 133.8, 132.4, 131.3, 129.8, 129.4, 129.2, 128.8, 125.6, 125.3, 119.5, 115.8, 95.5, 85.5, 60.2, 41.2, 34.9, 31.2, 21.7. **HRMS** calcd for C₂₉H₃₂O₄NS₂ (M+H⁺) 522.1773; found 522.1761.

10, *N*-[4-chloro-2-(phenylethynyl)phenyl]-*N*-[3-(phenylsulfonyl)prop-1-en-2-yl]methanesulfonamide

Brown solid, 177 mg, 73 %

 $\mathbf{R}_{\mathbf{f}} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

Melting point: 155-157 °C

IR (KBr) v_{max} : 3068, 2994, 2927, 2223, 1632, 1467, 1352, 1306, 1160, 1125, 1081, 970, 889, 766, 529 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.5, 1.2 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.54-7.50 (m, 4H), 7.41 (d, J = 8.5 Hz, 1H), 7.38-7.34 (m, 4H), 5.76 (s, 1H), 5.08 (s, 1H), 3.75 (s, 2H), 3.33 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 138.2, 136.6, 135.3, 134.1, 133.5, 133.4(2), 131.6, 129.8, 129.4, 129.3, 129.3, 128.6, 126.7, 122.0, 116.3, 96.4, 84.9, 60.1, 41.2.

HRMS calcd for C₂₄H₂₁O₄NClS₂ (M+H⁺) 486.0601; found 486.0600.

1p, N-[4-chloro-2-(phenylethynyl)phenyl]-N-(3-tosylprop-1-en-2-yl)methanesulfonamide

Colorless semisolid, 205 mg, 82%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

IR (KBr) ν_{max}: 2927, 2219, 1630, 1596, 1490, 1467, 1347, 1322, 1292, 1232, 1157, 1086, 760, 518 cm⁻¹

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.55 (s, 1H), 7.52 (d, *J* = 6.4 Hz, 2H), 7.44-7.35 (m, 5H), 7.30 (d, *J* = 7.9 Hz, 2H), 5.76 (s, 1H), 5.09 (s, 1H), 3.74 (s, 2H), 3.33 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 140.2, 136.6, 135.1, 133.5, 133.3, 133.3, 131.6, 129.9, 129.8, 129.2, 128.5, 126.7, 122.0, 117.3, 116.3, 96.3, 60.1, 41.1, 21.6. **HPMS** called for C = H = O NClS (M+H⁺) 500 0757; found 500 0760

HRMS calcd for $C_{25}H_{23}O_4NClS_2$ (M+H⁺) 500.0757; found 500.0760.

 $1q, N-\{4-chloro-2-[(4-methoxyphenyl)ethynyl]phenyl\}-N-[3-(phenylsulfonyl)prop-1-en-2-yl]-methanesulfonamide$

Colorless semisolid, 199 mg, 77% $\mathbf{R_f} = 0.3$ (30% ethyl acetate in hexanes) **IR (KBr)** v_{max}: 3017, 2928, 2852, 2216, 1629, 1604, 1512, 1463, 1349, 1321, 1251, 1158, 1027, 756, 528 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.54-7.51 (m, 3H), 7.46 (d, J = 8.8 Hz, 2H), 7.39-7.33 (m, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.75 (s, 1H), 5.08 (s, 1H), 3.82 (s, 3H), 3.75 (s, 2H), 3.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.5, 138.2, 136.3, 135.2, 134.1, 133.5, 133.4, 133.2, 133.1, 129.4, 129.3, 128.6, 126.7, 116.2, 114.5, 114.3, 96.7, 83.8, 60.1, 55.4, 41.2.

HRMS calcd for C₂₅H₂₆ClN₂O₅S₂ (M+NH₄⁺) 533.0972; found 533.0973.

 $1r, N-\{4-chloro-2-[(4-methoxyphenyl)ethynyl]phenyl\}-N-(3-tosylprop-1-en-2-yl)-methanesulfonamide$

Colorless semisolid, 217 mg, 82%

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max}: 3020, 2929, 2216, 1632, 1602, 1511, 1462, 1398, 1347, 1321, 1290, 1250, 1157, 1027, 763, 519 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.52 (d, *J* = 2.4 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.33-7.29 (m, 3H), 6.87 (d, *J* = 8.9 Hz, 2H), 5.76 (s, 1H), 5.08 (s, 1H), 3.82 (s, 3H), 3.74 (s, 2H), 3.32 (s, 3H), 2.44 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 160.4, 145.2, 136.4, 135.3, 135.1, 133.7, 133.3, 133.2, 133.1, 129.8, 129.3, 128.6, 127.1, 116.2, 114.3, 114.1, 96.7, 83.9, 60.2, 55.4, 41.2, 21. 7. **HRMS** calcd for C₂₆H₂₅O₅NClS₂ (M+H⁺) 530.0863; found 530.0860.

