Electronic Supplementary Information

Insertion of CO₂ into the Carbon-Boron Bond of a Boronic Ester Ligand

Trevor Janes, Kimberly M. Osten, Adam Pantaleo, Ellen Yan, Yanxin Yang, and Datong Song*

Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto

80 St. George Street, Toronto, Ontario, Canada M5S 3H6. Email: dsong@chem.utoronto.ca

Fax: +1 416 978 7013; Tel: +1 416 978 7014

Contents

1.	General Procedures
2.	Syntheses
3.	Regeneration of 2a
4.	Catalytic Experiments
5.	X-ray Crystallography
6.	Computations
7.	NMR Spectra
8.	IR Spectra
9.	References

1. General procedures. RuHCl(CO)(PPh₃)₃,¹ diazafluorene,² Mes₂nacnacH³ were prepared from literature methods. All operations were performed using Schlenk techniques under dinitrogen or in a dinitrogen-filled glovebox. All glassware was either flame-dried or dried overnight in a 180 °C oven prior to use except for J. Young NMR tubes which were dried overnight in a 60 °C oven. Grade 4.0 carbon dioxide was purchased from Linde. THF, Et₂O, and toluene were distilled from Na/benzophenone under dinitrogen. Pentane, hexanes, C₆D₆, and toluene-d₈ were distilled from sodium under dinitrogen. C₆D₅Br was degassed using three freeze-pump-thaw cycles and dried over 3 Å molecular sieves. All solvents were then stored over 3 Å molecular sieves prior to use. HBpin and HBcat were purchased from Aldrich and used as received unless otherwise stated. IR spectra were collected on a Perkin-Elmer Spectrum One FT-IR spectrometer. ¹H, ³¹P, ¹³C, and ¹¹B NMR spectra were recorded on a Varian 400 MHz, Agilent DD2 500 MHz, or Agilent DD2 600 MHz spectrometer. All chemical shifts are reported in ppm relative the residual protio-solvent peaks (for C₆D₅Br these are the *meta-H* at 7.28 ppm and the *ipso-C* at 122.4 ppm), ³¹P NMR signals are referenced externally using 85% H₃PO₄, and ¹¹B NMR signals are referenced externally using 85% H₃PO₄, and ¹¹B NMR signals are referenced externally using BF₃(OEt₂). Elemental analyses were performed by ANALEST at the University of Toronto.

2. Synthesis of Compounds 1a-3b.

Chart S1. Labeling scheme for NMR assignments of Ru compounds.

Synthesis of 1a: Diazafluorene (60 mg, 0.36 mmol) was added to a suspension of NaH (25 mg, 1.0 mmol) in THF (5 mL). The mixture was stirred for 90 min after which it was filtered and slowly added to a suspension of RuHCl(CO)(PPh₃)₃ (352 mg, 0.37 mmol) in THF (30 mL) over a period of ca. 20 min. The purple mixture was stirred at room temperature for 12 h and the solvent was removed under reduced pressure. The residue was extracted with toluene (50 mL), filtered through Celite and volatiles were removed in *vacuo*. THF (15 mL) was added to dissolve the product and pentane (50 mL) was layered on top. After cooling to -25 °C; the purple precipitate that separated was collected on a fritted funnel and washed with Et₂O (3 x 2 mL). The powder on the frit was then dissolved in THF, filtered, and the THF was removed. The residue was suspended in pentane (15 mL)

and collected on a fritted funnel, where it was washed with pentane (10 mL) and dried *in vacuo*. (174 mg, 0.212 mmol, 59%). ¹H NMR (500 MHz, Benzene-*d*₆) δ 7.96 (d, *J* = 4.6 Hz, 1H, Dz-*C*₍₃₎*H*), 7.73 (d, *J* = 8.0 Hz, 1H, Dz-*C*₍₁₎*H*), 7.62 (d, *J* = 8.1 Hz, 1H, Dz-*C*_(1')*H*), 7.41–7.32 (m, 12H, PPh₃-*H*), 7.03 (dd, *J* = 4.7, 1.0 Hz, 1H, Dz-*C*_(3')*H*), 6.91–6.80 (m, 18H, PPh₃-*H*), 6.69 (dd, *J* = 8.2, 4.6 Hz, 1H, Dz-*C*₍₂₎*H*), 6.47 (s, 1H, Dz-*C*₍₉₎*H*), 6.20 (dd, *J* = 8.1, 4.7 Hz, 1H, Dz-*C*_(2')*H*), -11.54 (t, *J* = 19.7 Hz, 1H, Ru-*H*).¹³C NMR (126 MHz, Benzene-*d*₆) δ 206.65 (Ru-*C*O, observed only via HMBC cross peak with Ru-*H*) 140.28 (Dz-*C*_(4')), 140.10 (Dz-*C*₍₄₎), 136.22 (Dz-*C*₍₃₎*H*), 136.09 (Dz-*C*_(3')*H*) 133.77 (t, *J* = 5.9 Hz, PPh₃), 133.62 (t, *J* = 21.3 Hz, PPh₃), 129.47 (PPh₃) 127.91 (PPh₃), 127.47 (Dz-*C*_(5')), 127.09 (Dz-*C*₍₅₎), 125.14 (Dz-*C*₍₁₎*H*), 124.86 (Dz-*C*_(1')*H*), 117.58 (Dz-*C*_(2')*H*), 117.50 (Dz-*C*₍₂₎*H*), 81.71 (Dz-*C*₍₉₎*H*). ³¹P NMR (202 MHz, Benzene-*d*₆) δ 48.56. Anal. Calcd for C₄₈H₃₈N₂OP₂Ru: C, 70.15; H, 4.66; N, 3.41. Found: C, 70.03; H, 4.68; N, 3.27. IR (nujol mull): v(CO) 1918 cm⁻¹.

