Supporting Information

Supported Gold Nanoparticles Catalyzed *cis*-Selective Semihydrogenation of Alkynes Using Ammonium Formate as Reductant

Shengzong Liang,^[a] Gerald B. Hammond, ^{[a],*} Bo Xu ^{[b],*}

^[a] Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA. ^[b] College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

General

¹H and ¹³C NMR spectra were recorded at 400 MHz and 101 MHz using CDCl₃ as a solvent. The chemical shifts are reported in δ (ppm) values (¹H and ¹³C NMR relative to CHCl₃, δ 7.26 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR and CFCl₃ (δ 0 ppm for ¹⁹F NMR), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants (*J*), are reported in Hertz (Hz). All reagents and solvents were employed without further purification. The products were purified using a commercial flash chromatography system. TLC was developed on silica gel 60 F254 aluminum sheets. All reagents were purchased from Sigma-Aldrich or Alfa Aesar and used as received without any further purification. Au/TiO₂ and Au/Al₂O₃ (1% wt/wt loading; average size of AuNPs is around 2-3 nm) were purchased from Strem.

Characterization of commercial available Au/TiO₂

Figure S-1. STEM images of Au/TiO₂

General procedures

General procedure for synthesis of gem-difluorohomopropargyl alcohols 3.^[1]

To a solution of **9** (1.6 g, 14.6 mmol) in dry THF (30 mL), a 2.5 M hexane solution of nbutyllithium (6.1 mL, 15.3 mmol) was added dropwise at -78.8 °C under argon atmosphere. After the reaction mixture was stirred for 30 min at -78.8 °C, cold (-78.8 °C) dibromodifluoromethane (4.6 g, 21.9 mmol) was added to the reaction mixture at -100 °C. After stirring for 16 hours at rt., the THF solution was washed with sat. aq. NH₄Cl (10 mL). The aqueous layer was extracted with hexane (2×20 mL) and the combined organic layer was dried over Na₂SO₄. After evaporation of the solvent, the crude product was purified by distillation under reduced pressure (75 °C/4.4 mmHg) to afford **10**.

To a flask was added indium powder (2.0 mmol, 1.0 equiv.), $Eu(OTf)_3$ (0.1 mmol, 5 mol %), difluoropropargyl bromide **10** (2.0 mmol) and aldehyde **11** (2.2 mmol, 1.1 equiv.) with rinsing by THF/H₂O solution (1/4) (6.6 ml, 0.3M). The reaction was sonicated at 40 °C for 12 h. The reaction was quenched by 10% HCl (10 ml) and extracted by ethyl acetate (3×10ml). The combined organic layers were washed with brine and dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by a silica gel column to afford the corresponding alcohols **3i-3l** or **12**.

A solution of AcOH (2.86 equiv.) and TBAF (2.2 equiv, 1.0 M in THF) in THF was stirred at room temperature for 30 min, then a solution of alcohol **12** (1 equiv.) in THF (0.1 M) was added slowly at room temperature, and the mixture was stirred at 0 °C for 2 hours. The reaction was quenched with water and extracted with EtOAc (3×40 ml). The organic layer was washed with brine and dried over Na₂SO₄. The final products **3a-3h** were isolated by silica gel column.

General procedure for Au/TiO₂ semihydrogenation of alkynes using HCOONH₄ as reductant

Au/TiO₂ (24.6 mg, 0.5 mol %) and HCOONH₄ (1 mmol) were added to a solution of alkyne (0.25 mmol) in DMF (0.25 mL). The mixture was allowed to stir in an oil bath at 80 °C for designated time. After cooling down to room temperature, the solid Au/TiO₂ was filtered off, the filtrate was diluted with DCM and washed with water and brine solution. The organic layer was dried over Na₂SO₄ and concentrated to dryness. The residue was purified by flash chromatography on silica gel (n-hexane/ethyl acetate).

Procedure for Au/TiO₂ recycling

Au/TiO₂ (24.6 mg, 0.5 mol %) and HCOONH₄ (1 mmol) were added to a solution of phenylacetylene (0.25 mmol) in DMF (1 mL). The mixture was stirred in an oil bath at 80 °C for 3 hours. After cooling down to room temperature, the solid Au/TiO₂ was filtered out and washed with DMF and transferred into a fresh solution of phenylacetylene (0.25 mmol) in DMF (1 mL), and HCOONH₄ (1 mmol) was added. The mixture was stirred for another 3 hours at 80 °C. And this process was repeated until 5 runs were completed. And the yields of each run were determined by ¹H NMR.