1s, N-(3-tosylprop-1-en-2-yl)-N-{2-[(trimethylsilyl)ethynyl]phenyl}methanesulfonamide

Plae brown solid, 171 mg, 74% $\mathbf{R_f} = 0.5$ (30% ethyl acetate in hexanes)

Melting point: 129-131 °C

IR (KBr) v_{max}: 2956, 2925, 2854, 2159, 1734, 1643, 1597, 1479, 1445, 1340, 1316, 1243, 1161, 1086, 1023, 844, 514 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.50 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.42-7.32 (m, 5H), 5.62 (s, 1H), 5.02 (s, 1H), 3.69 (s, 2H), 3.27 (s, 3H), 2.45 (s, 3H), 0.21 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 145.0, 138.1, 134.3, 133.5, 132.6, 129.8, 129.7, 129.1, 128.8, 124.8, 120.8, 116.3, 60.1, 41.4, 21.7.
HRMS calcd for C₂₂H₂₈O₄NSiS₂ (M+H⁺) 462.1229; found 462.1244.

2.3. Gold-catalyzed cycloisomerization reaction of aza-enynes 1a-s

To a solution of the aza-enyne **1a-s** (0.20 mmol) in dichloromethane (2 mL) maintained at ambient temperature under an atmosphere of nitrogen, (acetonitrile)[(2-biphenyl)di-*tert*-butylphosphine]gold(I) hexafluoroantimonate (3 mg, 0.004 mmol) was added and the reaction was stirred for 12 h at 25 °C. Triethylamine (0.06 mL, 0.40 mmol) was then added to the reaction mixture and it was stirred for a minute. Silica gel was added to the reaction mixture, the solvent was evaporated on a rotavapor and the residue was chromatographed on a silica column using petroleum ether-ethyl acetate as eluent to afford analytically pure samples of the products **2a-r**.

2a, 1-(methylsulfonyl)-4-phenyl-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 80 mg, 89% $\mathbf{R_f} = 0.4$ (30% ethyl acetate in hexanes) **Melting point:** 186-188 °C **IR (KBr)** $\mathbf{v_{max}}$: 3053, 2997, 2924, 1637, 1591, 1485, 1446, 1405, 1337, 1310, 1156, 1134, 1082, 764, 526, 502cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (dd, J = 8.4, 1.2 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.44-7.32 (m, 10H), 7.24 (s, 1H), 7.20-7.17 (m, 1H), 6.49 (s, 1H), 4.56 (d, J = 14.5 Hz, 1H), 4.25 (d, J = 14.5 Hz, 1H), 2.69 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.1, 138.4, 137.8, 136.9, 134.8, 133.9, 132.8, 132.2, 131.7, 130.8, 130.3, 130.0, 129.1, 129.0, 128.7, 128.6, 128.3, 126.4, 64.9, 39.7. **HRMS** calcd for C₂₄H₂₅N₂O₄S₂ (M+NH₄⁺) 469.1256; found 469.1260.

2b, 1-(methylsulfonyl)-4-phenyl-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 82 mg, 88%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 157-159 °C

IR (KBr) v_{max} : 3051, 2988, 2924, 1719, 1639, 1595, 1488, 1448, 1337, 1146, 1084, 965, 758, 597, 507 cm⁻¹

16

¹**H** NMR (400 MHz, CDCl₃) δ 7.45-7.37 (m, 10H), 7.24 (s, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.55 (s, 1H), 4.50 (d, *J* = 14.5 Hz, 1H), 4.25 (d, *J* = 14.5 Hz, 1H), 2.68 (s, 3H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.8, 140.1, 138.5, 136.9, 134.9, 134.7, 132.59, 132.1, 131.6, 130.5, 130.0, 129.7, 129.0, 128.6, 128.5, 128.4, 126.4, 65.0, 39.7, 21.6. HRMS calcd for C₂₅H₂₇O₄N₂S₂ (M+NH₄⁺) 483.1412; found 483.1417.

2c, 4-(4-methoxyphenyl)-1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 85 mg, 88%

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

Melting point: 254-256 °C

IR (KBr) v_{max}: 3059, 2993, 2917, 2837, 1641, 1603, 1511, 1446, 1334, 1311, 1249, 1135, 1083, 957, 745, 530cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.41-7.31 (m, 7H), 7.18 (s, 1H), 7.17-7.14 (m, 1H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.47 (s, 1H), 4.54 (d, *J* = 14.5 Hz, 1H), 4.25 (d, *J* = 14.5 Hz, 1H), 3.85 (s, 3H), 2.68 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.1, 137.9, 136.8, 134.9, 133.8, 132.9, 132.5, 132.1, 130.5, 130.2, 130.1, 129.9, 129.1, 128.6, 128.3, 127.6, 114.4, 64.9, 55.5, 39.7. HRMS calcd for C₂₅H₂₄NO₅S₂ (M+H⁺) 482.1096; found 482.1095.

