Electronic Supplementary Information

N-Sulfanylethylanilide-based traceable linker for enrichment and selective labelling of target proteins

Takuya Morisaki,^a Masaya Denda,^a Jun Yamamoto,^a Daisuke Tsuji,^b Tsubasa Inokuma,^a Kohji Itoh,^b Akira Shigenaga,^{*ac} and Akira Otaka^{*a}

- a) Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
- b) Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
- c) PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

E-mail:

shigenaga.akira@tokushima-u.ac.jp (A. Shigenaga)

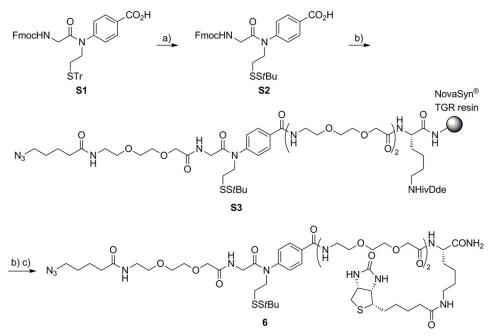
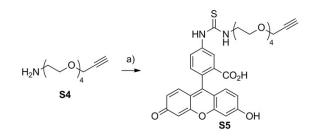
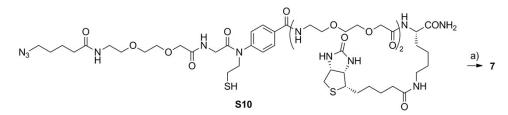
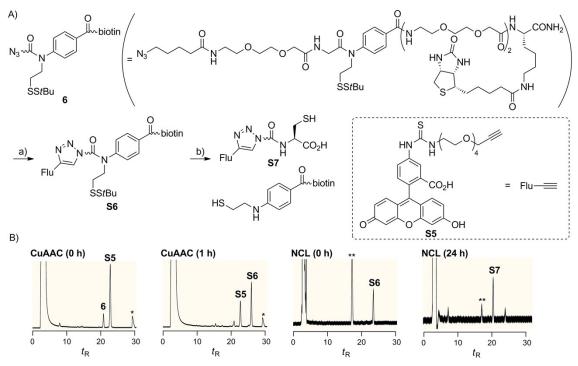

aotaka@ph.tokushima-u.ac.jp (A. Otaka)

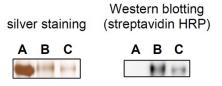
Table of Contents


Supplemental Schemes S1-S3 and Figures S1-S7	S2
General methods	S6
Synthesis of SEAlide-based traceable linker 6 as shown in Scheme S1	S6
Preparation of traceable linkers S8 and S9 and negative control linker 7	S7
Click chemistry of traceable linker 6 with alkynylated small molecule S5	
followed by linker cleavage with cysteine	S 8
Preparation of alkynylated BSA	S9
SDS-PAGE Conditions	S 9
Introduction of traceable linker 6, S8, S9 or negative control 7	
onto alkynylated BSA	S9
Adsorption on streptavidin beads followed by elution of BSA conjugate	S9
Enrichment and selective labelling of BSA in protein mixture	S10
References	S11

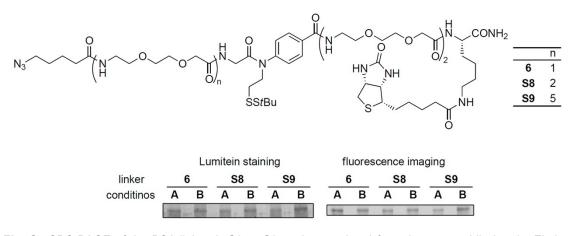
Abbreviations

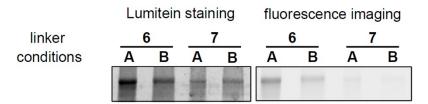

MPAA	4-mercaptophenylacetic acid
ТСЕР	tris(2-carboxyethyl)-phosphine hydrochloride


Scheme S1 Reagents and conditions: a) tBuSH, I₂, CH₂CI₂, 79%; b) Fmoc SPPS; c) TFA/triethylsilane/H₂O = 95/2.5/2.5 (v/v).

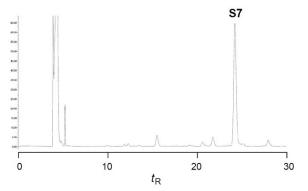

Scheme S2 Reagents and conditions: a) fluorescein 5-isothiocyanate, triethylamine, THF, EtOH, 93%.