Synthesis of 2a: To 1a (100 mg, 0.12 mmol) dissolved/suspended in toluene (4 mL) was added a solution of pinacolborane (140 mg, 1.1 mmol) dissolved in toluene (4 mL), The resulting purple mixture was heated to 100 °C in a bomb sealed with a Teflon stopcock for 24 h, causing a colour change to pink. Volatiles were removed under reduced pressure. The residue was dissolved in toluene and the solution was concentrated until precipitate began to form. Pentane (5 mL) was layered on top and the mixture cooled to -25 °C for two days. The precipitate was collected on a frit and washed minimally with cold toluene and thoroughly with pentane. After drying under vacuum a pink powder was obtained (72 mg, 0.076 mmol, 63%). Single crystals for X-Ray analysis were grown by diluting a C_6D_6 solution with hexanes and cooling to -25 °C. The analytical sample was recrystallized an additional time. ¹H NMR (500 MHz, Benzene- d_6) δ 8.56 (d, J = 7.9 Hz, 1H, Dz- $C_{(1)}H$), 8.45 (d, J = 8.0 Hz, 1H, Dz- $C_{(1')}H$), 7.91 (d, J = 4.7 Hz, 1H, Dz- $C_{(3)}H$), 7.36–7.31 (m, 12H, PPh₃), 6.92 (dd, J = 4.9, 1.0 Hz, 1H, Dz- $C_{(3.9)}H$), 6.86 (t, J = 7.2 Hz, 6H, PPh₃), 6.81 (t, J = 7.2 Hz, 12H, PPh₃), 6.76 (dd, J = 8.1, 4.7 Hz, 1H, Dz- $C_{(2)}H$), 6.26 (dd, J = 8.1, 4.9 Hz, 1H, Dz- $C_{(2')}H$), 1.36 (s, 12H, pin-CH₃), -11.68 (t, J = 19.8 Hz, 1H, Ru-H). ¹³C NMR (126 MHz, Benzene- d_6) δ 206.31 (Ru-CO, observed only via HMBC cross peak with Ru-H) 144.95 (Dz- $C_{(4')}$), 144.69 (Dz- $C_{(4)}$), 138.26 (Dz- $C_{(3)}H$), 138.14 (Dz- $C_{(3')}H$), 135.25 (Dz- $C_{(5')}$), 134.73 (Dz- $C_{(5)}$), 133.71 (t, J = 5.9 Hz, PPh₃), 133.54 (t, J = 21.3 Hz, PPh₃), 129.51 (PPh₃), 128.46 (Dz- $C_{(1)}H$), 128.27 (overlapped with solvent signal, $Dz-C_{(1)}H$, 127.97 (t, J = 4.7 Hz, PPh₃), 119.09 ($Dz-C_{(2)}H$), 118.89 ($Dz-C_{(2)}H$), 81.33(pinC-O), 25.55 (pinCH₃). We didn't observe a signal due to $Dz-C_{(9)}$ due to broadening caused by the bound quadrupolar ¹¹B nucleus.^{4 31}P NMR (202 MHz, Benzene- d_6) δ 48.47. ¹¹B NMR (128 MHz, Benzene- d_6 , 25 °C) δ 31.30. Anal. Calcd for C₅₄H₄₉N₂O₃BP₂·0.5(C₇H₈): Note: the ratio of **2a**

to toluene was determined by integration of the ¹H NMR spectrum C, 69.49; H, 5.38; N, 2.82. Found: C, 69.63; H, 5.29; N, 2.79. IR (nujol mull): v(CO) 1936 cm⁻¹.

Synthesis of 3a: 2a (60 mg, 0.060 mmol) was dissolved in toluene (6 mL) and Et₂O (6 mL). The solution was transferred to a Schlenk flask capped with a rubber septum. CO₂ gas (4.5 mL, 0.18 mmol) was syringed into the flask above the solution. The flask was sealed with tape and left in the glovebox freezer (-25 °C) for 16h, which brought about a colour change from pink to orange. Removal of volatiles yielded a brown oil which solidified upon standing. Pentane (3 mL) was added and the mixture was triturated. The pentane was decanted off and the orange solid was washed again with pentane. Drying *in vacuo* yielded **3a** (40 mg, 0.040 mmol, 64%). Single crystals were grown by layering hexanes over a toluene/Et₂O solution. ¹H NMR (600 MHz, Benzene- d_6) δ 8.61 (d, J = 7.9 Hz, 1H, Dz- $C_{(1)}H$), 8.51 (d, J = 8.0 Hz, 1H, Dz- $C_{(1)}H$), 7.91 (d, J = 4.8 Hz, 1H, Dz- $C_{(3)}H$), 7.33 – 7.26 (m, 12H, PPh₃), 6.96 (d, J = 4.9 Hz, 1H, Dz- $C_{(3.9)}H$), 6.85 (t, J = 7.2 Hz, 6H, PPh₃), 6.79 (t, J = 7.2 Hz, 70 (t, J = 7.27.5 Hz, 12H, PPh₃), 6.67 (dd, J = 8.1, 4.8 Hz, 1H, Dz- $C_{(2)}H$), 6.17 (dd, J = 8.0, 5.0 Hz, 1H, Dz- $C_{(2)}H$, 1.19 (s, 12H, pinCH₃), -11.79 (t, J = 19.3 Hz, 1H, Ru-H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 205.82 (Ru-CO), 162.29 (C=O), 145.69 (Dz- $C_{(4')}$), 145.37 (Dz- $C_{(4)}$), 141.19 (overlapped Dz- $C_{(3)}H$ and $C_{(3')}H$, 133.54 (t, J = 6.0 Hz, PPh₃), 132.78 (t, J = 21.6 Hz, PPh₃), 131.21 (Dz- $C_{(5')}$), 130.63 $(Dz-C_{(5)}H)$, 129.95 (PPh₃), 128.20 (t, J = 4.7 Hz, PPh₃), 127.71 ($Dz-C_{(1)}H$), 127.54 ($Dz-C_{(1')}H$), 121.66 (Dz-C₍₂₎H), 121.32(Dz-C₍₂₎H), 88.00 (Dz-C₍₉₎), 83.40 (pin-CO), 24.91 (pin-CH₃). ³¹P NMR (243 MHz, Benzene- d_6) δ 48.19. ¹¹B NMR (128 MHz, Benzene- d_6) δ 23.06. Anal. Calcd for C₅₅H₄₉BN₂O₅P₂Ru: C, 66.60; H, 4.98; N, 2.82. Found: C, 66.21; H, 5.09; N, 2.85. IR (nujol mull): v(CO) 1942 cm⁻¹, 1647 cm⁻¹.

Chart S2. Labeling scheme for NMR assignments of Zn compounds.

Synthesis of EtZn(Mes₂nacnac): A solution of ZnEt₂ (1.0 M in hexanes, 0.36 mL, 0.36 mmol) was dissolved in toluene (1 mL) and added dropwise to a stirring solution of Mes₂nacnacH (0.0986 g, 0.295 mmol) in toluene (1.5 mL) over 1 minute. The solution was allowed to stir for at least 3 hours,

until the reaction had reached completion as determined by ¹H NMR spectroscopy, after which the solvent was removed *in vacuo* to yield EtZn(Mes₂nacnac) as an off-white solid in quantitative yield (0.129 g). The crude product was used without further purification, however the compound can be purified by recrystallization from hexanes in the freezer if desired. ¹H NMR (400 MHz, Benzene-*d*₆, 25 °C) δ 6.82 (s, 4H, *m*-Mes *CH*), 4.98 (s, 1H, L-*CH*), 2.15 (s, 6H, *p*-Mes *CH*₃), 2.14 (s, 12H, *o*-Mes *CH*₃), 1.64 (s, 6H, L-*CH*₃), 1.03 (t, *J* = 8.1 Hz, 3H, Zn-CH₂*CH*₃), 0.30 (q, *J* = 8.1 Hz, 2H, Zn-*CH*₂CH₃). ¹³C{¹H}</sup> NMR (101 MHz, Benzene-*d*₆, 25 °C) δ 167.00 (L-*C*), 145.74 (*i*-Mes *C*), 133.78 (*p*-Mes *C*), 130.87 (*o*-Mes *C*), 129.45 (*m*-Mes *CH*), 95.67 (L-*CH*), 22.53 (L-*CCH*₃), 20.98 (*p*-Mes *CH*₃), 18.71 (*o*-Mes *CH*₃), 12.19 (Zn-CH₂*CH*₃), -2.83 (Zn-*CH*₂CH₃). Anal. Calcd for C₂₅H₃₄N₂Zn: C, 70.17; H, 8.01; N, 6.55. Found: C, 70.16; H, 7.74; N, 6.68.