2d, 4-(4-methoxyphenyl)-1-(methylsulfonyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 91 mg, 92%

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

Melting point: 231-233 °C

IR (KBr) v_{max}:3422, 2921, 1603, 1511, 1333, 1293, 1251, 1137, 1086, 1026, 959, 828, 758, 559, 509cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.40-7.33 (m, 5H), 7.18 (s, 1H), 7.08 (d, *J* = 8.2 Hz, 3H), 6.95 (d, *J* = 8.7 Hz, 2H), 6.54 (s, 1H), 4.48 (d, *J* = 14.6 Hz, 1H), 4.25 (d, *J* = 14.6 Hz, 1H), 3.85 (s, 3H), 2.67 (s, 3H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 160.1, 144.8, 137.9, 136.8, 134.9, 132.7, 132.5, 132.0, 130.24, 130.22, 130.1, 129.9, 129.7, 128.41, 128.38, 127.6, 114.4, 65.0, 55.5, 39.7, 21.7. **HRMS** calcd for C₂₆H₂₆O₅NS₂ (M+H⁺) 496.1252; found 496.1268.

2e, 4-(4-bromophenyl)-1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 89 mg, 84 % $\mathbf{R_f} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 214-216 °C

IR (KBr) v_{max}:3061, 2993, 2921, 1639, 1585, 1482, 1445, 1403, 1337, 1309, 1244, 1155, 1133, 1080, 901, 743, 529cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 7.3 Hz, 2H), 7.56-7.52 (m, 3H), 7.45-7.33 (m, 5H), 7.31 (d, J = 8.6 Hz, 2H), 7.23 (s, 1H), 7.19-7.17 (m, 1H), 6.44 (s, 1H), 4.54 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.5 Hz, 1H), 2.68 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 137.9, 137.3, 136.9, 134.6, 133.9, 132.2, 131.9, 131.1, 130.8, 130.1, 129.2, 128.85, 128.3, 128.0, 122.8, 64.9, 39.8.

HRMS calcd for $C_{24}H_{21}BrNO_4S_2$ (M+H⁺) 532.0075; found 532.0073.

2f, 4-(4-bromophenyl)-1-(methylsulfonyl)-2-(tosylmethyl)-1*H*-benzo[*b*]azepine

White solid, 96 mg,88 %

 $\mathbf{R_f} = 0.4 (30\% \text{ ethyl acetate in hexanes})$

Melting point: 212-214 °C

IR (KBr) v_{max}⁻¹: 3064, 2986, 2921, 1596, 1487, 1341, 1315, 1248, 1157, 1135, 1083, 1004, 785, 505cm

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 7.42-7.36 (m, 3H), 7.32 (d, J = 8.6 Hz, 2H), 7.23 (s, 1H), 7.13-7.10 (m, 3H), 6.50 (s, 1H), 4.48 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.5 Hz, 1H), 2.68 (s, 3H), 2.37 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 144.9, 139.0, 137.3, 136.9, 135.0, 134.6, 132.2, 132.02, 131.9, 131.8, 131.0, 130.8, 130.1, 129.7, 128.6, 128.4, 128.0, 122.8, 64.9, 39.7, 21.7.

HRMS calcd for $C_{25}H_{23}O_4NBrS_2$ (M+H⁺) 544.0252; found 544.0243.

2g, 4-(4-fluorophenyl)-1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 76 mg, 81% $\mathbf{R_f} = 0.5$ (30% ethyl acetate in hexanes)

Melting point: 210-212 °C

IR (KBr) v_{max} : 3072, 2923, 2853, 1601, 1511, 1443, 1336, 1313, 1231, 1157, 1135, 1083, 1008, 840, 764, 520cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.3 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.44-7.33 (m, 7H), 7.20 (s, 1H), 7.18-7.16 (m, 1H), 7.11 (t, J = 8.6 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.5 Hz, 1H), 2.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.9, 137.4, 136.8, 134.7, 133.9, 132.5, 132.10, 131.6, 130.9, 130.5, 130.0, 129.1, 128.7, 128.3, 128.2, 128.2, 116.0 (d, *J* = 21.8 Hz), 64.9, 39.8. HRMS calcd for C₂₄H₂₁O₄NFS₂(M+H⁺) 470.0896; found 470.0888.