Procedure for synthesis of 6

4e (0.2 mmol, 40.4 mg) was dissolved in dry THF/DMF (1.4 mL / 0.4 mL), then NaH (0.6 mmol, 24 mg) was added into the solution at 0 °C. The mixture was allowed to stir for 15 minutes at room temperature. Then allyl bromide (0.6 mmol, 72.5 mg) was added. The resulting mixture was stirred at room temperature for overnight. Then the reaction mixture was quenched by 2 mL NH₄Cl (aq), extracted with Et₂O (2 × 2 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. After concentration the residue was purified by flash chromatography on silica gel to obtain **5** as colorless oil.

The solution of purified **5** (0.14 mmol, 34.4 mg) and Grubbs' catalyst (5 mol %) in DCM were stirred for 24 hours at room temperature. Then after concentration the residue was purified by flash chromatography on silica gel to afford **6** as colorless oil.

Procedure for synthesis of 8

Acryloyl chloride (0.4 mmol, 28 μ l) was added dropwise to the solution of **4e** (0.2 mmol, 40.4 mg), DMAP (5 mol %) and N,N-diisopropylethylamine (0.5 mmol, 86.9 μ l) in DCM (0.5 mL) at 0 °C. The mixture was stirred at room temperature for overnight. The reaction mixture was quenched with water (1 mL) and extracted with DCM (2 × 1 mL). The combined organic layer was dried over Na₂SO₄. After concentration the residue was purified by flash chromatography on silica gel to obtain **7** as colorless oil.

The solution of purified **7** (0.17 mmol, 44 mg) and $Ti(OiPr)_4$ (0.05 mmol, 15 µl) in toluene (6 mL) were stirred under reflux for 3 h. Then solution of Grubbs' catalyst (7 mol %, 10.1 mg) in toluene (1.5 mL) was added dropwise into the reaction mixture over 30 min. The resulting mixture was stirred for additional 1 h under reflux and then cooled down to room temperature. After concentration the residue was purified by flash chromatography on silica gel to obtain **8** as colorless oil.

Characterization of non-fluorinated products 2

All the compounds are known and their ¹H NMR spectroscopic data agree well with the spectra reported in the literature noted for each of them.

(Z)-1,2-diphenylethene (2a)^[2]

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 10H), 6.61 (s, 2H).

(Z)-1-methyl-4-styrylbenzene (2b)^[3]

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.16 (m, 7H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 7.9 Hz, 2H), 6.55 (s, 2H), 2.31 (s, 2H).

(Z)-1-fluoro-4-styrylbenzene (2c)^[4]

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.11 (m, 7H), 6.91 (t, *J* = 8.7 Hz, 2H), 6.57 (q, *J* = 12.2 Hz, 2H).

(Z)-1-methoxy-4-styrylbenzene (2d)^[5]

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.16 (m, 7H), 6.76 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 1.7 Hz, 2H), 3.78 (s, 3H).

(Z)-ethyl 3-phenylacrylate (2e)[6]

¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.4, 1.7 Hz, 2H), 7.43 – 7.28 (m, 3H), 6.94 (d, *J* = 12.6 Hz, 1H), 5.94 (d, *J* = 12.6 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).

(Z)-methyl oct-2-enoate (2f)^[6]

¹H NMR (400 MHz, $CDCI_3$) δ 6.22 (dt, J = 11.5, 7.5 Hz, 1H), 5.75 (dt, J = 12, 1.6 Hz, 1H), 3.70 (s, 3H), 2.64 (qd, J = 7.6, 1.6 Hz, 2H), 1.47 – 1.40 (m, 2H), 1.34 – 1.29 (m, 4H), 0.88 (t, J = 8, 3H).

(Z)-prop-1-en-1-ylbenzene (2g)^[2]

¹H NMR (400 MHz, $CDCl_3$) δ 7.35-7.20 (m, 5H), 6.48 – 6.40 (dd, *J* = 12, 1.6 Hz, 1H), 5.86 – 5.72 (dq, *J* = 11.6, 7.2 Hz, 1H), 1.90 (dd, *J* = 7.2, 2 Hz, 3H).

