Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries

Yang Li, Ka-Wai Wong* and Ka-Ming Ng

Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

*Corresponding Author: Ka-Wai Wong (wongkw@ust.hk)

Supporting Information

Experimental details

A. Synthesis

(i) Synthesis of mesoporous silica nanoparticles (MSNs): Firstly, *n*-cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74×10^{-3} mol) was dissolved in 480 mL of deionized water. NaOH (aq) (2.00 M, 3.50 mL) was added to CTAB solution, followed by adjusting the solution temperature to 80 °C. Tetraethyl orthosilicate (TEOS, 5.00 mL, 2.57×10^{-2} mol) was added dropwise to the CTAB solution. The mixture was allowed to stir for 2 h to give rise to white precipitates, then the solid product was filtered, washed with DI water and methanol, and dried in air.¹

(ii) Synthesis of MSN-IL-TFSI: The IL precursor (1-methyl-3-trimethoxysilane imidazolium chloride) was synthesized by the reaction between 1-Methylimidazole and (3-chloropropyl)trimethoxysilane at 80 °C for 2 days. The solution was purified via liquid extraction in ether and the solvent was finally evaporated. To graft IL to MSNs, a simple water-based chemistry was used. In a typical reaction, MSNs were dispersed in deionized water to create a 1 wt% aqueous suspension. Then 1.5 times excess IL precursor was added dropwise to the aqueous suspension and the mixture was heated at 80 °C for 12 h with continuous stirring. Subsequently, water in the mixture was evaporated, and the resultant MSN-IL-TFSI was washed with ethanol and acetone by centrifugation. The sample was freeze-dried to remove the final trace of solvent.

A ion exchange reaction was used in room temperature to substitute the chloride ion with bis(trifluoromethanesulfone imide) (TFSI) anion. In a typical reaction, 4 g MSN-IL-TFSI and 8 g LiTFSI salt were dissolved in 50 ml water separately, and LiTFSI solution was added to MSN-IL-TFSI solution with continuous stirring. Due to the hydrophobic nature of the TFSI anion, the MSN-IL-TFSI immediately separates from the water phase and settle to the bottom of vessel. The resultant MSN-IL-TFSI was

harvested from solution by repeated washing with deionized water and centrifugation, and finally dried. The product was re-dispersed in acetone to remove the partially exchanged MSN-IL-Cl composition, and then dried to remove the final traces of water.

(iii) Preparation of MSN-IL-TFSI/LiTFSI mixtures: Both MSN-ILTFSI and LiTFSI salt were dissolved separately in acetone. The desired amount of MSN-IL-TFSI solution was added to the LiTFSI solution, and the mixtures were sonicated to form a uniform phase. The samples were subsequently dried at 50 °C for 2 days and the final trace of water removed by drying for another 2 days in a vacuum oven at 45 °C.²

B. Characterization

The photomicrographs of MSNs and MSN-IL-TFSI samples were taken by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) with a JEM 100CXII (JEOL, US) and a JEM 2010 (JEOL, US) transmission electron microscopes, respectively. Thermogravimetric (TGA) analysis of various mixtures with different content of MSN-IL-TFSI was performed under nitrogen atmosphere at a rate of 10 °C/min with a Perkin Elmer UNIX/TGA7 system. Fourier transform infrared spectrophotometer (FTS6000, Bio-Rad, US) was used to confirm the successful tethering of IL on MSNs. The particle size distribution was measured by a Brookhaven 90Plus/BI-MAS Multi Angle Particle Size Analyzer. Surface area and pore size distribution of MSNs were tested by nitrogen adsorption-desorption isotherms using a Beckman Coulter SA3100 Surface Area Analyzer.

The electrochemical stability window was examined using an Autolab PGSTAT100 electrochemical workstation at a scan rate of 1 mV s⁻¹. Temperature dependence ionic conductivity was determined by impedance spectroscopy measurements, using a same electrochemical workstation, carried out from 20 °C to 90 °C with an incubator. A 10 mV amplitude signal was applied to two blocking stainless-steel electrode cells (loaded with the MSN-IL-TFSI/LiTFSI samples) with frequency range from 100 kHz to 10 Hz. The lithium ion transference number was also performed on a same electrochemical workstation in the frequency range from 10⁻² to 10⁶ Hz at room temperature.³ A fixed protocol was used in the galvanostatic cycling test wherein cell was periodically charged and discharged at a constant current density of 0.1 mA cm⁻² and 2 mA cm⁻² by a Neware CT-4008 battery tester.