2h, 4-(4-fluorophenyl)-1-(methylsulfonyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 79 mg,82%

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (30% ethyl acetate in hexanes)

Melting point: 20-207 °C

IR (KBr) v_{max}: 3063, 2995, 2921, 1898, 1718, 1638, 1596, 1506, 1442, 1408, 1340, 1294, 1213, 1158, 1133, 903, 758, 505cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.3 Hz, 2H), 7.45-7.36 (m, 5H), 7.20 (s, 1H), 7.14-7.10 (m, 5H), 6.53 (s, 1H), 4.48 (d, J = 14.6 Hz, 1H), 4.25 (d, J = 14.6 Hz, 1H), 2.69 (s, 3H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, J = 249.1 Hz), 144.9, 137.4, 136.8, 136.2 (d, J = 3.0 Hz), 134.9, 134.7, 132.32, 132.0, 131.5, 130.7, 130.6, 130.0, 129.7, 128.5, 128.4, 128.2 (d, J = 8.2 Hz), 116.0 (d, J = 21.7 Hz) 64.9, 39.8, 21.7.

HRMS calcd for C₂₅H₂₂O₄NFNaS₂ (M+Na⁺) 506.0872; found 506.0883.

2i, 1-(methylsulfonyl)-2-[(phenylsulfonyl) methyl]-4-(p-tolyl)-1H-benzo[b]azepine

White solid, 73 mg, 78%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 163-165 °C

IR (KBr) ν_{max}: 3062, 2987, 2922, 1717, 1589, 1482, 1446, 1337, 1310, 1248, 1156, 1134, 962, 746, 524cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.52 (t, *J* = 7.5Hz, 1H), 7.42-7.31 (m, 7H), 7.24-7.22 (m, 3H), 7.18-7.16 (m, 1H), 6.47 (s, 1H), 4.55 (d, *J* = 14.5 Hz, 1H), 4.25 (d, *J* = 14.5 Hz, 1H), 2.67 (s, 3H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 138.2, 137.8, 137.2, 136.8, 134.8, 133.9, 132.9, 132.2, 131.0, 130.6, 130.2, 130.0, 129.7, 129.1, 128.6, 128.3, 126.3, 64.9, 39.7, 21.2. **HRMS** calcd for $C_{25}H_{23}O_4NNaS_2$ (M+Na⁺) 488.0966; found 488.0979.

2j, 1-(methylsulfonyl)-4-(p-tolyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 76 mg, 84%

 $\mathbf{R_f} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 186-188 °C

IR (KBr) ν_{max} : 3023, 2921, 1641, 1596, 1446, 1335, 1156, 1012, 964, 814, 761, 513cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.3 Hz, 2H), 7.41-7.33 (m, 5H), 7.24-7.22 (m, 3H), 7.11-7.07 (m, 3H), 6.54 (s, 1H), 4.49 (d, J = 14.5 Hz, 1H), 4.25 (d, J = 14.8 Hz, 1H), 2.67 (s, 3H), 2.39 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 138.7, 138.3, 137.2, 136.8, 134.9, 134.8, 132.7, 132.1, 130.8, 130.4, 129.9, 129.7, 128.4, 128.4, 126.3, 65.0, 39.7, 21.7, 21.2. HRMS calcd for C₂₆H₂₆O₄NS₂ (M+H⁺) 480.1303; found 480.1313.

2k, 1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-4-(m-tolyl)-1H-benzo[b]azepine

White solid, 79 mg, 85%

 $\mathbf{R_f} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 211-213 °C

IR (KBr) v_{max}: 3053, 2996, 2920, 1641, 1586, 1483, 1446, 1339, 1308, 1248, 1156, 1135, 1083, 1007, 957, 788, 745, 506 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.43-7.37 (m, 3H), 7.34- 7.29 (m, 3H), 7.22 (d, J = 6.42 Hz, 2H), 7.20-7.17 (m, 2H), 6.47 (s, 1H), 4.55 (d, J = 14.5 Hz, 1H), 4.25 (d, J = 14.5 Hz, 1H), 2.69 (s, 3H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.1, 138.8, 138.5, 137.9, 136.9, 134.8, 133.8, 132.9, 132.2, 131.5, 130.7, 130.2, 130.0, 129.4, 129.1, 128.9, 128.6, 128.4, 127.1, 123.5, 65.0, 39.8, 21.5. **HRMS** calcd for $C_{25}H_{24}O_4NS_2$ (M+H⁺) 466.1147; found 466.1141.

21, 1-(methylsulfonyl)-4-(m-tolyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 81mg, 90%

 $\mathbf{R_f} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 198-200 °C

IR (KBr) v_{max}:2923, 1719, 1631, 1596, 1461, 1407, 1335, 1153, 1085, 1015, 920, 816, 760, 667, 517cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 2H), 7.41-7.36 (m, 3H), 7.31-7.30 (m, 1H), 7.25-7.23 (m, 3H), 7.20 (d, J = 7.5 Hz, 1H), 7.12-7.08 (m, 3H), 6.54 (s, 1H), 4.50 (d, J = 14.5 Hz, 1H), 4.25 (d, J = 14.5 Hz, 1H), 2.68 (s, 3H), 2.41 (s, 3H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.8, 140.1, 138.8, 138.5, 136.8, 134.9, 134.8, 132.7, 132.1, 131.4, 130.5, 130.4, 130.0, 129.7, 129.4, 128.9, 128.5, 128.4, 127.1, 123.5, 65.0, 39.7, 21.7, 21.5. **HRMS** calcd for C₂₆H₂₅O₄NNaS₂ (M+Na⁺) 502.1123; found 502.1142.