Scheme S3 Reagents and conditions: a) methyl iodide, DIPEA, DMF, 19%.


Fig. S1 CuAAC of the traceable linker **6** followed by NCL. A) Reagents and conditions: **S5**, CuSO₄, Na ascorbate, TBTA, PBS, DMF (*Non-peptidic peak derived from reagents); b) MPAA, TCEP, Na phosphate buffer, NP40, 37 °C (**MPAA). B) Reaction profiles of the CuAAC and NCL. HPLC conditions for CuAAC: 0.1% (v/v) TFA in acetonitrile/0.1% (v/v) TFA aq., 30 to 40% over 30 min, detection by UV absorption (220 nm); HPLC conditions for NCL: 0.1% (v/v) TFA in acetonitrile/0.1% (v/v) TFA aq., 25 to 35% over 30 min, detection by UV absorption (220 nm).


Fig. S2 CuAAC of traceable linker **6** and alkynylated BSA. **A**: before CuAAC; **B**: after CuAAC with traceable linker **6**; **C**: after CuAAC with negative control **7**. Reagents and conditions: 3.2 μ M alkynylated BSA, 100 μ M traceable linker **6**, 1.0 mM CuSO₄, 1.0 mM Na ascorbate, 1% (w/v) SDS, 100 μ M TBTA, PBS, 1 h.

	Lumitein staining					fluorescence imaging						
phosphate/mM	10	1000 400 100		10	00	400		100				
conditions	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
	-	-		-	-	and a	-	10000	-	and a	1000	40.00


Fig. S3 SDS-PAGE of the BSA-traceable linker **6** conjugate eluted from the streptavidin beads. Elution conditions **A**: 100 μ M **8**, 50 mM MPAA, 40 mM TCEP, 0.1% SDS, Na phosphate buffer (concentration of the phosphate: 1000, 400 or 100 mM), pH 7.4, 37 °C, 24 h; elution conditions **B** for the elution of the proteins remaining on the beads after the application of conditions **A**: sample buffer, 100 °C, 5 min. Lumitein staining allowed for the visualization of all proteins as similar to silver staining. Fluorescence imaging, $\lambda_{ex} = 460$ nm, $\lambda_{em} > 515$ nm.

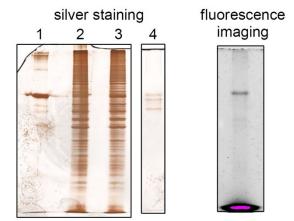

Fig. S4 SDS-PAGE of the BSA-linker **6**, **S8** or **S9** conjugate eluted from the streptavidin beads. Elution conditions **A**: 100 μ M **8**, 50 mM MPAA, 40 mM TCEP, 0.1% SDS, 400 mM Na phosphate buffer, pH 7.4, 37 °C, 24 h; elution conditions **B** for the elution of the proteins remaining on the beads after the application of conditions **A**: sample buffer, 100 °C, 5 min. Fluorescence imaging, λ_{ex} = 460 nm, λ_{em} > 515 nm.

Fig. S5 SDS-PAGE of the BSA-linker conjugate eluted from the streptavidin beads. Elution conditions **A** and **B** are shown in Figure S4 Fluorescence imaging, $\lambda_{ex} = 460$ nm, $\lambda_{em} > 515$ nm.

Fig. S6 An HPLC profile of the eluent from streptavidin beads. Following to adsorption of **S6** on streptavidin beads, the beads were treated with 100 μ M cysteine, 50 mM MPAA, 40 mM TCEP and 0.1% SDS in 400 mM Na phosphate buffer (pH 7.4) at 37 °C for 24 h. The obtained eluent was analyzed by HPLC and MS. HPLC conditions: 0.1% (v/v) TFA in acetonitrile/0.1% (v/v) TFA aq., 25 to 35% over 30 min, detection by fluorescence (λ_{ex} = 495 nm, λ_{em} = 520 nm)

Fig. S7 Enrichment and selective labelling of the alkynylated BSA in HCT116 cell lysate using traceable linker **6**. Details of the conditions are shown in the experimental section. Silver staining: lane 1: alkynylated BSA; Lane 2: lysate of HCT116 cells; Lane 3: a mixture of the alkynylated BSA and HCT116 cell lysate; Lane 4: eluted proteins after the CuAAC reaction of the mixture with **6**, adsorption of the biotinylated material onto streptavidin beads and the treatment of the beads with cysteine-fluorescein conjugate **8** in the presence of phosphate (elution by linker cleavage using elution conditions **A** shown in Figure S4); Fluorescence imaging: the sample applied to lane 4 was analyzed ($\lambda_{ex} = 460 \text{ nm}, \lambda_{em} > 515 \text{ nm}$).

