Structural Studies of β-Turn-Containing Peptide Catalysts for Atroposelective Quinazolinone Bromination

Anthony J. Metrano, ${ }^{\dagger}$ Nadia C. Abascal, ${ }^{\dagger}$ Brandon Q. Mercado, Eric K. Paulson, and Scott J. Miller*
Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
*E-mail: scott.miller@yale.edu
${ }^{\dagger}$ A.J.M. and N.C.A. contributed equally.
\section*{Electronic Supplementary Information}

Table of Contents

I. General Information S2
II. Solution Phase Peptide Synthesis and Characterization S4
III. Synthesis and Characterization of Quinazolin-4(3H)-one 1 S15
IV. Bromination Procedures and Characterization of Tribromide 2 S16
V. Solution-Phase NMR Studies of $\mathbf{3}$ and $\mathbf{4 I}$ S20
VI. Crystallographic Information S32
VII. References S36

I. General Information

Room temperature (rt) is defined as $21-23^{\circ} \mathrm{C}$. All reagents were purchased from commercial suppliers and used without further purification, unless otherwise noted. In particular, N -bromosuccinimide (NBS) was recrystallized from water, dried thoroughly in vacuo, and stored in a vial shielded from light at $0{ }^{\circ} \mathrm{C}$. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and toluene (PhMe) were obtained from a Seca Solvent System by GlassContour, in which the solvent was dried over alumina and dispensed under an atmosphere of Ar. All other solvents were purchased from commercial suppliers and used without further purification.

Routine ${ }^{1} \mathrm{H}$-NMR spectra were recorded on Agilent 500 MHz spectrometers at ambient temperature. NMR solvents, d-chloroform, d_{6}-dimethylsulfoxide, d_{6}-benzene, and d_{4}-methanol were purchased from Cambridge Isotope Laboratories and used without further purification. d Chloroform was stored at ambient temperature over $4 \AA$ molecular sieves, and fresh $d_{4^{-}}$ methanol and d_{6}-benzene ampules were used immediately after opening. Spectra were processed with MestReNova 10.0.2 using the automatic phasing and Bernstein third order polynomial baseline correction capabilities. Splitting was determined using the automatic multiplet analysis function with intervention as necessary. Spectral data are reported as follows: chemical shift (multiplicity [singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), multiplet (m), doublet of doublets (dd), doublet of doublet of doublets (ddd), doublet of triplet of doublets (dtd), doublet of triplets (dt), triplet of doublets (td), etc.], coupling constant, integration). Chemical shifts are reported in ppm (δ), and coupling constants are reported in Hz . ${ }^{1} \mathrm{H}$-Resonances are referenced to solvent residual peaks for $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, $\mathrm{DMSO}-\mathrm{d}_{6}(2.50 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}(7.16$ ppm), or $\mathrm{CD}_{3} \mathrm{OD}(3.31 \mathrm{ppm}) .{ }^{1}$ Routine ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Agilent 500 MHz spectrometers with protons fully decoupled. ${ }^{13} \mathrm{C}$-Resonances are reported in ppm relative to solvent residual peaks for CDCl_{3} (77.2 ppm), $\mathrm{DMSO}-\mathrm{d}_{6}$ (39.5 ppm), $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.1 ppm), or $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm}) .{ }^{1}$

Infrared spectra were recorded on a Nicolet 6700 ATR/FT-IR spectrometer, and $v_{\text {max }}$ are partially reported in cm^{-1}. Samples for high-resolution liquid chromatography-mass spectrometry (HRMS) were submitted to the Mass Spectrometry Laboratory at the University of Illinois at Urbana-Champaign. Data was acquired on a Waters Synapt G2-Si instrument equipped with an ESI detector. For crude analysis, ultra high-performance liquid chromatography-mass spectrometry (UPLC/MS) was performed on a Waters Acquity UPLC/MS instrument equipped with a reverse-phase BEH C18 column ($1.7 \mu \mathrm{~m}$ particle size, $2.1 \times 50 \mathrm{~mm}$), a dual atmospheric pressure chemical ionization (API)/electrospray ionization (ESI) mass spectrometry detector, and a photodiode array detector.