(*Z*)-3-phenylprop-2-en-1-ol (**2h**)^[7]

¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.30 – 7.11 (m, 3H), 6.57 (d, *J* = 11.7 Hz, 1H), 5.87 (dt, *J* = 12, 6.4 Hz, 1H), 4.44 (d, *J* = 6.4 Hz, 2H), 1.66 (s, 1H).

(Z)-[(hex-2-en-1-yloxy)methyl]benzene (2i)^[8]

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.60 (m, 2H), 4.51 (s, 2H), 4.08 (d, *J* = 4.6 Hz, 2H), 2.02 (m, 2H), 1.38 (sext, *J* = 8 Hz, 2H), 0.89 (t, *J* = 7.4 Hz, 3H).

styrene (2j)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.17 (m, 5H), 6.65 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.69 (d, *J* = 17.6 Hz, 1H), 5.18 (d, *J* = 10.9 Hz, 1H).

1-fluoro-4-vinylbenzene (2k)^[9]

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 6.92 – 6.87 (m, 2H), 6.55 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.53 (d, *J* = 17.6 Hz, 1H), 5.11 (d, *J* = 10.8 Hz, 1H).

1-methoxy-4-vinylbenzene (2I)^[10]

¹H NMR (400 MHz, cdcl₃) δ 7.35 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 6.66 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.61 (d, *J* = 17.6 Hz, 1H), 5.12 (d, *J* = 10.9 Hz, 1H), 3.81 (s, 3H).

1-methyl-2-vinylbenzene (2m)^[11]

¹H NMR (400 MHz, cdcl₃) δ 7.47 – 7.49 (m, 1H), 7.17 (m, 3H), 6.95 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.64 (d, *J* = 17.4 Hz, 1H), 5.29 (d, *J* = 11.0 Hz, 1H), 2.35 (s, 3H).

1-(trifluoromethyl)-4-vinylbenzene (2n)[12]

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8 Hz, 2H), 7.49 (d, *J* = 8 Hz, 2H), 6.75 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.84 (d, *J* = 17.6 Hz, 1H), 5.38 (d, *J* = 10.9 Hz, 1H).

2-vinylpyridine (20)^[13]

¹H NMR (400 MHz, $CDCl_3$) δ 8.57 (d, *J* = 4.3 Hz, 1H), 7.64 (td, *J* = 7.7, 1.6 Hz, 1H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.17 - 7.14 (m, 1H), 6.82 (dd, *J* = 17.5, 10.8 Hz, 1H), 6.20 (d, *J* = 17.5 Hz, 1H), 5.48 (d, *J* = 10.8 Hz, 1H).

undec-10-en-1-yl benzoate (2p)[14]

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 2H), 7.56 – 7.52 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 5.86-5.75 (m, 1H), 5.01 – 4.92 (m, 2H), 4.31 (t, *J* = 6.7 Hz, 2H), 2.03 (q, *J* = 8 Hz, 2H), 1.79 – 1.72 (m, 2H), 1.47 – 1.29 (m, 12H).

pent-4-en-1-ylbenzene (2q)[15]

¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 7.18 (m, 3H), 5.83 (td, *J* = 16.9, 6.7 Hz, 1H), 5.00 (dd, *J* = 20.0, 13.7 Hz, 2H), 2.62 (t, *J* = 7.7 Hz, 2H), 2.09 (q, *J* = 7.2 Hz, 2H), 1.79 – 1.65 (m, 2H).

Characterization of gem-difluoropropargyl alcohols 3

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.42 – 7.40 (m, 3H), 4.98 (dt, *J* = 9.0, 4.5 Hz, 1H), 2.81 (t, *J* = 15.5 Hz, 1H), 2.63 (t, *J* = 4.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.35 (s, 1F), -95.21 (s, 1F).