General Methods

All reactions of small molecules were carried out under a positive pressure of argon. Column chromatography of the small molecules was performed using Silica Gel 60 N (spherical, neutral, Kanto Chemical Co., Inc.). Mass spectra were recorded on a Waters MICROMASS[®] LCT PREMIERTM (ESI-TOF) or a Bruker Esquire2000T (ESI-Ion Trap). NMR spectra were recorded using a Bruker AV400N at 400 MHz frequency for ¹H, and JEOL JNM-AL300 at 75 MHz frequency for ¹³C. Optical rotations were measured using a JASCO P-2200 polarimeter (concentration in g/100 mL). For HPLC separations, a Cosmosil 5C₁₈-AR-II analytical column (Nacalai Tesque, 4.6×250 mm, flow rate 1.0 mL/min), a Cosmosil 5C₁₈-AR-II semi-preparative column (Nacalai Tesque, 10×250 mm, flow rate 3.0 mL/min) or a Cosmosil 5C₁₈-AR-II preparative column (Nacalai Tesque, 20×250 mm, flow rate 10.0 mL/min) was employed, and eluting products were detected by UV absorption (220 nm) or fluorescence ($\lambda_{ex} = 495 \text{ nm}$, $\lambda_{em} = 520 \text{ nm}$). A solvent system consisting of 0.1% (v/v) TFA in H₂O and 0.1% TFA (v/v) in MeCN using linear gradient over 30 min was employed for HPLC elution. ECL signals from the western blot analysis and fluorescence were detected using a LAS-4000mini (Fujifilm). Composition of an SDS-PAGE sample loading buffer is as follow: 50 mM Tris-HCl, 2.0% (v/v) SDS, 6.0% (v/v) 2-mercaptoethanol, 10% (v/v) glycerol and 0.050% (w/v) bromophenol blue in H₂O.

Synthesis of SEAlide-based Traceable Linker 6 as Shown in Scheme S1

4-{2-([{(9H-fluoren-9-yl)methoxy}carbonyl]amino)-N-(2-[tert-

butylsulfinothioyl]ethyl)acetamido}benzoic acid (S2)

To a stirred solution of trityl derivative **S1**^{S1} (200 mg, 278 µmol) in CH₂Cl₂ (9.27 mL) were added *t*BuSH (156 µL, 1.39 mmol) and I₂ (529 mg, 4.17 mmol) at room temperature, and the mixture was stirred at same temperature for 1 h. Then 0.5 M Na₂S₂O₃ aq. was added to the resulting mixture until its dark red color disappeared. The obtained mixture was extracted with EtOAc, and the combined organic layer was dried over MgSO₄ and concentrated in vacuo. The product was purified by column chromatography (CHCl₃/MeOH = 100/0, 99/1, then 0/100 (v/v)) and 124 mg of **S2** (220 µmol, 79%) was obtained as white amorphousness: ¹H NMR (CDCl₃, 400 MHz) δ = 1.29 (9H, s), 2.85 (2H, t, *J* = 7.5 Hz), 3.81 (2H, s), 4.05 (2H, t, *J* = 6.8 Hz), 4.20 (1H, t, *J* = 6.8 Hz), 4.35 (2H, d, *J* = 7.3 Hz), 5.89 (1H, s), 7.30 (2H, t, *J* = 7.6 Hz), 7.35 (2H, d, *J* = 8.4 Hz), 7.39 (2H, t, *J* = 7.5 Hz), 7.75 (2H, d, *J* = 7.4 Hz), 8.12 (2H, d, *J* = 8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ = 30.0, 37.1, 43.8, 47.2, 48.2, 49.1, 67.6, 120.1, 125.3, 127.2, 127.9, 128.4, 132.2, 141.4, 143.9, 144.6, 156.7 ; HRMS (ESI-TOF) *m/z* calcd for C₃₀H₃₂N₂NaO₅S₂ ([M + Na]⁺) 587.1650, found 587.1631.