Analytical thin-layer chromatography (TLC) was performed using $60 \AA$ Silica Gel F_{254} pre-coated plates (0.25 mm thickness). TLC plates were visualized by irradiation with a UV lamp. R_{f} values are reported. Normal-phase flash chromatography was performed using a Biotage Isolera One purification system equipped with a 10, 25, or 50 g SNAP Ultra (HP Sphere, 25 mm silica) cartridge and an appropriate EtOAc/hexanes linear gradient in the mobile phase. Reverse-phase column chromatography was performed using a Biotage Isolera One purification
system equipped with a 60 or 120 g SNAP-C18 column and an appropriate $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ linear gradient in the mobile phase.

Optical rotations were recorded on a Perkin-Elmer Polarimeter 341 at the sodium D-line $(589 \mathrm{~nm})$ using a cell of 1 dm path length. Measurements were recorded at $20^{\circ} \mathrm{C}$. Concentration values are reported in units of $\mathrm{g} / 100 \mathrm{~mL}$. Normal-phase high-performance liquid chromatography (HPLC) was performed using an Agilent 1100 series instrument equipped with a diode array detector and columns (chiral supports) from Daicel Chemical Industries (Chiralcel OJ-H).

II. Solution Phase Peptide Synthesis and Characterization

A. General Remarks

The solution phase peptide synthesis of catalysts $\mathbf{3 , 4 a - x}$, and S11-18 was accomplished using the N-tert-butoxycarbonyl (Boc) protecting group strategy. ${ }^{2}$ Boc-L- β Dimethylaminoalanine (S7, Boc-Dmaa-OH) was synthesized according to a literature procedure. ${ }^{3}$ All other amino acid residues and coupling reagents were purchased from commercial suppliers. Once synthesized, peptides were stored at $0^{\circ} \mathrm{C}$ to prevent epimerization and other adverse side-reactivity.

B. Synthesis and Characterization of Dimethylamide-Containing Peptide 3

Installation of \boldsymbol{C}-Terminal Protecting Group: Boc-Leu-OH $\cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{S 1}, 499 \mathrm{mg}, 2.00 \mathrm{mmol})$, dimethylamine hydrochloride ($359 \mathrm{mg}, 4.40 \mathrm{mmol}$), and $\mathrm{HOB} \bullet \cdot \mathrm{H}_{2} \mathrm{O}(368 \mathrm{mg}, 2.40 \mathrm{mmol})$ were added to a round bottom flask equipped with a magnetic stir bar. The solid mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S1), and EDC• $\mathrm{HCl}(460 \mathrm{mg}, 2.40 \mathrm{mmol})$ was added. The resulting solution was allowed to stir at rt as $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly, causing the cloudy solution to clarify. The pale yellow reaction solution was allowed to stir at rt for about 2 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with approximately 25 mL of 10% aqueous (w/v) citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO_{3} and brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a clear, pale yellow oil ($517 \mathrm{mg},>99 \%$ crude yield). The identity of $\mathrm{Boc}-\mathrm{Leu}-\mathrm{NMe}_{2}$ was confirmed by UPLC/MS. MS: Exact mass calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$requires $m / z=259.2$. Found $259.2(\mathrm{ESI}+)$.

Deprotection 1: Crude Boc-Leu- NMe_{2} was then treated with 6 mL of 4.0 M HCl in 1,4-dioxane to cleave the Boc group. The resulting pale yellow solution was allowed to stir at rt for 1 h before HCl and 1,4-dioxane were removed in vacuo. Residual 1,4-dioxane was removed by co-
evaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide 389 mg ($>99 \%$ crude yield) of $\mathbf{S 2}$ as a foam, which was dried thoroughly under reduced pressure before being carried forward to the next coupling step.