Synthesis of 1b: A solution of EtZn(Mes₂nacnac) (0.2103 g, 0.4914 mmol) in toluene (4 mL) was added dropwise to a stirring solution of 4,5-diazafluorene (0.0773 g, 0.460 mmol) in toluene (2 mL) over 2 minutes. The solution was stirred at room temperature for 3 days after which the solvent was removed *in vacuo* to obtain the crude complex 1b as a purple solid. The crude solid was dissolved in a minimum amount of hexanes (2-4 mL) and the solution was cooled in the freezer (-35 °C) overnight causing purple crystals to form. The crystalline product was collected by vacuum filtration and washed with hexanes, then dried under vacuum yielding pure complex 1b as a dark purple crystalline solid (0.242 g, 0.428 mmol, 87% yield). Single crystals suitable for X-ray crystallography were obtained by slow evaporation at -35 °C of a saturated solution of the complex in hexanes with toluene added (10:1 hexanes to toluene). ¹H NMR (500 MHz, Benzene- d_6 , 25 °C) δ 7.88 (d, J = 4.6Hz, 2H, Dz- $C_{(3)}H$), 7.82 (d, J = 8.3 Hz, 2H, Dz- $C_{(1)}H$), 6.90 (dd, J = 8.3, 4.6 Hz, Dz- $C_{(2)}H$), 6.40 (s, 4H, m-Mes CH), 6.27 (s, 1H, Dz-C₍₉₎H), 5.00 (s, 1H, L-CH), 2.22 (s, 12H, o-Mes CH₃), 1.77 (s, 6H, *p*-Mes CH_3), 1.70 (s, 6H, L- CH_3). ¹³C{¹H} NMR (126 MHz, Benzene- d_6 , 25 °C) δ 168.81 (L-C), 144.22 (*i*-Mes C), 135.48 (Dz-N-C), 133.77 (*p*-Mes C), 131.07 (Dz-C₍₃₎H), 130.80 (*o*-Mes C), 129.30 (*m*-Mes CH), 128.95 (Dz- $C_{(9)}$ -C), 128.39 (Dz- $C_{(1)}$ H), 118.13 (Dz- $C_{(2)}$ H), 94.51 (L-CH), 81.52 (Dz-C₍₉₎H), 23.02 (L-CH₃), 20.63 (p-Mes CH₃), 18.46 (o-Mes CH₃). Anal. Calcd for C₃₄H₃₆N₄Zn: C, 72.14; H, 6.41; N, 9.90. Found: C, 72.36; H, 6.88; N, 9.98.

Synthesis of 2b: Complex **1b** (0.290 g, 0.512 mmol) and pinacolborane (0.290 g, 2.27 mmol) were transferred to a Teflon-sealed bomb with THF (5 mL). The sealed bomb was heated to 100 °C for 36 h, which brought about a subtle colour change from dark purple to pink. Volatiles were removed *in vacuo*; pentane (5 mL) and toluene (0.5 mL) were added, the mixture was filtered through Celite and

cooled to -25 °C for 6 h. The pink crystals that formed were collected on a frit, and were washed with several drops each of cold toluene and cold ether, after which they were washed thoroughly with cold pentane and dried under vacuum, which vielded analytically pure $2b \cdot (toluene)_{1/2}(pentane)_{1/3}$ (0.156 g, 0.205 mmol, 46% yield). Anal. Calcd for C₄₀H₄₇N₄O₂BZn·1/2(C₇H₈)·1/3(C₅H₁₂) C, 71.18; H, 7.27; N, 7.35. Found C, 71.09, H, 7.60, N, 7.33 (note that the ratio of **2b** to toluene and pentane was determined by integration of the ¹H NMR spectrum of the sample used for EA). Concentration and recrystallization of the filtrate yielded a second crop of crystals (0.121 g, 0.159 mmol, total yield 71%). ¹H NMR (600 MHz, Benzene- d_6 , 25 °C) δ 8.68 (dd, $J = 8.4, 1.2, 2H, Dz-C_{(1)}H$), 7.86 (dd, $J = 4.8, 1.2, 2H, Dz-C_{(3)}H$), 6.93 (dd, $J = 8.4, 1.2, 2H, Dz-C_{(3)}H$), 6.93 (dd, J = 8.4, 1.2, 2H), 7.85 (dd, J = 8.4, 1.2, 2H) 4.8, 2H, Dz-C₍₂₎H), 6.44 (s, 4H, m-Mes CH), 4.98 (s, 1H, L-CH), 2.17 (s, 12H, o-Mes CH₃), 1.80 (s, 6H, p-Mes CH₃), 1.68 (s, 6H, L-CH₃), 1.26 (s, 12H, Pin-CH₃). ¹H NMR (500 MHz, Bromobenzene d_{5} , 25 °C) δ 8.42 (d, J = 8.5, 2H, Dz- $C_{(I)}H$), 7.94 (d, J = 4.5, 2H, Dz- $C_{(3)}H$), 6.99 (dd, J = 8.5, 4.5, 2H, Dz-C₍₂₎H), 6.40 (s, 4H, m-Mes CH), 4.98 (s, 1H, L-CH), 2.15 (s, 12H, o-Mes CH₃), 1.75 (s, 6H, p-Mes CH₃), 1.68 (s, 6H, L-CH₃), 1.21 (s, 12H, Pin-CH₃). ¹³C{¹H} NMR (151 MHz, Benzene-d₆, 25 °C) δ 168.81 (L-C), 144.14 (*i*-Mes C), 139.54 (Dz-N-C), 136.67 (Dz-C₍₉₎C), 133.85 (*p*-Mes C), 133.00 (Dz-C₍₃₎H), 131.90 (Dz-C₍₁₎H), 130.81 (o-Mes C), 129.29 (m-Mes CH), 119.49 (Dz-C₍₂₎H), 94.53 (L-CH), 81.44 (Pin-C), 25.35 (Pin-CH₃), 22.99 (L-CH₃), 20.65 (p-Mes CH₃), 18.40 (o-Mes CH_3). We didn't observe a signal due to Dz- $C_{(9)}$ due to broadening caused by the bound quadrupolar ¹¹B nucleus.⁴ ¹³C{¹H} NMR (126 MHz, Bromobenzene-*d*₅, 25 °C) δ 168.58 (L-*C*), 143.87 (*i*-Mes *C*), 139.04 (Dz-N-C), 136.03 (Dz-C₍₉₎C), 133.45 (p-Mes C), 133.02 (Dz-C₍₃₎H), 131.42 (Dz-C₍₁₎H), 130.58 (o-Mes C), 128.98 (m-Mes CH), 119.29 (Dz-C₍₂₎H), 94.46 (L-CH), 81.16 (Pin-C), 25.28 (Pin-CH₃), 23.08 (L-CH₃), 20.67 (p-Mes CH₃), 18.39 (o-Mes CH₃). ¹¹B NMR (128 MHz, Benzene-d₆, 25 °C) δ 31.40.