2m, 4-[4-(tert-butyl)phenyl]-1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 87mg,86%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 172-174 °C

IR (KBr) v_{max}: 3062, 3028, 2961, 2930, 2868, 1721, 1631, 1482, 1444, 1406, 1338, 1317, 1152, 1082, 960, 762, 532cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.9 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.45-7.31 (m, 9H), 7.22 (s, 1H), 7.20-7.17 (m, 1H), 6.47 (s, 1H), 4.56 (d, *J* = 14.5 Hz, 1H), 4.24 (d, *J* = 14.5 Hz, 1H), 2.68 (s, 3H), 1.34 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 151.9, 138.2, 137.8, 137.1, 136.8, 134.8, 133.8, 132.9, 132.2, 131.1, 130.6, 130.1, 130.0, 129.1, 128.6, 128.4, 126.1, 126.0, 65.0, 39.7, 34.7, 31.3. **HRMS** calcd for $C_{28}H_{30}NO_4S_2$ (M+H⁺) 508.1616; found 508.1615.

2n, 4-[4-(tert-butyl) phenyl]-1-(methylsulfonyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 89 mg, 85%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 235-237 °C

IR (KBr) v_{max}: 3051, 2997, 2962, 2928, 2866, 1926, 1644, 1596, 1510, 1483, 1441, 1402, 1338, 1315, 1286, 1168, 1140, 1007, 967, 764, 549cm⁻¹

22

¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.35 (m, 9H), 7.22 (s, 1H), 7.12 (d, J = 7.5 Hz, 1H), 7.08 (d, J = 8.1 Hz, 2H), 6.53 (s, 1H), 4.50 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.5 Hz, 1H), 2.67 (s, 3H), 2.36 (s, 3H), 1.35 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 151.9, 144.8, 138.2, 137.2, 136.8, 134.8, 132.7, 132.1, 131.0, 130.4, 130.3, 130.0, 129.7, 128.4, 128.4, 126.1, 126.0, 65.0, 39.7, 34.7, 31.3, 21.7.

HRMS calcd for C₂₉H₃₂O₄NS₂ (M+H⁺) 522.1773; found 522.1754.

20, 7-chloro-1-(methylsulfonyl)-4-phenyl-2-[(phenylsulfonyl)methyl]-1H-benzo[b]azepine

White solid, 83mg, 86%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 201-203 °C

IR (KBr) v_{max}: 3056, 3004, 2926, 1635, 1587, 1478, 1444, 1344, 1305, 1165, 1083, 1002, 895, 766, 609, 511cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.7 Hz, 2H), 7.60-7.56 (m, 1H), 7.42-7.37 (m, 9H), 7.16-7.15 (m, 2H), 6.50 (s, 1H), 4.54 (d, J = 14.4 Hz, 1H), 4.23 (d, J = 14.4 Hz, 1H), 2.70 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.8, 139.7, 137.9, 136.2, 135.4, 134.6, 134.0, 133.5, 132.8, 130.9, 130.7, 130.2, 129.4, 129.2, 129.1, 129.0, 128.3, 126.5, 64.7, 39.9. **HRMS** calcd for $C_{24}H_{21}CINO_4S_2(M+H)$ 486.0601; found 486.0600.

2p, 7-chloro-1-(methylsulfonyl)-4-phenyl-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 82mg, 82%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 223-225 °C

IR (KBr) v_{max} : 3053, 3003, 2926, 1637, 1592, 1482, 1347, 1309, 1164, 1144, 1084, 767, 511 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 8.3 Hz, 2H), 7.43- 7.39 (m, 5H), 7.36 (d, J = 2.4 Hz, 1H), 7.32 (dd, J = 8.6, 2.4 Hz, 1H), 7.15-7.14 (m, 3H), 7.05 (d, J = 8.6 Hz, 1H), 6.59 (s, 1H), 4.46 (d, J = 14.5 Hz, 1H), 4.24 (d, J = 14.6 Hz, 1H), 2.69 (s, 3H), 2.40 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 145.1, 139.8, 139.6, 136.1, 135.4, 134.4, 133.2, 132.5, 131.0, 130.4, 129.9, 129.7, 129.3, 129.1, 128.9, 128.3, 126.4, 64.8, 39.8, 21.6.

HRMS calcd for C₂₅H₂₃O₄NClS₂ (M+H⁺) 500.0757; found 500.0751.