Preparation of traceable linker 6 via peptide resin S3

General Procedure: The peptides were synthesized using Fmoc-based solid phase peptide synthesis (Fmoc SPPS). Building blocks were coupled on NovaSyn[®] TGR resin (0.22 mmol amine/g). Reagents and solvents are listed below. All coupling reactions were performed for 2 h. Fmoc-removal was achieved using 20% (v/v) piperidine in DMF (10 min).

building block	reagents	solvent
S2 (2 eq.)	HATU (1.9 eq.), DIPEA (1.9 eq.)	DMF
(+)-biotin (5 eq.)	DIC (5 eq.), HOBt \cdot H ₂ O (5 eq.)	DMSO/DMF = 1/1 (v/v)
$N_3(CH_2)_4CO_2H^{S2}$ (5 eq.)	DIC (5.3 eq.), Oxyma Pure ^{S3} (5 eq.)	DMF
Others (3 eq.)	DIC (3.2 eq.), Oxima Pure (3 eq.)	DMF

Abbreviations. DIC: N,N'-diisopropylcarbodiimide; DIPEA: N,N-diisopropylethylamine; HATU: 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; HOBt: 1-hydroxybenzotriazole; Oxyma pure: ethyl cyanoglyoxylate-2-oxime.

For removal of an ivDde (1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl) group, the peptide resin was treated with 2% (v/v) hydrazine hydrate in DMF (twice for 2 h followed by once overnight). Following to completion of the peptide elongation, the resin was subjected to global deprotection using TFA/triethylsilane/H₂O (95:2.5:2.5 (v/v)) for 2 h at room temperature. After filtration of the resin and subsequent removal of TFA by N₂ flow, the obtained residue was neutralized by the addition of sat. NaHCO₃ aq. followed by solid NaHCO₃. The obtained mixture was dissolved in 33% (v/v) AcOH aq., and then purified by a preparative HPLC.

6: A white lyophilized powder; 41% yield; Analytical HPLC conditions: 10 to 90%. Retention time = 18.2 min; Preparative HPLC conditions: 36 to 46%; LRMS (ESI-Ion Trap) m/z calcd for $[M + H]^+$ 1256.5, found 1256.7.

Preparation of Traceable Linkers S8 and S9 and Negative Control Linker 7

Linkers **S8**, **S9** (Fig. S4) and **S10** (Scheme S3) were prepared as similar to traceable linker **6**. For preparation of negative control **7**, SEAlide **S1** was employed instead of **S2**. Then, methyl iodide (15 μ L, 0.24 mmol) and DIPEA (15 μ L, 86 μ mol) were added to a solution of **S10** (3.5 mg, 3.0 μ mol) in DMF (3.4 mL). The resulting mixture was stirred at room temperature for 1 h, and the obtained solution was purified by preparative HPLC to yield linker **7** (0.67 mg, 19% yield).

S8: A white lyophilized powder; 25% yield; Analytical HPLC conditions: 10 to 90%. Retention time = 16.3 min; Preparative HPLC conditions: 32 to 42%; LRMS (ESI-Ion Trap) m/z calcd for $[M + H]^+$ 1401.7, found 1401.8.

S9: A white lyophilized powder; 36% yield; Analytical HPLC conditions: 10 to 90%. Retention time = 16.0 min; Preparative HPLC conditions: 31 to 41%; LRMS (ESI-Ion Trap) m/z calcd for $[M + H]^+$ 1836.9, found 1836.4.

S10: A white lyophilized powder; 24% yield; Analytical HPLC conditions: 10 to 90%. Retention time = 14.2 min; Preparative HPLC conditions: 25 to 35%; LRMS (ESI-Ion Trap) m/z calcd for [M + H]⁺ 1168.5, found 1168.0.

7: A white lyophilized powder; Analytical HPLC conditions: 10 to 60%. Retention time = 18.9 min; Preparative HPLC conditions: 10 to 60%; LRMS (ESI-Ion Trap) m/z calcd for $[M + H]^+$ 1182.6, found 1182.6.