Synthesis of 3b: A solution of Complex 2b (15 mg, 0.022 mmol) in bromobenzene (3 mL) in a 50 mL Schlenk bomb was frozen in liquid nitrogen and the headspace was evacuated. After thawing, the solution was allowed to warm to room temperature at which point the bomb was opened and 1 atm CO_2 gas was added. The bomb was then sealed and allowed to sit at room temperature for 4 hours causing a colour change from dark pink to orange. Volatiles were removed *in vacuo* and the orange residue was washed with cold pentane (2 mL). Drying under vacuum yielded an orange powder (12 mg, 75%), crude 3b. X-ray quality crystals of 3b were grown from a toluene/pentane solution stored at -25 °C. IR (nujol mull): v(CO) 1626 cm⁻¹. ¹H NMR (400 MHz, Bromobenzene- d_5 , 25 °C) δ 8.45 (d, J = 8.1, 2H, Dz- $C_{(1)}H$), 7.95 (d, J = 4.8, 2H, Dz- $C_{(3)}H$), 7.01 (dd, J = 8.4, 4.6, 2H, Dz- $C_{(2)}H$), 6.44 set

(s, 4H, *m*-Mes *CH*), 4.98 (s, 1H, L-*CH*), 2.11 (s, 12H, *o*-Mes *CH*₃), 1.78 (s, 6H, *p*-Mes *CH*₃), 1.67 (s, 6H, L-*CH*₃), 1.16 (s, 12H, Pin-*CH*₃). ¹³C{¹H} NMR (101 MHz, Bromobenzene-*d*₅, 25 °C) δ 168.90 (L-*C*), 161.52 (C₍₉₎-*CO*₂-B), 143.67 (*i*-Mes *C*), 139.66 (Dz-N-*C*), 135.33 (Dz-*C*₍₃₎*H*), 133.83 (*p*-Mes *C*), 131.85 (Dz-C₍₉₎*C*), 131.18 (Dz-*C*₍₁₎*H*), 130.54 (*o*-Mes *C*), 129.10 (*m*-Mes *CH*), 121.58 (Dz-*C*₍₂₎*H*), 94.61 (L-*CH*), 87.68 (Dz-*C*₍₉₎), 82.77 (Pin-*C*), 24.80 (Pin-*CH*₃), 23.08 (L-*CH*₃), 20.66 (*p*-Mes *CH*₃), 18.36 (*o*-Mes *CH*₃) ¹¹B NMR (193 MHz, C₆D₅Br, 25 °C) δ 22.53.

We noticed that **3a** is much more robust with respect to hydrolysis by trace moisture in bromobenzene compared to all other solvents. Therefore, to obtain the analytically pure sample of **3a**, a modified work-up method was used: 2b (45.1 mg, 0.0652 mmol) was dissolved in bromobenzene (3 mL) in a 50 mL bomb sealed with a Teflon screw cap. The solution was frozen in liquid nitrogen and the headspace was evacuated. The frozen solution was thawed and allowed to warm to room temperature at which time 1 atm CO₂ was admitted. The pink solution gradually turned orange and was kept under CO₂ for 3 h. The orange solution was filtered through Celite and volatiles were removed in vacuo leaving **3b** PhBr as a waxy orange solid (39.1 mg, 0.0438 mmol, 67 %). Anal. Calcd for C₄₁H₄₇N₄O₄BZn · (C₆H₅Br) C, 63.21; H, 5.87; N, 6.27. Found C, 63.21; H, 5.74; N, 6.02. In order to establish the residual solvent content in the sample to corroborate with the elemental analysis (EA) results, a portion of the solid was dissolved in C_6D_6 for ¹H NMR experiment and the remaining portion was analyzed with elemental analysis. Although **3b** is highly prone to hydrolysis in solvents other than bromobenzene, in order to establish the PhBr content in the EA sample, we cannot use PhBr-d₅ as the NMR solvent. Therefore, C₆D₆ was used as the NMR solvent ONLY to establish the **3b** to PhBr ratio. Consequently, a small amount of the hydrolysis products of **3b** can also be seen in the ¹H NMR spectrum (see Figure S28). These hydrolysis products include pinBOBpin and [Zn(Mes2nacnac)(L-COOH)].

3. Regeneration of 2a: **3a** (3.4 mg, 3.4 x 10^{-3} mmol, 1 eq) and pinacolborane (8.8 mg, 6.9 x 10^{-2} mmol, 20 eq) were dissolved in C₆D₆ in a thick-walled J. Young NMR tube which was heated in an oil bath preheated to 110 °C. After 8 h of heating, the ratio of **2a** : **3a** was 0.9 : 1.

4. Catalytic experiments: Into a vial was weighed the desired catalyst (0.0065 mmol), borane (0.65 mmol) and hexamethylbenzene (2-10 mg). The reagents were transferred to a Teflon sealed 50 mL glass bomb using bromobenzene- d_5 (0.6 mL). The solution was degassed through one freeze-pump-thaw cycle using liquid nitrogen, then it was refrozen in a -70 °C dry ice/isopropanol bath. The bomb was opened a flow of CO₂ for 10 minutes, then it was sealed and allowed to warm to room

temperature before heating at the desired catalysis temperature. The bomb was cooled after the desired amount of time and a portion of the reaction mixture was transferred to a J. Young NMR tube for analysis by ¹H NMR spectroscopy (delay time extended to 10 sec for quantitative integration). The hexamethylbenzene standard peak (2.05 ppm) was used to quantify the amounts of each reduction product present in the sample (for HBPin: CH₃OBPin at 3.48 ppm, CH₂(OBPin)₂ at 5.34 ppm and HCO₂BPin at 8.35 ppm; for HBCat: CH₃OBCat at 3.6 ppm).

5. X-ray Crystallography The X-ray diffraction data were collected on a Bruker Kappa Apex II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 150 K controlled by an Oxford Cryostream 700 series low-temperature system and processed with the Bruker Apex 2 software package.⁵ The structures were solved by direct methods and refined using SHELX-2013 and SHELX-2014 software packages.^{6,7} All non-hydrogen atoms were refined anisotropically, except for the carbon atoms of the disordered pin moiety of **3a**. The hydrides were located directly from the difference Fourier map and the atomic coordinates of the hydride were refined freely, while all other hydrogen atoms were calculated using the riding model. The disordered pin moieties in **2b**, **3a**, and **3b** were modeled successfully with two sets of atomic coordinates. The occupancies of the atoms involved in the disordered portions are refined freely with least square refinements. No restraints were used. The diffuse residual electron density from disordered solvents in the lattices of **2a**, **2b**, and **3b** was removed with the SQUEEZE function of PLATON,⁸ and these removed solvent molecules were not included in the formula or the refinement due to unknown identity. Selected crystallographic data of are listed in Table 1S.

Figure S1. Molecular structure of **1b**. H atoms omitted for clarity. Ellipsoids shown at 30% probability.