2q, 7-chloro-4-(4-methoxyphenyl)-1-(methylsulfonyl)-2-[(phenylsulfonyl)methyl]-1*H*-benzo[*b*]-azepine

White solid, 86mg, 83%

 $\mathbf{R_f} = 0.3$ (30% ethyl acetate in hexanes)

Melting point: 215-217 °C

IR (KBr) v_{max}: 3283, 3008, 2926, 2849, 1669, 1634, 1605, 1509, 1480, 1455, 1348, 1305, 1248, 1155, 1021, 740, 523cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.41-7.33 (m, 6H), 7.12 (d, J = 9.2 Hz, 1H), 7.08 (s, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.48 (s, 1H), 4.52 (d, J = 14.4 Hz, 1H), 4.23 (d, J = 14.4 Hz, 1H), 3.85 (s, 3H), 2.68 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.3, 139.2, 137.9, 136.3, 135.3, 134.5, 134.0, 133.4, 132.9, 132.0, 130.6, 130.3, 129.2, 128.6, 128.3, 127.7, 114.5, 64.8, 55.5, 39.9.

HRMS calcd for C₂₅H₂₆N₂O₅ClS₂(M+NH₄⁺) 533.0972; found 533.0975.

2r, 7-chloro-4-(4-methoxyphenyl)-1-(methylsulfonyl)-2-(tosylmethyl)-1H-benzo[b]azepine

White solid, 92mg, 87%

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (30% ethyl acetate in hexanes)

Melting point: 243-245 °C

IR (KBr) v_{max}: 2999, 2960, 2921, 2836, 1884, 1643, 1605, 1512, 1475, 1344, 1319, 1255, 1157, 1085, 818, 748, 514cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 2.4 Hz, 1H), 7.28 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.08 (s, 1H), 7.01 (d, *J* = 8.6 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.58 (s, 1H), 4.44 (d, *J* = 14.6 Hz, 1H), 4.24 (d, *J* = 14.6 Hz, 1H), 3.85 (s, 3H), 2.67 (s, 3H), 2.39 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 160.3, 145.1, 139.3, 136.2, 135.3, 134.9, 134.34, 133.1, 132.7, 132.0, 130.7, 130.1, 129.7, 129.2, 128.4, 128.4, 127.7, 114.5, 64.9, 55.5, 39.8, 21.7. **HRMS** calcd for C₂₆H₂₅O₅NClS₂ (M+H⁺) 530.0863; found 530.0888.

2.4. Isolation of the labile intermediate 7 and its conversion to benzoazepine 2d

A solution of the aza-enyne **1d** (99mg, 0.20 mmol) in dichloromethane (2 mL) was treated with (acetonitrile)[(2-biphenyl)di-*tert*-butylphosphine]gold(I) hexafluoroantimonate (3 mg, 0.004 mmol) for 12 h at 25 °C. The solvent was evaporated and the residue was chromatographed on a silica column using petroleum ether-ethyl acetate as eluent to afford the exocyclic benzoazepine **7** as a white solid.

7, (E)-4-(4-methoxyphenyl)-1-(methylsulfonyl)-2-(tosylmethylene)-2,3-dihydro-1*H*-benzo[*b*]-azepine

White solid, 87 mg, 88%

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (30% ethyl acetate in hexanes)

Melting point: 164-166 °C

IR (KBr) v_{max}: 3048, 2920, 1601, 1511, 1483, 1337, 1293, 1250, 1153, 1136, 1084, 1024, 956, 756, 506cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.45- 7.40 (m, 2H), 7.34-7.30 (m, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 3.6 Hz, 2H), 3.87 (s, 3H), 2.77 (s, 3H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.1, 156.7, 144.1, 141.0, 139.3, 137.0, 135.6, 131.8, 130.1, 129.9, 129.7, 129.4, 128.3, 127.8, 127.0, 125.2, 117.8, 114.3, 55.5, 39.2, 30.9, 21.6.

HRMS calcd for $C_{26}H_{26}O_5NS_2$ (M+H⁺) 496.1252; found 496.1253.

Benzoazepine 7 (50 mg, 0.10 mmol) was dissolved in dichloromethane (1 mL) and triethylamine (0.03 mL, 0.20 mmol) was added to the reaction mixture and it was stirred for a minute. Silica gel was added to the reaction mixture, the solvent was evaporated on a rotavapor and the residue was chromatographed on a silica column using petroleum ether-ethyl acetate as eluent to afford the benzoazepine **2d** (49 mg, 99%) as a white solid. It was identical in all respects with to the sample obtained in the one-pot procedure.