Peptide Coupling 1: To a flask containing H-Leu-NMe ${ }_{2} \cdot \mathrm{HCl}(\mathbf{S 2}, 389 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added Boc-Acpc-OH (S3, $483 \mathrm{mg}, 2.20 \mathrm{mmol}$), $\mathrm{HOBt} \bullet \mathrm{H}_{2} \mathrm{O}(368 \mathrm{mg}, 2.40 \mathrm{mmol})$, and a magnetic stir bar. The solid mixture was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S2), and $\mathrm{EDC} \cdot \mathrm{HCl}(460 \mathrm{mg}, 2.40 \mathrm{mmol})$ was then added. The resulting solution was allowed to stir at rt as $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly. The deep yellow reaction solution was allowed to stir at rt for 2 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with 25 mL of 10% aqueous (w/v) citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO_{3} and brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a white foam ($739 \mathrm{mg},>99 \%$ crude yield). The identity of Boc-Acpc-LeuNMe_{2} was confirmed by UPLC-MS. MS: Exact mass calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$requires $m / z=342.2$. Found 342.3 (ESI+).

Deprotection 2: Deprotection of the crude dipeptide Boc-Acpc-Leu-NMe ${ }_{2}$ was accomplished in the same manner as described in Deprotection 1 (vide supra) to provide S4 (556 mg, 2.00 mmol) as a white foam.

Peptide Coupling 2: To a flask containing H-Acpc-Leu-NMe ${ }_{2} \cdot \mathbf{H C l}(\mathbf{S 4}, 556 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added Boc-D-Pro-OH ($\mathbf{S 3}, 517 \mathrm{mg}, 2.20 \mathrm{mmol}$), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ ($368 \mathrm{mg}, 2.40 \mathrm{mmol}$), and a magnetic stir bar. The solid mixture was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S4), and $\mathrm{EDC} \cdot \mathrm{HCl}(460 \mathrm{mg}, 2.40 \mathrm{mmol})$ was then added. The resulting solution was allowed to stir at rt as $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly. The deep yellow reaction solution was allowed to stir at t for 2 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with 25 mL of 10% aqueous (w/v) citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO_{3} and brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a white foam ($873 \mathrm{mg},>99 \%$ crude yield). The identity of Boc-D-Pro-Acpc-Leu-NMe ${ }_{2}$ was confirmed by UPLC-MS. MS: Exact mass calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$ requires $m / z=439.3$. Found 439.4 (ESI +).

Deprotection 3: Deprotection of the crude tripeptide Boc-D-Pro-Acpc-Leu-NMe ${ }_{2}$ was accomplished in the same manner as described in Deprotection 1 (vide supra) to provide S6 ($750 \mathrm{mg}, 2.00 \mathrm{mmol}$) as an off-white foam.

Peptide Coupling 3: To a flask containing H-D-Pro-Acpc-Leu-NMe ${ }_{2} \cdot \mathbf{H C l}(\mathbf{S 6}, 750 \mathrm{mg}, 2.00$ mmol) was added Boc-Dmaa-OH ($\mathbf{S 7}, 511 \mathrm{mg}, 2.20 \mathrm{mmol}$) and a magnetic stir bar. The solid mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S6), and HBTU ($910 \mathrm{mg}, 2.40 \mathrm{mmol}$) was then added to the stirring solution at rt. Next, $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly. The deep yellow/brown reaction solution was allowed to stir at rt for 8 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed twice with about 25 mL of saturated aqueous NaHCO_{3}. The organic layer was
separated and subsequently washed with 20 mL of brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a deep yellow oil. The crude product was loaded onto a Biotage Isolera One purification system for reverse-phase column chromatography (120 g column, $30-100 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ over 16 column volumes with 3 column volume pre- and post-run equilibrations, $45 \mathrm{mLmin}^{-1}$ flow, collection $\lambda=210 \mathrm{~nm}$, monitored $\lambda=$ $254 \mathrm{~nm}, 16 \times 150 \mathrm{~mm}$ test tubes with 20 mL fractions). Fractions were pooled, concentrated in vacuo, and dried thrice azeotropically with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide Boc-Dmaa-D-Pro-Acpc-Leu-NMe 2 ($3,667 \mathrm{mg}, 60 \%$ yield) as a white foam.