The solid state structure of **1b** (Figure S1) features a ZnN₄ core with distorted tetrahedral geometry. The diazafluorenyl ligand chelates Zn1 with an N1-Zn1-N2 bite angle of 88°, which is larger than the N3-Zn1-N4 bite angle of 100° formed by the nacnac chelate. Diazafluorenyl and the plane containing N3-Zn1-N4 are nearly perpendicular (dihedral angle = 88°). Notably, the Zn-N bonds made by diazafluorenyl have statistically different lengths: Zn1-N1 is 2.060(2) and Zn1-N2 is 2.103(2). This lack of symmetry in the solid state (likely resulting from lattice packing effects) contrasts with the symmetric solution-state structure suggested by the NMR data. Both Zn-N-(diazafluorenyl) bonds are longer than the Zn-N-(nacnac) bonds of 1.959(2) for Zn1-N3 and 1.952(2) for Zn1-N4.

Figure S2. Molecular structures of **2b**, and **3b**. Ellipsoids shown at 30% probability. Hydrogen atoms except for hydrides omitted for clarity. Mesityl methyl groups removed for clarity. Only one disordered component shown. Co-crystallized molecules removed for clarity.

	1b	2a	2b	3a	3 b
Formula	C ₃₄ H ₃₆ N ₄ Zn	$C_{63}H_{66}BN_2O_3P_2Ru$	$C_{45}H_{50}BN_4O_2Zn$	$C_{55}H_{49}BN_2O_5P_2Ru$	$C_{49}H_{53}BN_4O_2Zn$
FW	566.04	1072.99	691.99	991.78	736.00
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)	150(2)
space group	C2/c	P-1	P-1	P 4 ₁	Pbca
a (Å)	21.3090(19)	12.4687(13)	14.4273(7)	10.4711(4)	15.0418(7)
<i>b</i> (Å)	10.0652(9)	15.7310(16)	14.5211(10)	10.4711(4)	21.3952(11)
<i>c</i> (Å)	29.168(3)	17.5343(19)	21.5927(15)	44.073(4)	28.2235(14)

α (deg)	90	67.020(4)	100.551(2)	90	90
β (deg)	108.052(4)	80.866(5)	91.968(2)	90	90
$\gamma(\text{deg})$	90	70.636(4)	102.418(2)	90	90
$V(Å^3)$	5947.9(10)	2985.5(6)	4330.3(5)	4832.4(5)	9083.0(8)
Ζ	8	2	4	4	8
$D_{\rm c}({\rm g}\cdot{\rm cm}^{-3})$	1.264	1.194	1.061	1.363	1.076
μ (mm ⁻¹)	0.854	0.360	0.600	0.441	0.579
no. of refln collected	25438	48173	64351	33106	34255
no. of indept refln	6770	13690	19613	10940	10394
GOF on F^2	1.002	0.953	0.883	1.072	0.984
$R[I \ge 2\sigma(I)]$	$R_1 = 0.0434$	$R_1 = 0.0506^{\text{a}}$	$R_1 = 0.0554$	$R_1 = 0.0780$	$R_1 = 0.0737$
	$wR_2 = 0.0882$	$wR_2 = 0.1013$ b)	$wR_2 = 0.1088$	$wR_2 = 0.1662$	$wR_2 = 0.1949$
R (all data)	$R_1 = 0.0821$	$R_1 = 0.1001$	$R_1 = 0.1285$	$R_1 = 0.1088$	$R_1 = 0.1450$
	$wR_2 = 0.0990$	$wR_2 = 0.1129$	$wR_2 = 0.1250$	$wR_2 = 0.1791$	$wR_2 = 0.2156$
			(- 2)211/2		

^{a)} $R_1 = \Sigma (F_o - F_c) / \Sigma F_o$ ^{b)} $w R_2 = [\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma w (F_o^2)^2]^{1/2}$

6. Computations All calculations were performed using Gaussian 09 program⁹ at the B3LYP^{10,11} level. The SDD basis set and effective core potential were used on Ru, while 6-31G* basis set was used on all other elements. All structures were optimized in the gas phase first and the solvation correction was performed using self-consistent reaction field by means of the PCM method using toluene as the solvent. Vibrational frequency analyses were performed on all optimized structures to obtain thermodynamic data and to confirm that the optimized structures of 2a and 3a have no imaginary frequency, while the transition state structure has one imaginary frequency.

Optimized geometry of the transition state (enthalpy -3412.720647 Hartree):

Ru	20.017733000	19.708052000	4.819948000
Ρ	18.205201000	18.517994000	3.742129000
Ρ	21.673132000	21.114758000	5.893119000
0	18.698536000	19.268187000	7.487372000
0	25.460928000	18.720784000	0.244943000
0	25.792037000	16.761278000	1.415455000
Ν	20.932943000	20.122061000	2.849529000
Ν	21.460644000	17.908049000	4.621840000
В	24.862538000	17.666197000	0.922548000
С	20.818343000	21.092897000	1.927252000
н	20.111823000	21.886655000	2.142349000
С	21.576628000	21.083512000	0.748171000
н	21.445073000	21.898897000	0.043882000
С	22.485183000	20.053264000	0.470554000
н	23.072958000	20.051379000	-0.441830000

С	22.611736000	19.033871000	1.415375000
С	23.376949000	17.744386000	1.483257000
С	23.035628000	17.221857000	2.847344000
С	23.421208000	16.108458000	3.596546000
н	24.171763000	15.414981000	3.230922000
c	22 808020000	15 927226000	4 842711000
ц	22.000020000	15 077028000	5 462161000
	23.074555000	15.077028000	5.405101000
C	21.841784000	16.826217000	5.321123000
н	21.367675000	16.675682000	6.284740000
С	22.067814000	18.052596000	3.432924000
С	21.809473000	19.150578000	2.558970000
С	19.219441000	19.420731000	6.453499000
С	18.099818000	18.703368000	1.909477000
С	17,122244000	19.523561000	1.323125000
н	16 379262000	20.016752000	1 9/1288000
с С	17,000682000	10 70550100	0.0611220000
	17.090085000	19.705501000	-0.001152000
н	16.324208000	20.339825000	-0.499259000
С	18.028999000	19.070487000	-0.877044000
Н	17.996478000	19.208851000	-1.954707000
С	19.007493000	18.256481000	-0.302807000
н	19.752949000	17.746003000	-0.904675000
С	19.048102000	18.079099000	1.080735000
н	10 820703000	17/39126000	1 476288000
с С	16.625753000	19.006504000	1.470288000
C	16.505727000	18.996504000	4.311376000
C	15.428210000	18.107789000	4.154312000
н	15.594127000	17.123266000	3.728576000
С	14.141651000	18.475505000	4.546615000
н	13.321112000	17.773971000	4.421991000
С	13.908654000	19.737201000	5.099275000
н	12,906188000	20.020783000	5.408604000
c	14 969651000	20 628991000	5 254664000
ы	14.709002000	20.020551000	E 696612000
	14.790095000	21.011558000	3.060012000
C	16.259844000	20.261120000	4.864854000
н	17.083168000	20.954830000	4.993197000
С	18.186939000	16.687377000	4.050313000
С	18.293358000	16.246247000	5.381558000
н	18.397473000	16.964680000	6.187928000
С	18.245689000	14.887442000	5.689231000
н	18.322337000	14.568840000	6.725625000
c	18 103689000	13 941158000	4 671413000
ц	18.105005000	12 881200000	4.001413000
 C	17.005217000	12.881290000	4.909087000
C	17.995317000	14.366522000	3.348418000
н	17.883625000	13.641249000	2.547246000
С	18.028942000	15.729245000	3.038471000
н	17.933512000	16.035533000	2.003560000
С	22.871361000	20.240859000	7.010337000
С	24.241182000	20.544215000	7.057614000
н	24,656109000	21,298236000	6.398005000
c	25.087046000	19 883085000	7 951847000
	25.007040000	10.000000000	7.051047000
	20.145382000	20.129420000	7.968400000
C	24.577905000	18.917805000	8.820387000
н	25.236901000	18.405626000	9.516138000
С	23.214807000	18.616229000	8.791057000
н	22.805266000	17.870289000	9.467009000
С	22.370949000	19.266946000	7.891172000
н	21.314604000	19.021984000	7.886533000
c	21 000958000	22 425841000	7 020454000
ĉ	10 604027000	22.425041000	6 9E 4006000
	10.064724000	22.300347000	6.00000000
п	19.004/24000	22.4/9382000	0.002300000
C	19.199352000	23.920878000	1.678861000
н	18.182577000	24.277951000	7.538697000
С	20.001729000	24.464623000	8.681799000
Н	19.614532000	25.248758000	9.326885000
С	21.304867000	23.992593000	8.856002000
н	21,936561000	24,408427000	9.636391000
c	21 801608000	22 982796000	8 032450000
н	22 81/666000	22 62/202000	8 18208/000
 C	22.014000000	22.024330000	4 744205000
L	22.702133000	22.009291000	4.744395000