2.5. Preparation and cycloisomerization of the aliphatic 3-aza-1,6-enyne 8

Cesium carbonate (408 mg, 1.25 mmol)-mediated union of N-(but-3-ynyl)-4methylbenzenesulfonamide **9** (112 mg, 0.50 mmol) with bromoallyl sulfone **3b** (192 mg, 0.70 mmol) was carried out as described earlier (Section 2.1). The aliphatic enyne N-(but-3-ynyl)-4methyl-N-(3-tosylprop-1-en-2-yl)benzenesulfonamide **8** was obtained in 71% yield as a colorless liquid after chromatography.

8, N-(but-3-ynyl)-4-methyl-N-(3-tosylprop-1-en-2-yl)benzenesulfonamide

Colorless liquid, 148 mg, 71%

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (30% ethyl acetate in hexanes)

IR (KBr) v_{max}: 3286, 2925, 1923, 1630, 1597, 1451, 1348, 1319, 1160, 1087, 965, 816, 652, 549 cm⁻¹

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 5.53 (d, J = 1.2 Hz, 1H), 4.89 (d, J = 1.2 Hz, 1H), 4.17 (s, 2H), 3.39 (t, J = 7.94 Hz, 2H), 2.47-2.46 (m, 5H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 144.3, 136.1, 135.7, 133.2, 130.0, 129.5, 128.3, 128.0, 121.2, 80.8, 70.2, 62.8, 49.6, 21.7, 21.6, 18.7.

HRMS calcd for $C_{21}H_{24}NO_4S_2$ (M+H⁺) 418.1147; found 418.1149.

Gold-catalyzed cycloisomerization of **8** (83 mg, 0.2 mmol) was carried out in the presence of the catalyst (3 mg, 0.004 mmol) in 2 mL dichloromethane as described for the aromatic analogues. Exposure to triethylamine (0.06 mL, 0.40 mmol) and chromatography afforded the 4-methylene tetrahydropyridine derivative **10** as a white solid (63 mg, 75%).

10, 4-methylene-1-tosyl-6-(tosylmethyl)-1,2,3,4-tetrahydropyridine

White solid, 63 mg, 75% **R**_f = 0.5 (30% ethyl acetate in hexanes) **Melting point:** 121-123 °C **IR (KBr) v**_{max}: 3286, 2926, 1628, 1597, 1350, 1319, 1159, 1087, 815, 755, 549 cm⁻¹ ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.29-7.26 (m, 2H), 6.06 (s, 1H), 4.93 (s, 1H), 4.74 (s, 1H), 4.52 (s, 2H), 3.31-3.28 (m, 2H), 2.45 (s, 3H), 2.42 (s, 3H), 1.97-1.94 (m,2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 144.8, 144.3, 136.7, 136.1, 136.1, 129.9, 129.7, 128.6, 127.4, 126.8, 126.6, 115.5, 61.7, 46.7, 27.3, 21.7, 21.7. **HRMS** calcd for C₂₁H₂₄O₄NS₂ (M+H) 418.1147; found 418.1138.

3. Crystallographic data for 7 and 2r

Figure 1: The ORTEP diagram of 7 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Figure 2: The ORTEP diagram of **2r** with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Data collection: X-ray data for the two compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method.¹ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Unit cell dimensions were determined using 9568 reflections for 7 and 7113 reflections for 2r compounds data. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97² and refinement was carried out by full-matrix least-squares technique using SHELXL-2014/7.² Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H distances of 0.93--0.97 Å, and with U_{iso}(H) = 1.2U_{eq} (C) or 1.5U_{eq} for methyl atoms.

- SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- G. M. Sheldrick, SHELXS97 and SHELXL Version 2014/7, <u>http://shelx.uni-ac.gwdg.de/SHELX/index.php</u>

Compound reference	7	2r	
Chemical formula	C ₂₆ H ₂₅ NO ₅ S ₂	C ₂₆ H ₂₄ ClNO ₅ S ₂	
Formula Mass	495.59	530.03	
Crystal system	Monoclinic	Triclinic	
Space group	$P2_{1}/c$	PError!	
a/Å	13.9256(9)	9.7246(6)	
b/Å	10.3322(7)	11.0418(6)	
c/Å	17.0868(11)	12.8181(7)	
<i>α</i> /°	90	70.8320(10)	
β/°	94.6470(10)	71.9300(10)	
γ/°	90	88.3310(10)	
Unit cell volume/Å ³	2450.4(3)	1231.88(12)	
Temperature/K	293(2)	293(2)	
No. of formula units per unit cell, Z	4	2	
Radiation type	ΜοΚα	ΜοΚα	
Absorption coefficient, μ/mm^{-1}	0.255	0.363	
No. of reflections measured	22843	14559	
No. of independent reflections	4319	5780	
R _{int}	0.0207	0.0183	
Final R_I values $(I > 2\sigma(I))$	0.0469	0.0404	
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1193	0.1035	
Final R_1 values (all data)	0.0529	0.0463	
Final $wR(F^2)$ values (all data)	0.1243	0.1075	
Goodness of fit on F ²	1.084	1.026	
CCDC number	1446305	1446306	

CCDC 1446305 (7) and CCDC 1446306 (2r) contain the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://summary.ccdc.cam.ac.uk/structure-</u>

<u>summary-form</u> or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: <u>deposit@ccdc.cam.ac.uk</u>.