¹H NMR (400 MHz, $CDCl_3$) δ 7.40 (t, *J* = 8.5 Hz, 2H), 7.22 (t, *J* = 8.5 Hz, 2H), 4.93 (t, *J* = 5.5 Hz, 1H), 2.80 (t, *J* = 5.5 Hz, 1H), 2.78 (bs, 1H), 2.39 (s, 3H). ¹⁹F NMR (376 MHz, $CDCl_3$) δ -95.34 (s, 1F), -95.22 (s, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, *J* = 8.5 Hz, 2H), 6.93 (t, *J* = 8.5 Hz, 2H), 4.92 (t, *J* = 9.0 Hz, 1H), 3.83 (s, 3H), 2.80 (t, *J* = 5.0 Hz, 1H), 2.57 (bs, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.43 (s, 1F), -95.39 (s, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 1H), 7.08 (m, 2H), 6.93 (s, 1H), 4.95 (bs, 1H), 3.84 (s, 3H), 2.82 (t, *J* = 5.0 Hz, 1H), 2.67 (bs, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.11 (s, 1F), -94.95 (s, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.65 (t, *J* = 7.0 Hz, 1H), 7.40-7.36 (m, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.09 (dt, *J* = 9.3, 1.0 Hz, 1H), 5.37 (t, *J* = 8.5 Hz, 1H), 2.88 (bs, 1H), 2.83 (t, *J* = 5.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.4 (s, 1F), -96.76 (d, *J* = 277.7 Hz, 1F), -95.80 (d, *J* = 277.7 Hz, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 8.5 Hz, 2H), 4.94 (dt, *J* = 8.5, 4.0 Hz, 1H), 2.82 (t, *J* = 5.0 Hz, 1H), 2.64 (t, *J* = 4.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.42 (s, 1F), -95.39 (s, 1F).

3g

¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, *J* = 8.5 Hz, 2H), 7.64 (t, *J* = 8.5 Hz, 2H), 5.03 (dt, *J* = 9.0, 3.5 Hz, 1H), 2.98 (bs, 1H), 2.83 (t, *J* = 5.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.59 (d, *J* = 277.7 Hz, 1F), -94.88 (d, *J* = 277.7 Hz, 1F), -63.21 (s, 3F).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 4.69 – 4.50 (m, 2H), 4.10 (m, 1H), 3.73 (ddd, J = 17.1, 10.2, 5.1 Hz, 2H), 2.83 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.08 (dt, $J_{F-F} = 278.2$ Hz, $J_{F-H} = 11.3$ Hz, 1F), -96.27 (dt, $J_{F-F} = 248.2$ Hz, $J_{F-H} = 11.3$ Hz, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.49 (m, 2H), 7.41 – 7.37 (m, 3H), 4.93 (dd, *J* = 9.0, 8.5 Hz, 1H), 2.61 (d, *J* = 3.8 Hz, 1H), 2.27 – 2.22 (m, 2H), 1.52 – 1.47 (m, 2H), 1.38 – 1.22 (m, 6H), 0.90 (t, *J* = 7.25 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.18 (d, *J* = 274.4 Hz, 1F), -92.32 (d, *J*_{F-F} = 270.6 Hz, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 4.85 (t, *J* = 8.8 Hz, 1H), 3.80 (s, 3H), 2.55 (bs, 1H), 2.23 – 2.21 (m, 2H), 1.49 – 1.45 (m, 2H), 1.31 – 1.27 (m, 6H), 0.87 (t, *J* = 7.0Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.32 (d, *J* = 273.5 Hz, 1F), -92.15 (d, *J* = 297.4 Hz, 1F).

¹H NMR (400 MHz, CDCl₃) δ 7.63 (m, 4H), 5.00 (dt, *J* = 8.7, 3.5 Hz, 1H), 2.77 (bs, 1H), 2.25 (m, 2H), 1.49 (m, 2H), 1.29 (m, 6H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.05 (d, *J*= 271.1 Hz, 1F), -92.15 (d, *J*_{F-F} = 271.1 Hz, 1F), -63.14 (s, 3F).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 5H), 4.61 (dd, *J* = 16.0, 11.5 Hz, 2H), 4.10 – 4.06 (m, 1H), 3.78 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.67 (dd, *J* = 10.5, 7.0 Hz, 1H), 2.71 (m, 1H), 2.28 (m, 2H), 1.53 (dd, *J* = 14.8, 7.5 Hz, 2H), 1.41 – 1.27 (m, 6H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.21 (s, 2F).

Characterization of gem-difluorinated products

2,2-difluoro-1-phenylbut-3-en-1-ol (4a)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 5H), 5.92 – 5.78 (m, 1H), 5.59 (dd, *J* = 17.4, 1.2 Hz, 1H), 5.46 (d, *J* = 11.0 Hz, 1H), 4.90 (td, *J* = 9.6, 2.4 Hz, 1H), 2.54 (d, *J* = 2.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.95 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.45 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 135.92, 129.34 (t, *J* = 25 Hz), 128.71, 128.18, 127.59, 121.6 (t, *J* = 9 Hz), 119.57, 75.89 (t, *J* = 30 Hz).