Click Chemistry of Traceable Linker 6 with Alkynylated Small Molecule S5 Followed by Linker Cleavage with Cysteine

Preparation of alkyne derivative S5: To fluoresceinisothiocyanate isomer-I (FITC) (70.1 mg, 180 μmol) were added **S4**^{S4} (50.0 mg, 216 μmol) in THF/EtOH (2/3 (v/v), 10.5 mL) and triethylamine (30.2 μL, 216 μmol) at 0 °C, and the resulting mixture was stirred at room temperature for 1 h. After evaporation, the resulting residue was purified by column chromatography (CHCl₃/MeOH = 98/2, 97/3, 90/10, then 0/100 (v/v)) and 104 mg of **S5** (168 μmol, 93%) was obtained as a yellow powder: ¹H NMR (CD₃OD, 400 MHz) δ = 2.81 (1H, t, *J* = 2.5 Hz), 3.63-3.81 (16H, m), 4.14 (2H, d, *J* = 2.5 Hz), 6.58 (2H, dd, *J* = 2.5 Hz and 8.8Hz), 6.71-6.73 (4H, m), 7.81 (2H, dd, *J* = 1.7 Hz and 8.3 Hz), 8.19 (2H, d, *J* = 1.8 Hz); ¹³C NMR (CD₃OD, 75 MHz) δ = 45.5, 59.0, 70.0, 70.1, 71.3, 71.43, 71.49, 71.54, 75.9, 80.6, 103.5, 112.1, 114.2, 126.1, 129.2, 130.6, 142.6, 154.7, 162.3, 170.8, 182.9; HRMS (ESI-TOF) *m/z* calcd for C₃₂H₃₂N₂NaO₉S ([M + Na]⁺) 643.1726, found 643.1706.

Click Chemistry: Traceable linker **6** in DMSO (6.0 mM, 66.6 μ L), alkyne **9** in PBS (1.25 mM, 400 μ L), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA)^{S5} in 20% (v/v) DMSO/tBuOH (1.7 mM, 118 μ L), CuSO₄ in water (50 mM, 40.0 μ L), sodium ascorbate in water (25 mM, 40.0 μ L), and PBS (416 μ L) were added to 1.00 mL of water (final concn.: 0.20 mM **6**, 0.25 mM **9**, 0.10 mM TBTA, 1.0 mM CuSO₄, 0.50 mM sodium ascorbate). After 1 h of the reaction at room temperature, reaction mixture was injected into a preparative HPLC to yield conjugate **S6**.

S6: A yellow lyophilized powder; 0.61 mg, 65% yield; Analytical HPLC conditions: 30 to 40%. Retention time = 25.5 min; Preparative HPLC conditions: 35 to 45%; LRMS (ESI-Ion Trap) m/z calcd for $[M + 2H]^{2+}$ 938.9, found 938.7.

Linker Cleavage via NCL: To sodium phosphate buffer (1.0 M, pH 7.5, 147.5 μ L) containing NP40 (1.0% (v/v)), TCEP·HCl (40 mM), MPAA (100 mM) and cysteine (5.0 mM) was added conjugate **5** in DMF (6.0 mM, 2.5 μ L, final concn. 0.10 mM). After incubation at 37 °C for 24 h under argon, completion of cleavage of the linker was confirmed using HPLC and the products were characterized by MS analyses.

S7: Analytical HPLC conditions: 25 to 35%. Retention time = 19.4 min; LRMS (ESI-Ion Trap) m/z calcd for $[M + H]^+$ 1069.4, found 1069.3.

Preparation of Alkynylated BSA

Starting from a commercially available BSA (6.6 mg), the alkynylated BSA was prepared according to the literature.^{S6} Briefly, *N*-(1-propynyl)maleimide was added to BSA in PBS (final concentration: 20 μ M BSA; 2 mM maleimide). After stirring for 12 h, the protein was purified by acetone precipitation and was dissolved in PBS with 0.1% SDS (1.32 mL) for the following experiments.

SDS-PAGE Conditions

After addition of SDS-PAGE sample loading buffer followed by heating at 100 °C for 5 min, the reaction mixture was analyzed using SDS-PAGE in 10% polyacrylamide gels. For the chemiluminescence imaging of the biotinylated proteins, the proteins were transferred to Amersham Hybond-P PVDF Membrane (GE Healthcare) and detected with a SAv-HRP (GE Healthcare) and ECL plus Western Blotting Detection System (GE Healthcare). For visualization of all proteins, silver stain KANTO III (KANTO CHEMICAL CO., INC.) or LumiteinTM Protein Gel Stain (Nacalai Tesque) was employed.