4. Variable temperature NMR study of the isomerization of 7 into 2d

It may be recalled that the structure of 7 has been unambiguously established by single crystal Xray analysis. Surprisingly, resonance corresponding to the endocyclic methylene group was not visible in the ¹H NMR spectrum of 7 whereas the ¹³C NMR and all other analytical data completely agreed with the assigned structure. A similar phenomenon was recently reported in closely related 2,3-dihydro-1*H*-azepine and 1*H*-azepin-2(3*H*)-one derivatives.⁵ This anomaly was explained by invoking the presence of rapidly inter-converting conformers in solution.⁵ To examine this further, variable temperature ¹H NMR of a sample of 7 was investigated in DMSOd6. However, rapid and partial isomerization of 7 to the more stable endocyclic isomer **2d** was observed in DMSO. Warming of the NMR sample up to 50 °C resulted in the increase of the ratio of **2d**. The isomerization does not proceed to completion in DMSO at 50 °C even after 1h. The relevant portions of selected ¹H NMR spectra are given in Figure 1. As described earlier (see section 2.4) isolated sample of 7 could be completely converted to the endocyclic benzoazepine 2d by treating with triethylamine. The variable temperature NMR studies lend additional support to this observation.

⁵ W. Zhu, L. Zhao and M.-X. Wang, J. Org. Chem., 2015, 80, 12047.

¹H NMR in DMSO at 40 °C (600 MHz): Mixture of 7 + 2d (appr. 1: 0.2): Exocyclic methylene resonances (*dd*) at d 4.80 and 4.38 of 2d begin to appear.

After 10 minutes at 50 °C. 7: 2d = 3:0.7

After 20 minutes at 50 °C. 7: 2d = 1:0.3

After 1 h at 50 °C: 7: 2d = 3:1

5. NMR spectra of new compounds

¹H NMR spectrum of 5a

¹³C NMR spectrum of 5a

¹³C NMR spectrum of 5b

¹³C NMR spectrum of 5c

¹³C NMR spectrum of 5d

¹³C NMR spectrum of 1a

¹³C NMR spectrum of 1b

¹³C NMR spectrum of 1c

¹³C NMR spectrum of 1d

¹³C NMR spectrum of 1e

¹³C NMR spectrum of 1g

¹³C NMR spectrum of 1h

¹H NMR spectrum of 1i

¹H NMR spectrum of 1j

¹³C NMR spectrum of 1j

¹H NMR spectrum of 1k

¹³C NMR spectrum of 1k

¹H NMR spectrum of 11

¹H NMR spectrum of 1m

¹³C NMR spectrum of 1m

¹H NMR spectrum of 1n

¹³C NMR spectrum of 1n

¹H NMR spectrum of 10

200

190 180

170

160 150

110 100 f1 (ppm) 90

80

70 60 50 40 30 20 10

0

120

140 130

¹H NMR spectrum of 1p

¹³C NMR spectrum of 1p

¹H NMR spectrum of 1r

190 180

2E+08

-1E+08

--1E+08

30 20

10 0

110 100 f1 (ppm)

¹H NMR spectrum of 1s

¹³C NMR spectrum of 1s

¹H NMR spectrum of 2a

¹H NMR spectrum of 2b

¹H NMR spectrum of 2c

¹H NMR spectrum of 2d

¹³C NMR spectrum of 2d

¹H NMR spectrum of 2e

¹³C NMR spectrum of 2e

¹H NMR spectrum of 2f

¹³C NMR spectrum of 2f

¹H NMR spectrum of 2g

¹H NMR spectrum of 2h

¹³C NMR spectrum of 2h

¹H NMR spectrum of 2i

¹³C NMR spectrum of 2i

¹H NMR spectrum of 2j

¹³C NMR spectrum of 2j

¹H NMR spectrum of 2k

¹³C NMR spectrum of 2k

¹H NMR spectrum of 2l

¹³C NMR spectrum of 21

¹H NMR spectrum of 2m

¹³C NMR spectrum of 2m

¹H NMR spectrum of 2n

¹³C NMR spectrum of 2n

¹H NMR spectrum of 20

¹³C NMR spectrum of 20

¹³C NMR spectrum of 2p

¹H NMR spectrum of 2q

¹³C NMR spectrum of 2q

¹H NMR spectrum of 2r

¹³C NMR spectrum of 2r

¹H NMR spectrum of 7

¹³C NMR spectrum of 7

¹H NMR spectrum of 8

¹H NMR spectrum of 10

¹³C NMR spectrum of 10