2,2-difluoro-1-(p-tolyl)but-3-en-1-ol (4b)

¹H NMR (400 MHz, $CDCI_3$) δ 7.30 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 5.92 – 75.79 (d, J = 11.3 Hz, 1H), 5.60 (d, J = 17.4 Hz, 1H), 5.46 (d, J = 11.1 Hz, 1H), 4.86 (td, J = 9.2, 4 Hz, 1H), 2.46 (d,

J = 3.8 Hz, 1H), 2.36 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.00 (dt, J_{F-F} = 244.4 Hz, J_{F-H} = 11.3 Hz, 1F), -109.45 (dt, J_{F-F} = 244.4 Hz, J_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 138.54, 133.02, 129.48 (t, J = 26 Hz), 128.90, 127.49, 121.47 (t, J = 9 Hz), 119.60, 75.78 (t, J = 30 Hz), 21.17.

2,2-difluoro-1-(4-methoxyphenyl)but-3-en-1-ol (4c)

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.85 (ddd, *J* = 23.3, 17.4, 11.3 Hz, 1H), 5.59 (d, *J* = 17.4 Hz, 1H), 5.46 (d, *J* = 11.1 Hz, 1H), 4.84 (t, *J* = 9.7 Hz, 1H), 3.81 (s, 3H), 2.51 (br, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.63 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.67 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 159.85, 129.51 (t, *J* = 25 Hz), 128.85, 128.12, 121.48 (t, *J* = 9 Hz), 119.63, 113.61, 75.53 (t, *J* = 32 Hz), 55.24.

2,2-difluoro-1-(3-methoxyphenyl)but-3-en-1-ol (4d)

¹H NMR (400 MHz, CDCl₃) δ 7.27 (m, 1H), 6.99 (d, *J* = 7.6 Hz, 2H), 6.90 – 6.87 (m, 1H), 5.85 (ddd, *J* = 23.4, 17.4, 11.3 Hz, 1H), 5.61 (d, *J* = 17.4 Hz, 1H), 5.47 (d, *J* = 11.1 Hz, 1H), 4.88 (t, *J* = 9.4 Hz, 1H), 3.81 (s, 3H), 2.51 (br, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.87 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.18 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 159.43, 137.51, 129.34 (t, *J* = 25 Hz), 129.20, 121.57 (t, *J* = 10 Hz), 119.96, 119.51, 114.25, 113.14, 75.80 (t, *J* = 30 Hz), 55.25.

2,2-difluoro-1-(2-fluorophenyl)but-3-en-1-ol (4e)

¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, *J* = 7.4 Hz, 1H), 7.33 (tdd, *J* = 7.3, 5.3, 1.8 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.07 – 7.03 (m, 1H), 5.93 (dq, *J* = 17.4, 11.6 Hz, 1H), 5.62 (dt, *J* = 17.4, 2.4 Hz, 1H), 5.49 (d, *J* = 11.1 Hz, 1H), 5.27 (td, *J* = 10.1, 5.0 Hz, 1H), 2.58 (d, *J* = 5.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.33 (m, 2F). -117.15 (m, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 161.54, 159.08, 130.34 (d, *J* = 8 Hz), 129.59, 129.34, 129.08, 124.13 (d, *J* = 4 Hz), 121.80 (t, *J* = 9 Hz), 115.28 (d, *J* = 22 Hz), 66.34 (t, *J* = 30 Hz).

1-(4-chlorophenyl)-2,2-difluorobut-3-en-1-ol (4f)

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 5.83 (ddd, *J* = 23.6, 17.4, 11.1 Hz, 1H), 5.58 (dt, *J* = 17.4, 2.4 Hz, 1H), 5.47 (d, *J* = 11.1 Hz, 1H), 4.89 (td, *J* = 9.5, 3.5 Hz, 1H), 2.54 (d, *J* = 3.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.63 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.68 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.68 (dt, *J* = 26 Hz), 128.93, 128.38, 121.98 (t, *J* = 9 Hz), 119.40, 75.22 (t, *J* = 31 Hz).