Introduction of Traceable Linker 6, S8, S9 or negative control 7 onto Alkynylated BSA

Click Chemistry: To a mixture of PBS (540 μ L) and water (437 μ L) were added the alkynylated BSA in PBS with 0.1% SDS (5.0 g/L, 200 μ L), traceable linker **6**, **88**, **S9** or negative control linker **7** in DMSO (6.0 mM, 25.0 μ L), TBTA in 20% (v/v) DMSO/*t*BuOH (1.7 mM, 88.0 μ L), CuSO₄ aq. (50 mM, 30.0 μ L), sodium ascorbate aq. (50 mM, 30.0 μ L), and SDS aq. (10% (w/v), 150 μ L) (final concn.: 0.50 g/L alkynylated BSA, 0.10 mM **6**, **88**, **S9** or **7**, 0.10 mM TBTA, 1.0 mM CuSO₄, 1.0 mM sodium ascorbate, 1% (w/v) SDS). After the reaction at room temperature for 1 h, small molecules were removed by acetone precipitation.

Adsorption on Streptavidin Beads Followed by Elution of BSA Conjugate

Adsorption on Streptavidin Beads: After the click chemistry, Pierce[®] Streptavidin UltraLink[®] Resin (50 μL, Thermo SCIENTIFIC) was added to the reaction mixture containing ca. 100 μg BSA and its derivatives in PBS with 0.1% SDS (200 μ L). After the adsorption at room temperature for 1 h, the resulting resin was washed with 0.1% SDS in PBS five times and it was subjected to subsequent reactions.

Elution of BSA Conjugate by Linker Cleavage: To the resulting streptavidin beads was added FTC-derivative 8 (10 mM, 2.0 μ L, final concn. 0.10 mM) in sodium phosphate buffer (0.40 M, pH 7.4, 198 μ L) containing SDS (0.1%), Gn·HCl (6.0 M), TCEP·HCl (40 mM) and MPAA (50 mM). The reaction was conducted at 37 °C for 24 h under argon. After centrifugation of the resulting mixture (2000 rpm, 2 min), supernatant was collected and the precipitate was suspended in 100 μ L PBS with 0.1% SDS. The suspension was subjected to centrifugation (2000 rpm, 2 min) again and the obtained supernatant was combined with the first one.

Elution of Proteins Remaining on Streptavidin Beads by Denaturation: The resin obtained after the linker cleavage as mentioned above was suspended in 2 × SDS-PAGE sample loading buffer (25 μ L) and water (25 μ L), and the mixture was heated at 100 °C for 5 min. After centrifugation as mentioned in the section "Elution of BSA Conjugate by Linker Cleavage", the combined supernatant was concentrated by ultrafiltration (Amicon[®] Ultra-0.5, Ultracel-10 Membrane, 10 kDa, Merk Millipore, 14000 × g, 15 min) and analyzed using SDS-PAGE.

Structural Analysis of Eluted Target: In this experiment, **S6** was employed instead of the BSAtraceable linker conjugate. Adsorption of **S6** on streptavidin beads was performed as mentioned above (5.34 μ L **S6** (3 mM in DMSO), 20 μ L beads and 200 μ L PBS). Then the beads were treated with 100 μ M cysteine, 50 mM MPAA, 40 mM TCEP and 0.1% SDS in 400 mM Na phosphate buffer (pH 7.4) at 37 °C for 24 h. Then the eluent was analysed by HPLC. Analytical HPLC conditions: 25 to 35%. Retention time of **S7**= 22.4 min; LRMS (ESI-Ion Trap) *m/z* calcd for [M + 2H]⁺ 535.2, found 535.2.