С	22.610801000	23.451934000	4.564736000
н	21.884283000	24.001426000	5.154486000
С	23.396386000	24.134891000	3.632459000
Н	23.269600000	25.207222000	3.508988000
С	24.337684000	23.447178000	2.866195000
Н	24.944442000	23.979523000	2.138730000
С	24.495379000	22.069128000	3.035339000
Н	25.210861000	21.517489000	2.431613000
С	23.714524000	21.386945000	3.967383000
Н	23.849399000	20.316849000	4.089061000
С	26.701248000	17.643610000	-1.519767000
Н	26.320191000	18.398538000	-2.215629000
Н	26.005671000	16.801656000	-1.532868000
Н	27.683034000	17.313047000	-1.877163000
С	27.717074000	19.485079000	-0.151013000
Н	27.702900000	20.032856000	0.794921000
Н	27.393557000	20.169309000	-0.942668000
Н	28.750243000	19.187012000	-0.365195000
С	26.790875000	18.268794000	-0.119098000
С	27.923021000	16.003292000	0.569388000
Н	28.058605000	15.318966000	1.413974000
н	28.916584000	16.301804000	0.213489000
н	27.413292000	15.457546000	-0.227308000
С	27.748473000	17.844952000	2.267437000
Н	27.750941000	17.104656000	3.074199000
н	27.174444000	18.712492000	2.608567000
Н	28.782293000	18.159310000	2.085757000
С	27.108102000	17.216395000	1.020397000
Н	19.135125000	21.028394000	4.635398000
С	22.811044000	16.749114000	0.283531000
0	21.641378000	16.374255000	0.299813000
0	23.773029000	16.557065000	-0.505906000

Optimized geometry of 2 (enthalpy -3224.174648 Hartree):

Ru	20.027269000	19.744948000	4.866605000
Ρ	18.283890000	18.543887000	3.710939000
Ρ	21.575685000	21.197904000	6.012482000
0	18.619830000	19.222708000	7.476351000
0	25.075864000	18.052112000	-0.355424000
0	25.438910000	16.258355000	1.037772000
Ν	21.012232000	20.186606000	2.935469000
Ν	21.535036000	17.990019000	4.756978000
В	24.701999000	17.421174000	0.829123000
С	20.906402000	21.133902000	1.995384000
н	20.172160000	21.914143000	2.163279000
С	21.715764000	21.116915000	0.838400000
н	21.583157000	21.913311000	0.111726000
С	22.664888000	20.120228000	0.615449000
н	23.280082000	20.128031000	-0.280113000
С	22.808616000	19.104254000	1.584240000
С	23.632372000	17.936495000	1.766446000
С	23.229392000	17.365515000	3.027247000
С	23.601856000	16.253775000	3.813035000
н	24.382768000	15.573648000	3.484805000
С	22.941285000	16.054637000	5.022941000
н	23.204495000	15.210133000	5.653872000
С	21.922391000	16.926924000	5.470543000
н	21.421712000	16.757178000	6.418028000
С	22.185041000	18.167433000	3.589282000
С	21.930595000	19.228839000	2.707642000
С	19.172850000	19.412043000	6.464837000
С	18.210417000	18.775967000	1.878788000
С	17.212047000	19.555251000	1.276349000
н	16.429584000	20.001151000	1.881246000
С	17.209636000	19.761011000	-0.105407000
Н	16.426380000	20.365632000	-0.555274000
С	18.201482000	19.190445000	-0.902863000

н	18.198162000	19.350128000	-1.977854000
С	19.201428000	18.414399000	-0.311931000
н	19.985424000	17.973045000	-0.920617000
С	19.209640000	18.211071000	1.067334000
н	19.999176000	17.611820000	1.509270000
С	16.558770000	18.976868000	4.249678000
c	15 512007000	18 044180000	4 160223000
L L	15.512007000	17 029226000	2 204242000
п С	13.708292000	17.038550000	5.804245000
C	14.213682000	18.394037000	4.532520000
н	13.418511000	17.656502000	4.462170000
С	13.936921000	19.682066000	4.994892000
н	12.925662000	19.952172000	5.287354000
С	14.967660000	20.618095000	5.083774000
н	14.764347000	21.622054000	5.447044000
С	16,269005000	20.267418000	4,718232000
н	17 070273000	20 993175000	4 801342000
<u> </u>	10 205110000	16 600844000	2 019605000
c	10.205110000	10.099644000	5.918005000
C	18.552634000	16.1/5665000	5.194015000
н	18.791995000	16.843685000	6.014005000
С	18.507228000	14.800962000	5.424998000
н	18.715125000	14.416664000	6.420061000
С	18.206269000	13.922865000	4.382221000
н	18.179763000	12.851138000	4.560045000
С	17,940494000	14,430456000	3,110329000
н	17 702958000	13 756470000	2 201/170000
с С	17.702330000	15.750470000	2.231475000
	17.975757000	15.807950000	2.880110000
н	17.755605000	16.183379000	1.886354000
С	22.788675000	20.363238000	7.143410000
С	24.142657000	20.722818000	7.224558000
н	24.539572000	21.501398000	6.582698000
С	24.995490000	20.086759000	8.130457000
н	26.042121000	20.376506000	8.173521000
c	24 508044000	19 090995000	8 976586000
й	25 1723/8000	18 598097000	9 681344000
с С	23.172348000	18.338037000	9.081344000
с 	23.159970000	18.732010000	8.912356000
н	22.767708000	17.960283000	9.568695000
С	22.310230000	19.357909000	8.000522000
н	21.266017000	19.067209000	7.965136000
С	20.793398000	22.427235000	7.164738000
С	19.482286000	22.874401000	6.944595000
н	18.915235000	22.465872000	6.115601000
c	18 904304000	23 828939000	7 784825000
й	17 885559000	24 159620000	7 600353000
с С	10 625722000	24.133020000	9.960533000
с 	19.625722000	24.346749000	8.800524000
н	19.173455000	25.084123000	9.518470000
С	20.931816000	23.908547000	9.089945000
Н	21.501508000	24.304063000	9.926730000
С	21.512007000	22.958659000	8.249288000
н	22.526710000	22.626909000	8.444282000
С	22.637308000	22.261494000	4.937128000
Ċ	22 433047000	23 645516000	4 837727000
й	21 667/00000	24 127534000	5 436451000
с С	21.007400000	24.127334000	2.430431000
C	23.214375000	24.417196000	3.974039000
н	23.043928000	25.488854000	3.911298000
С	24.209130000	23.818245000	3.201290000
н	24.816608000	24.419706000	2.530223000
С	24.418444000	22.440075000	3.291406000
н	25.181663000	21.959557000	2.686090000
с	23.637476000	21.666247000	4.148718000
н	23 807522000	20 595547000	4 198196000
с. С	25 0522000	16 385553000	-2 081/17000
	23.032203000	17 110110000	-2.00141/000
	24.525550000	17.110119000	-2.711023000
H	24.3016/2000	15.782647000	-1.560506000
н	25.638311000	15.726333000	-2.731416000
С	26.981202000	17.973354000	-1.838937000
н	27.535138000	18.631714000	-1.165840000
н	26.482733000	18.599042000	-2.587081000
н	27.694903000	17.325283000	-2.361517000