Boc-Dmaa-D-Pro-Acpc-Leu-NMe ${ }_{2}$ (3): White foamy solid, 60% overall yield from S1. IR (FTATR, cm^{-1}): 3301, 2969, 2873, 1627, 1519, 1445, 1245, 1165, 1010. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.55(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{td}, J=8.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=7.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=$ $9.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (s, 3H), 2.91 (s, 3H), 2.72 (dd, $J=12.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dd, $J=12.3$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46$ (m, 3H), $1.40(\mathrm{~s}, 9 \mathrm{H}), 0.97$ (dq, $J=6.3,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{dd}, J=9.4,6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,172.3,171.5,171.1,156.5,79.9,76.9,61.3,60.1,50.6,47.7,47.5$, 45.9, 41.8, 37.3, 36.0, 34.6, 28.9, 28.5, 25.1, 24.7, 23.4, 22.4, 17.2, 17.1. HRMS: Exact mass calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$requires $\mathrm{m} / \mathrm{z}=553.3714$. Found 553.3709 (ESI+). Optical: $[\alpha]_{D}^{20}=+40.2\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

C. Synthesis and Characterization of Methyl Ester-Containing Peptide 41

Peptide Coupling 1: To a flask containing H-Leu-OMe $\cdot \mathrm{HCl}$ ($\mathbf{S 8}, 362 \mathrm{mg}, 2.00 \mathrm{mmol}$) was added Boc-Acpc-OH (S3, $483 \mathrm{mg}, 2.40 \mathrm{mmol}$), $\mathrm{HOBt} \bullet \mathrm{H}_{2} \mathrm{O}$ ($368 \mathrm{mg}, 2.40 \mathrm{mmol}$), and a magnetic stir bar. The solid mixture was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S8), and EDC $\cdot \mathrm{HCl}(460 \mathrm{mg}, 2.40 \mathrm{mmol})$ was then added. The resulting solution was allowed to stir at rt as $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly. The clear, colorless reaction solution was allowed to stir at rt for overnight, after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with 25 mL of 10% aqueous (w/v) citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO_{3} and brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide an off-white waxy solid ($772 \mathrm{mg},>99 \%$ crude yield). The identity of Boc-Acpc-Leu-OMe was confirmed by UPLC-MS. MS: Exact mass calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$requires $m / z=329.2$. Found $329.3(\mathrm{ESI}+)$.

Deprotection 1: Crude Boc-Acpc-Leu-OMe was then treated with 6 mL of 4.0 M HCl in 1,4dioxane to cleave the Boc group. The resulting pale yellow solution was allowed to stir at rt for 1 h, before HCl and 1,4-dioxane were removed in vacuo. Residual 1,4-dioxane was removed by co-evaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide 530 mg ($>99 \%$ crude yield) of $\mathbf{S 9}$ as a foam, which was dried thoroughly under reduced pressure before being carried forward to the next coupling step.

Peptide Coupling 2: To a flask containing H-Acpc-Leu-OMe $\cdot \mathrm{HCl}(\mathbf{S 9}, 530 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added Boc-D-Pro-OH ($\mathbf{S 5}, 517 \mathrm{mg}, 2.20 \mathrm{mmol}$), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ ($368 \mathrm{mg}, 2.40 \mathrm{mmol}$), and a magnetic stir bar. The solid mixture was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S9), and $\mathrm{EDC} \cdot \mathrm{HCl}(460 \mathrm{mg}, 2.40 \mathrm{mmol})$ was then added. The resulting solution was allowed to stir at rt as $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.84 \mathrm{~mL}, 4.80 \mathrm{mmol})$ was added slowly. The clear, pale yellow reaction solution was allowed to stir at rt for 3 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with 25 mL of 10% aqueous (w/v) citric acid. The organic layer was separated and subsequently washed with 25 mL each of saturated aqueous NaHCO_{3} and brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a white foam ($851 \mathrm{mg}, 1.86 \mathrm{mmol}, 93 \%$ crude yield). The
identity of Boc-D-Pro-Acpc-Leu-OMe was confirmed by UPLC-MS. MS: Exact mass calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$requires $m / z=426.3$. Found 426.4 (ESI+).