Electronic Supplementary Material (ESI) for ChemComm. The journal is © The Royal Society of Chemistry 20xx

C. Experimental results

Table S1: Particle size distribution, pore size distribution and surface area of silica nanoparticles and hybrid materials.

Sample	PSD ^a (nm)	$D_{BJH}^{b}(nm)$	$S_{BET}^{c}(m^{2}/g)$	
SiO ₂	15.9	\	121	
SiO ₂ -IL-Cl	6.4	\	\	
SiO ₂ -IL-TFSI	4.8	\	\	
MSN ₁	215.4	2.5	1046	
MSN ₁ -IL-Cl	147.0	\	\	
MSN ₁ -IL-TFSI	128.7	\	\	
MSN ₂	71.1	2.9	837	
MSN ₂ -IL-Cl	62.1	\	\	
MSN ₂ -IL-TFSI	45.9	\	\	

Particle size distribution (^aPSD) was determined by a particle size analyzer with a concentration of 1 g/L. ^bD_{BJH} is the pore diameter calculated from the BJH theoretical model. ^cS_{BET} is the specific surface area measured from N₂ physisorption.

Fig. S1: FT-IR spectra for (a) MSN₁-IL-Cl, MSN₁-IL-TFSI and (b) MSN₂-IL-Cl, MSN₂-IL-TFSI. MSN₁, MSN₂, IL precursor and LiTFSI are provided as reference.

Fig. S2: TGA curves for various (a) MSN_1 -IL-TFSI/LiTFSI and (b) MSN_2 -IL-TFSI/LiTFSI systems under N_2 atmosphere at a rate of 10 °C/min from room temperature to 600 °C.

As shown in both TGA, residual acetone and absorbed water gradually evaporated upon heating. While some solvent or water molecules are tightly trapped within mesopores, higher temperature (up to >200 °C) should be required to drive them all completely. Afterwards, the ionic liquid 1-methyl-3-propylimidazolium bis (trifluoro-methylsulfonyl)imide grafted decomposed at around 450 °C, leaving behind MSNs.

Electronic Supplementary Material (ESI) for ChemComm. The journal is © The Royal Society of Chemistry 20xx

Fig. S3: Ionic conductivities of various weight fractions of SiO₂-IL-TFSI in SiO₂-IL-TFSI/LiTFSI blends as a function of temperature. Inset: isothermal ionic conductivities of SiO₂-IL-TFSI/LiTFSI systems as a function of SiO₂-IL-TFSI weight fraction at 50 °C.

Fig. S4: I–V diagram obtained from linear-sweep voltammetry of 13.4 wt% SiO₂-IL-TFSI/LiTFSI in a symmetric lithium metal cell. The measurement was performed at a scan rate of 1 mV s⁻¹ at room temperature.

Table S2: VFT fitting parameters of ionic conductivities and lithium ion transferencenumber (t_{Li}^+) for SiO₂-IL-TFSI/LiTFSI, MSN₁-IL-TFSI/LiTFSI, MSN₂-IL-TFSI/LiTFSI.

Weight fraction (wt%)	VFT Fitting Parameters			t+			
weight in action (wt 70)	A (S cm ⁻¹)	B (K)	T ₀ (K)	ιLi			
SiO ₂ -IL-TFSI/LiTFSI							
5	0.0078	303	245	0.31			
11	0.011	288	241	0.49			
13.4	0.2	1435	82	0.56			
20	0.0057	445	211	0.20			
50	0.0012	371	201	-			
MSN ₁ -IL-TFSI/LiTFSI							
5	0.018	316	245	0.46			
11	1.15	876	197	0.80			
13.4	0.15	487	228	0.71			
20	0.0084	191	271	0.31			
50	0.0069	146	295	-			
MSN ₂ -IL-TFSI/LiTFSI							
5	0.081	553	208	0.51			
11	1.28	954	180	0.82			
13.4	0.23	560	215	0.75			
20	0.069	605	202	0.38			
50	0.0036	102	292	-			

References

- C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S.-Y. Lin, *J. Am. Chem. Soc.*, 2003, **125**, 4451-4459.
- Y. Lu, S. S. Moganty, J. L. Schaefer and L. A. Archer, *J. Mater. Chem.*, 2012, 22, 4066-4072.
- 3. H.-B. Han, K. Liu, S.-W. Feng, S.-S. Zhou, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, H. Matsumoto and M. Armand, *Electrochim. Acta*, 2010, **55**, 7134-7144.