С	25.938305000	17.148446000	-1.084234000
С	26.771143000	14.778107000	-0.330837000
Н	27.136610000	14.221090000	0.538495000
Н	27.532532000	14.715190000	-1.117413000
Н	25.861450000	14.287254000	-0.684604000
С	27.753724000	16.821673000	0.745416000
Н	27.961914000	16.252170000	1.656930000
Н	27.589077000	17.865501000	1.030905000
Н	28.636480000	16.771807000	0.098304000
С	26.508771000	16.231463000	0.064929000
н	19.126331000	21.050841000	4.640899000

Optimized geometry of **3** (enthalpy -3412.76698 Hartree):

Ru	20.028742000	19.747927000	4.869938000
Р	18.271899000	18.583029000	3.696889000
Р	21.592212000	21.175117000	6.033567000
0	18.622043000	19.206072000	7.475337000
0	26.115226000	15.542172000	-0.926375000
0	26.634768000	14.435332000	1.023701000
N	21.033219000	20,200082000	2,951895000
N	21 494553000	17 963577000	4 729889000
R	25 964146000	15 487802000	0 435769000
c	20 947477000	21 164396000	2 025683000
н	20.221165000	21.950073000	2 201780000
Ċ	20.221103000	21.550075000	0.875920000
н	21.704237000	21.138331000	0.162262000
C	22.047251000	21.508457000	0.102202000
L L	22.702331000	20.132831000	0.041034000
п С	23.328281000	20.134200000	1 506544000
c	22.613475000	19.124647000	1.590544000
c	23.601187000	17.929385000	1.769142000
C	23.186921000	17.322014000	3.011834000
C	23.518035000	16.184549000	3.776429000
н	24.283410000	15.490468000	3.446631000
С	22.832260000	15.980468000	4.972480000
Н	23.061744000	15.114059000	5.586191000
С	21.835741000	16.871814000	5.424639000
Н	21.311407000	16.695734000	6.357766000
С	22.165097000	18.145777000	3.576349000
С	21.940913000	19.236402000	2.714544000
С	19.174374000	19.405550000	6.465650000
С	18.230437000	18.821370000	1.865118000
С	17.255496000	19.624774000	1.255491000
Н	16.473252000	20.080147000	1.853517000
С	17.276854000	19.842710000	-0.124147000
Н	16.511539000	20.465807000	-0.579531000
С	18.269538000	19.261255000	-0.912747000
н	18.284611000	19.430254000	-1.986108000
С	19.247409000	18.462536000	-0.315096000
н	20.031926000	18.012754000	-0.916855000
С	19.231934000	18.247517000	1.062514000
н	20.004563000	17.630351000	1.509662000
С	16.546253000	19.039369000	4.209733000
С	15.477230000	18.151498000	3.999885000
н	15.660239000	17.174217000	3.565090000
С	14.176132000	18.509793000	4.351549000
н	13.362736000	17.808184000	4.186558000
с	13,919727000	19.761568000	4.915780000
н	12,906001000	20.037985000	5,193352000
c	14 972426000	20 652455000	5 124565000
н	14 783854000	21 627122000	5 566807000
c	16 276792000	20 293827000	4 775913000
ц	17 00/126000	20.233827000	4.775515000
Ċ	18 222/07000	16 738012000	3 012010000
c	10.233497000	16 22/700000	5.913611000
с ц	10.301430000	16 807030000	6 0/0710000
п С	10.341304000	14 95752000	0.049/19000
	10,309383000	14.852/03000	5.451528000
н	18.422847000	14.477571000	0.405204000

С	18.100285000	13.965691000	4.393573000
н	18.052973000	12.895787000	4.577663000
С	17.950270000	14.463176000	3.099553000
н	17.782260000	13.783219000	2.268566000
С	18.010029000	15.838862000	2.860680000
H	17,879716000	16,204638000	1,848332000
c	22 81/398000	20 318522000	7 135816000
c	22.814398000	20.318322000	7.133810000
с 	24.159772000	20.704854000	7.241328000
н	24.542838000	21.518142000	6.634992000
С	25.021446000	20.050070000	8.124842000
н	26.061073000	20.360557000	8.186922000
С	24.551560000	19.008050000	8.924198000
н	25.223052000	18.499962000	9.611032000
С	23.212429000	18.622772000	8.836196000
н	22.834478000	17.814209000	9.456206000
С	22,353673000	19,267591000	7,946407000
н	21 316545000	18 955412000	7 890879000
Ċ	21.510545000	22 286024000	7.00007.0000
c	20.817048000	22.560924000	7.209244000
C	19.513126000	22.854518000	6.991004000
н	18.945774000	22.470404000	6.150605000
С	18.942055000	23.799148000	7.846833000
н	17.928835000	24.146642000	7.662970000
С	19.663446000	24.285878000	8.937049000
н	19.216553000	25.015560000	9.607064000
С	20.962357000	23.826546000	9.165076000
н	21.531865000	24.197757000	10.012995000
c	21 536111000	22 886961000	8 308450000
й	22 545412000	22.539156000	8 502640000
с С	22.343412000	22.339130000	4.065420000
C	22.044889000	22.254723000	4.965439000
C	22.416953000	23.634900000	4.864144000
н	21.640727000	24.104083000	5.459500000
С	23.188818000	24.419445000	4.003515000
н	23.000186000	25.487941000	3.939475000
С	24.197851000	23.837741000	3.236079000
н	24.798165000	24.449251000	2.567800000
С	24.431461000	22.463529000	3.328387000
н	25.207155000	21.996793000	2.728171000
С	23.659511000	21.677043000	4.182403000
H	23 850059000	20 609812000	4 235183000
c	25.650055000	13 351082000	-1 791672000
ц	25.005200000	12 022004000	2 595050000
п	23.090313000	13.633604000	-2.565059000
н	24.983802000	13.110862000	-0.972377000
н	26.082220000	12.415483000	-2.184119000
С	27.711263000	14.631062000	-2.494105000
н	28.421140000	15.419623000	-2.234484000
н	27.125298000	14.976987000	-3.351711000
н	28.271135000	13.739811000	-2.801241000
С	26.773400000	14.313251000	-1.330460000
С	27.542133000	12.341826000	0.222861000
H	28.016658000	12,128517000	1,186440000
н	28 133/63000	11 85/1573000	-0 561235000
	26.133403000	11.00407000	0.334690000
п С	20.344141000	11.69/14/000	0.234089000
ι.	20.001091000	14.404128000	0.18/815000
н	29.220422000	14.2/0124000	1.210510000
Н	28.862311000	15.548440000	0.038907000
Н	29.610596000	14.030907000	-0.505694000
С	27.485463000	13.853122000	0.003542000
Н	19.145943000	21.068528000	4.662799000
С	24.593939000	17.497036000	0.829703000
0	24.922272000	18.069015000	-0.196746000
0	25.207444000	16.305220000	1.233238000