2,2-difluoro-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (4g)

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 5.83 (ddd, *J* = 23.7, 17.4, 11.0 Hz, 1H), 5.63 – 5.54 (m, 1H), 5.49 (d, *J* = 11.1 Hz, 1H), 4.98 (td, *J* = 9.3, 3.3 Hz, 1H), 2.60 (d, *J* = 3.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.74 (s, 3F), -107.18 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.65 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 139.71, 130.36 (d, *J* = 33 Hz), 128.76 (t, *J* = 26 Hz), 127.95, 125.07 (d, *J* = 4 Hz), 122.21 (t, *J* = 9 Hz), 119.32, 116.88, 75.27 (t, *J* = 31 Hz).

1-(benzyloxy)-3,3-difluoropent-4-en-2-ol (4h)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 6.00 (m, 1H), 5.72 (d, *J* = 17.4 Hz, 1H), 5.52 (d, *J* = 11.1 Hz, 1H), 4.58 (s, 2H), 3.98 – 4.08 (m, 1H), 3.76 – 3.50 (m, 2H), 2.71 (br, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.93 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F), -109.43 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 137.38, 129.94 (t, *J* = 25 Hz), 128.51, 127.96, 127.76, 126.97, 120.98 (t, *J* = 10 Hz), 73.64, 72.31 (t, *J* = 30 Hz), 68.58.

(Z)-2,2-difluoro-1-phenyldec-3-en-1-ol (4i)[16]

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.39 – 7.33 (m, 3H), 5.80 – 5.72 (m, 1H), 5.43 – 5.32 (m, 1H), 4.89 (td, *J* = 10.0, 3.7 Hz, 1H), 2.55 (d, *J* = 3.8 Hz, 1H), 2.11 – 1.96 (m, 2H), 1.30 – 1.21 (m, 8H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.20 (ddd, *J*_{F-F} = 251.9 Hz, *J*_{F-H} = 13.2 Hz, 11.3 Hz, 1F), -101.99 (dt, *J*_{F-F} = 251.9 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 140.85 (t, *J* = 6 Hz), 136.04, 128.62, 128.10, 127.72, 120.97 (t, *J* = 244 Hz), 120.40 (t, *J* = 25 Hz), 76.28 (t, *J* = 30 Hz), 31.58, 29.19, 28.84, 28.33, 22.54, 14.05.

(Z)-2,2-difluoro-1-(4-methoxyphenyl)dec-3-en-1-ol (4j)

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 5.79 – 5.72 (m, 1H), 5.37 (dd, *J* = 27.5, 15.2 Hz, 1H), 4.86 – 4.81 (m, 1H), 3.80 (s, 3H), 2.52 (d, *J* = 3.4 Hz, 1H), 2.11 – 2.00 (m, 2H), 1.34 – 1.22 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.31 (ddd, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 13.2 Hz, 11.3 Hz, 1F), -102.30 (dt, *J*_{F-F} = 248.2 Hz, *J*_{F-H} = 11.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 159.82, 140.70 (t, *J* = 60 Hz), 128.94, 128.20, 121.02 (t, *J* = 244 Hz), 120.56 (t, *J* = 25 Hz), 113.53, 75.90 (t, *J* = 30 Hz), 55.21, 31.59, 29.23, 28.87, 28.36, 22.54, 14.04. HRMS (ESI) calcd. for [C₁₇H₂₄F₂O₂] ([Na⁺]) 321.1642; found 321.2500.

(Z)-2,2-difluoro-1-(4-(trifluoromethyl)phenyl)dec-3-en-1-ol (4k)

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8 Hz, 2H), 7.57 (d, *J* = 8 Hz, 2H), 5.79 (dt, *J* = 12.3, 7.8 Hz, 1H), 5.35 (dd, *J* = 27.9, 15.2 Hz, 1H), 4.99 – 4.94 (m, 1H), 2.67 (s, 1H), 2.07 – 1.96 (m, 2H), 1.29 – 1.20 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.85 (dt, *J*_{F-F} = 251.9 Hz, *J*_{F-H} = 11.3 Hz, 1F), -101.82 (ddd, *J*_{F-F} = 251.9 Hz, *J*_{F-H} = 15.04, 7.52 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 141.42 (t, *J* = 5 Hz), 139.84, 130.78 (d, *J* = 32 Hz), 128.10, 124.96 (d, *J* = 4 Hz), 122.61, 120.71 (t, *J* = 244 Hz), 119.83 (t, *J* = 25 Hz), 75.69 (t, *J* = 30 Hz), 31.52, 29.15, 28.82, 28.37, 22.50, 13.99. HRMS (ESI) calcd for [C₁₇H₂₁F₅O] ([Na⁺]) 359.1410; found 359.2333.