Enrichment and Selective Labelling of BSA in Protein Mixture

Preparation of the protein mixture: A lysate of red blood cells (BIZCOM JAPAN) in PBS was prepared according to a protocol on vender's website.^{S7} To the lysate (1.1 mL) was added the alkynylated BSA in PBS with 0.1% SDS (20 μ L) and the obtained mixture was used for the following experiments. For preparation of a lysate of HCT116 cells, HCT116 cells were cultured in DMEM (Dulbecco's modified Eagle medium) containing 10% fetal bovine serum and antibiotics (100 U/mL penicillin G and 100 μ g/mL streptomycin) at 37 °C in a humidified incubator continuously flushed with a mixture of 5% CO₂-95% air. The cells were washed twice with cold PBS, harvested, and then sonicated in HEPES buffered saline (HBS). The cell extracts were

centrifuged at 20,000 × g for 10 min at 4 °C. Protein concentration of resultant supernatants was determined with a DC protein assay kit (Bio-Rad) with BSA as the standard. To the obtained protein mixture (4.26 mg/mL, 100 μ L) was added the alkynylated BSA in PBS with 0.1% SDS (2.6 μ L) and the obtained mixture was used for following experiments.

Click Chemistry in the Red Blood Cell Lysate: To the alkynylated BSA in the red blood cell lysate (1.12 mL) were added traceable linker **6** in DMSO (6.0 mM, 25 μ L), TBTA in 20% (v/v) DMSO/*t*BuOH (1.7 mM, 88 μ L), CuSO₄ aq. (50 mM, 30 μ L), sodium ascorbate aq. (50 mM, 30 μ L), SDS aq. (10% (w/v), 150 μ L) and PBS (57 μ L) (final concon.: 0.10 mM **6**, 0.10 mM TBTA, 1.0 mM CuSO₄, 1.0 mM sodium ascorbate, 1% (w/v) SDS). Following to reaction at room temperature for 1 h, the reagents were removed by acetone precipitation. Then, the obtained precipitate was dissolved in 0.1% SDS in PBS (1.2 mL) for the following experiments.

Click Chemistry in the Lysate of HCT116 Cells: To the alkynylated BSA in the lysate of HCT116 cells (102.6 μ L) were added traceable linker 6 in DMSO (6.0 mM, 3.3 μ L), TBTA in 20% (v/v) DMSO/*t*BuOH (1.7 mM, 11.6 μ L), CuSO₄ aq. (50 mM, 4.0 μ L), sodium ascorbate aq. (50 mM, 4.0 μ L), SDS aq. (10% (w/v), 19.8 μ L) and PBS (52.7 μ L) (final concon.: 0.10 mM 6, 0.10 mM TBTA, 1.0 mM CuSO₄, 1.0 mM sodium ascorbate, 1% (w/v) SDS). Following to reaction at room temperature for 1 h, the reagents were removed by acetone precipitation. Then, the obtained precipitate was dissolved in 0.1% SDS in PBS (600 μ L) for the following experiments.

Adsorption on Streptavidin Beads Followed by Cleavage: It was performed as similar to that described in a section "Adsorption on Streptavidin Beads Followed by Elution of BSA Conjugate".

Enrichment without Linker Cleavage as Similar to Conventional Linkers: After adsorption of the protein mixture on streptavidin beads, the proteins on the beads were eluted and analyzed as mentioned in a section "Elution of Proteins Remaining on Streptavidin Beads".

References

- S1 S. Tsuda, A. Shigenaga, K. Bando, A. Otaka, Org. Lett. 2009, 11, 823–826.
- S2 W. Shi, S. Dolai, S. Averick, S. S. Fernando, J. A. Saltos, W. L'Amoreaux, P. Banerjee, K. Raja, *Bioconjugate Chem.* 2009, 20, 1595–1601.
- S3 R. Subiros-Funosas, S. N. Khattab, L. Nieto-Rodriguez, A. El-Faham, F. Albericio, *Aldrichimica Acta* 2013, 46, 21–40.
- S4 R. P. Murelli, A. X. Zhang, J. Michel, W. L. Jorgensen, D. A. Spiegel, J. Am. Chem. Soc. 2009, 131, 17090-17092.

- S5 a) K. Asano, S. Matsubara, Org. Lett. 2010, 12, 4988–4991; b) T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853–2855.
- S6 S. Lee, W. Wang, Y. Lee, N. S. Sampson, Org. Biomol. Chem. 2015, 13, 8445-8452.
- S7 A lysate of red blood cells was prepared using sonication according to a vendor's protocol.
 See, "http://www.gelifesciences.co.jp/technologies/protein_preparation/lysis.html" (accessed December 6, 2014).