Optimized geometry of CO₂ (enthalpy -188.566928 Hartree):

С	1.776638000	5.876532000	1.316820000
0	2.328477000	5.749700000	2.339730000
0	1.224799000	6.003364000	0.293909000

Figure S3 ¹H NMR Spectrum (500 MHz, 25 °C) of **1a** in C_6D_6 Note: spectrum contains residual THF at 3.58 and 1.42, and pentane at 1.26 and 0.87.

Figure S4. Expansion of aromatic region of ¹H NMR spectrum (500 MHz, 25 °C) of 1a in C₆D₆

Figure S5. ¹³C NMR Spectrum (126 MHz, 25 °C) of **1a** in C₆D₆ Note: spectrum contains residual THF at 67.83 and 25.84.

Figure S6 Expansion of aromatic region of ¹³C NMR spectrum (126 MHz, 25 °C) of 1a in C₆D₆

Figure S7. ³¹P NMR Spectrum (202 MHz, 25 °C) of 1a in C₆D₆

Figure S8. ¹H NMR Spectrum (500 MHz, 25 °C) of **2a** in C_6D_6 Note: spectrum contains pentane at 1.26 and 0.87.

Figure S9. Expansion of aromatic region of ¹H NMR Spectrum (500 MHz, 25 °C) of 2a in C₆D₆

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

Figure S10.¹³C NMR Spectrum (126 MHz, 25 °C) of 2a in C₆D₆ Note: spectrum contains pentane at 34.45, 22.73, and 14.30.

Figure S11. Expansion of aromatic region of ¹³C NMR Spectrum (126 MHz, 25 °C) of 2a in C₆D₆

Figure S12. ³¹P NMR Spectrum (202 MHz, 25 °C) of 2a in C₆D₆

Figure S13. ¹¹B NMR Spectrum (128 MHz, 25 °C) of **2a** in C_6D_6 . Note: spectrum contains a peak at 21.53 due to pinBOBpin.

Figure S14. ¹H NMR Spectrum (600 MHz, 25 °C) of 3a in C₆D₆

Figure S15. Expansion of aromatic region of ¹H NMR Spectrum (600 MHz, 25 °C) of 3a in C₆D₆.

Figure S16. ¹³C NMR Spectrum (126 MHz, 25 °C) of 3a in CD₂Cl₂

Figure S17. Expansion of the aromatic region of 13 C NMR Spectrum (126 MHz, 25 °C) of **3a** in CD₂Cl₂

Figure S18³¹P NMR Spectrum (243 MHz, 25 °C) of 3a in C₆D₆.

Figure S19. ¹¹B NMR Spectrum (128 MHz, 25 °C) of 3a in C₆D₆.

Figure S20. ¹H NMR Spectrum (400 MHz, C₆D₆, 25 °C) of (Mes₂nacnac)ZnEt.

Figure S21. ¹³C{¹H} NMR Spectrum (101 MHz, C_6D_6 , 25 °C) of complex (Mes₂nacnac)ZnEt.

Figure S22. ¹H NMR Spectrum (500 MHz, C_6D_6 , 25 °C) of complex 1b.

Figure S23. $^{13}C\{^{1}H\}$ NMR Spectrum (126 MHz, $C_{6}D_{6},$ 25 °C) of complex 1b.

Figure S24. ¹H NMR Spectrum (600 MHz, C₆D₆, 25 °C) of complex 2b.

Figure S25. ¹³C{¹H} NMR Spectrum (151 MHz, C_6D_6 , 25 °C) of complex **2b** (sample contains trace *n*-pentane at 14.25, 22.72 and 34.45 ppm).

Figure 26. ¹¹B NMR Spectrum (128 MHz, 25 °C) of **2b** in C₆D₆. Note: spectrum contains a broad borosilicate peak at 0ppm.

Figure S27. ¹H NMR Spectrum (400 MHz, C_6D_5Br , 25 °C) of complex 3b.

Figure S28. ¹H NMR Spectrum (500 MHz, C_6D_6 , 25 °C) of elemental analysis sample of **3b**·(PhBr). Bromobenzene resonances are marked with an asterisk.

Figure S29. ¹³C{¹H} NMR Spectrum (101 MHz, C_6D_5Br , 25 °C) of complex 3b.

Figure S30. ¹¹B NMR Spectrum (193 MHz, 25 °C) of **3b** in C_6D_5Br . Note: spectrum contains a broad borosilicate peak.

8. IR Spectra

Figure S31. FT-IR Spectrum of 1a as a nujol mull.

Figure S32. FT-IR spectrum of 2a as a nujol mull.

Figure S33. FT-IR spectrum of 3a as a nujol mull.

Figure S34 FT-IR spectrum of 3b as a nujol mull.

9. References:

- Ahmad, N., Levison, J. J., Robinson, S. D., Uttley, M. F., Wonchoba, E. R., Parshall, G. W., *Inorg. Synth.* 15, 45-48 1974.
- 2. Plater, M. J., Kemp, S., Lattmann, E. J. Chem. Soc., Perkin Trans. 1, 971, 2000.
- 3. Weberski, Jr., M. P., McLauchlan, C. C. J. Coord. Chem. 61, 2371, 2008.
- 4. Wrackmeyer, B. in Modern magnetic resonance (ed. Webb, G. A.), 455-457 (Springer, 2008).
- 5. Apex 2 Software Package; Bruker AXS Inc., Madison, WI, 2013.
- 6. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- 7. http://shelx.uni-ac.gwdg.de/SHELX/index.php (accessed July 4, 2013 and September 4, 2015).
- 8. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2010.
- 10. Becke, A. D. J. Chem. Phys. 98, 5648, 1993.
- 11. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 37, 785, 1988.