(Z)-1-(benzyloxy)-3,3-difluoroundec-4-en-2-ol (4I)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.93 – 5.75 (m, 1H), 5.55 – 5.45 (m, 1H), 4.58 (dd, *J* = 16, 11.6 Hz, 2H), 4.08 – 3.99 (m, 1H), 3.66 (ddd, *J* = 17.3, 10.0, 5.3 Hz, 2H), 2.68 (d, *J* = 4.9 Hz, 1H), 2.30 – 2.24 (m, 2H), 1.42 – 1.24 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.07 (dt, *J*_{F-F} = 255.68 Hz, *J*_{F-H} = 11.3 Hz, 1F), -103.91 (dt, *J*_{F-F} = 255.68 Hz, *J*_{F-H} = 11.03 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 140.65 (t, *J* = 5 Hz), 137.45, 128.49, 127.92, 127.76, 121.04 (t, *J* = 25 Hz), 120.40 (t, *J* = 242 Hz), 73.64, 72.95 (t, *J* = 29 Hz), 68.70 (t, *J* = 4 Hz), 31.16, 29.35, 28.88, 28.58, 22.56, 14.05. HRMS (ESI) calcd for [C₁₈H₂₆F₂O₂] ([Na⁺]) 335.1799; found 335.2500.

1-(1-(allyloxy)-2,2-difluorobut-3-en-1-yl)-2-fluorobenzene (5)

¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 7.2 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.08 – 7.02 (m, 1H), 6.01 (ddd, *J* = 23.3, 17.4, 11.6 Hz, 1H), 5.86 (ddt, *J* = 22.4, 11.3, 5.7 Hz, 1H), 5.59 (dt, *J* = 17.4, 2.4 Hz, 1H), 5.47 (d, *J* = 11.1 Hz, 1H), 5.28 – 5.18 (m, 2H), 5.06 – 4.89 (t, *J* = 12 Hz, 1H), 3.98 (ddd, *J* = 18.9, 12.8, 5.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.27 (m, 2F), -117.67 (m, 1F).

3,3-difluoro-2-(2-fluorophenyl)-3,6-dihydro-2H-pyran (6)

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 1H), 7.38 – 7.32 (m, 1H), 7.23 – 7.14 (td, *J* = 8, 0.8, 1H), 7.08 (ddd, *J* = 9.6, 8.3, 1.0 Hz, 1H), 6.36 – 6.31 (m, 1H), 6.10 – 6.03 (m, 1H), 5.08 (d, *J* = 19.1 Hz, 1H), 4.51 – 4.34 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.1 (m, 2F), -117.90 (m, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 161.55, 159.08, 134.92 (t, *J* = 9 Hz), 130.28 (d, *J* = 8 Hz), 129.85 (t, *J* = 3 Hz), 123.96 (d, *J* = 4 Hz), 122.38 (dd, *J* = 31, 26 Hz), 120.97 (d, *J* = 14 Hz), 115.07 (d, *J* = 22 Hz), 113.53 (dd, *J* = 243, 235 Hz), 77.27 (m), 66.12. MS (m/z): 214.1, 164.0, 133.1, 123.0, 95.0, 90.0, 75.0.

2,2-difluoro-1-phenylbut-3-en-1-yl acrylate (7)

¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, *J* = 7.2 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 9.2 Hz, 1H), 6.53 – 6.40 (m, 2H), 6.20 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.99 – 5.86 (m, 2H), 5.66 (dt, *J* = 17.3, 2.3 Hz, 1H), 5.52 (d, *J* = 11.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.97 (m, 2F), -116.08 (m, 1F).

5,5-difluoro-6-(2-fluorophenyl)-5,6-dihydro-2H-pyran-2-one (8)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (t, *J* = 7.4 Hz, 1H), 7.44 (dd, *J* = 14.2, 6.9 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 12 Hz, 1H), 6.94 (t, *J* = 9.1 Hz, 1H), 6.41 (d, *J* = 9.9 Hz, 1H), 5.98 (dd, *J* = 20.7, 3.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.32 (dd, *J*_{F-F} = 285.8 Hz, *J*_{F-H} = 22.6 Hz, 1F), -112.16

(dtt, $J_{F-F} = 285.8 \text{ Hz}$, $J_{F-H} = 11.3$, 3.76 Hz, 1F), -117.42 (m, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 161.67, 159.18, 138.30 (dd, J = 34, 25 Hz), 131.68 (d, J = 9 Hz), 130.03 (t, J = 3 Hz), 136.33 (dd, J = 10, 8 Hz), 124.37 (d, J = 4 Hz), 117.49 (d, J = 8 Hz), 115.48 (d, J = 9 Hz), 111.84 (dd, J = 247, 238 Hz), 74.13 (m). MS (m/z): 228.1, 158.0, 123.0, 104.0, 95.0, 76.0.

 C								
Archive directory: /export/home, Sample directory: File: FLUORINE	/hammond/vnmrsys/d	ata						
Pulse Sequence: s2pul Solvent: CDC13 Ambient temperature User: 1-15-87 INOVA-500 "ulnmr2"							and the	0>ML
Relax, delay 1.500 sec Puise 60 degrées Vietn 100 0.3 kHz Vietn 106.3 kHz 22 repetitions DBSERVE F18, 470.6231394 MHz DBATA PROCESSING Line broadening 5.0 Hz f1 size 65556 Total time 1 min, 16 sec								
				5.214				
				6 - Ot				
				en . 66 -				
				P				
				1				
				4.3				
๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		******	 		 	angles means to be an other to be a mean	ويوه والجوار البرانية البرانية سوال مرتباه	kan talangan tangan talan kan

.

20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

Reference

- a) S. Arimitsu, J. M. Jacobsen, G. B. Hammond, *Tetrahedron Lett.* 2007, *48*, 1625-1627; b)
 S. Arimitsu, G. B. Hammond, *J. Org. Chem.* 2007, *72*, 8559-8561; c) G. B. Hammond, *J. Fluorine Chem.* 2006, *127*, 476-488.
- [2] C. Belger, N. M. Neisius, B. Plietker, *Chem. Eur. J.* **2010**, *16*, 12214-12220.
- [3] F. Alonso, P. Riente, M. Yus, *Eur. J. Org. Chem.* **2009**, *2009*, 6034-6042.
- [4] F. Luo, C. Pan, W. Wang, Z. Ye, J. Cheng, *Tetrahedron* **2010**, *66*, 1399-1403.
- [5] X. Guo, J. Wang, C.-J. Li, J. Am. Chem. Soc. **2009**, 131, 15092-15093.
- [6] R. Shen, T. Chen, Y. Zhao, R. Qiu, Y. Zhou, S. Yin, X. Wang, M. Goto, L.-B. Han, J. Am. Chem. Soc. 2011, 133, 17037-17044.
- [7] L. E. Zimmer, A. B. Charette, J. Am. Chem. Soc. **2009**, 131, 15624-15626.
- [8] Y. Six, Eur. J. Org. Chem. **2003**, 2003, 1157-1171.
- [9] C. A. Faler, M. M. Joullié, Org. Lett. 2007, 9, 1987-1990.
- [10] E. Vasilikogiannaki, I. Titilas, G. Vassilikogiannakis, M. Stratakis, *Chem. Commun.* **2015**, *51*, 2384-2387.
- [11] H. Xu, K. Ekoue-Kovi, C. Wolf, J. Org. Chem. 2008, 73, 7638-7650.
- [12] L. Chu, F.-L. Qing, Org. Lett. **2010**, *12*, 5060-5063.
- [13] D. Albanese, C. Ghidoli, M. Zenoni, *Organic Process Research & Development* **2008**, *12*, 736-739.
- [14] J.-L. Débieux, A. Cosandey, C. Helgen, C. G. Bochet, Eur. J. Org. Chem. 2007, 2007, 2073-2077.
- [15] M. M. Coulter, K. G. M. Kou, B. Galligan, V. M. Dong, J. Am. Chem. Soc. 2010, 132, 16330-16333.
- [16] F. Tellier, M. Baudry, R. Sauvêtre, *Tetrahedron Lett.* **1997**, *38*, 5989-5992.