Deprotection 2: Deprotection of the crude tripeptide Boc-D-Pro-Acpc-Leu-OMe was accomplished in the same manner as described in Deprotection 1 (vide supra) to provide 672 mg of $\mathbf{S 1 0}$ ($1.86 \mathrm{mmol},>99 \%$ crude yield) as an off-white foam.

Peptide Coupling 3: To a flask containing H-D-Pro-Acpc-Leu-OMe•HCI (S10, $672 \mathrm{mg}, 1.86$ $\mathbf{m m o l}$) was added Boc-Dmaa-OH ($\mathbf{S 7 6}, 518 \mathrm{mg}, 2.23 \mathrm{mmol}$) and a magnetic stir bar. The solid mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.3 \mathrm{~mL}, 0.20 \mathrm{M}$ w.r.t. S10), and HBTU ($846 \mathrm{mg}, 2.23 \mathrm{mmol}$) was then added to the stirring solution at rt. Next, $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.78 \mathrm{~mL}, 4.46 \mathrm{mmol})$ was added slowly. The deep yellow reaction solution was allowed to stir at rt for 8 h , after which the solution was poured into a separatory funnel, diluted to 30 mL with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed twice with about 25 mL of saturated aqueous NaHCO_{3}. The organic layer was separated and subsequently washed with 20 mL of brine. The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide a deep yellow oil. The crude product was loaded onto a Biotage Isolera One purification system for reverse-phase column chromatography (120 g column, $30-100 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ over 16 column volumes with 3 column volume pre- and postrun equilibrations, $45 \mathrm{mLmin}^{-1}$ flow, collection $\lambda=210 \mathrm{~nm}$, monitored $\lambda=254 \mathrm{~nm}, 16 \times 150 \mathrm{~mm}$ test tubes with 20 mL fractions). Fractions were pooled, concentrated in vacuo, and dried thrice azeotropically with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide Boc-Dmaa-D-Pro-Acpc-Leu-OMe (4I, $759 \mathrm{mg}, 76 \%$ yield) as a white foam.

Boc-Dmaa-D-Pro-Acpc-Leu-OMe (4I): White foamy solid, 76\% overall yield from S8. IR (FTATR, cm^{-1}): 3322, 2956, 1744, 1669, 1644, 1539, 1506, 1442, 1367, 1254, 1169, 1023. ${ }^{1} \mathrm{H}$-NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.48$ (ddd, $J=9.0,7.6$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68 ($\mathrm{s}, 3 \mathrm{H}$), $3.58(\mathrm{dt}, J=9.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, 6 H), $2.18(\mathrm{dq}, J=12.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.71$ (ddt, $J=13.8$, $6.7,5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{tt}, \mathrm{J}=9.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.93$ (m, 1 H), 0.90 (dd, $J=9.6,6.2 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 173.5,172.3,171.5,171.2$, 156.7, 80.7, 77.4, 77.2, 76.9, 61.7, 59.4, 51.9, 51.6, 50.8, 47.9, 45.7, 41.3, 34.6, 29.5, 28.5, 28.4, 24.8, 24.8, 23.0, 22.0, 17.1, 16.8. HRMS: Exact mass calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$ requires $m / z=540.3397$. Found 540.3394 (ESI+). Optical: $[\alpha]_{D}^{20}=-2.96\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

D. HRMS Data for Peptide Catalysts 4a-k, 4m-x, and S11-18

4 a
Calculated $\left[\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$
requires $\mathrm{m} / \mathrm{z}=589.3714$. requires $m / z=589.371$
Found 589.3707.
 requires $m / z=542.3554$.

Calculated $\left[\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$
requires $m / z=574.3241$.
Found 574.3235.

Calculated $\left[\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$ requires $m / z=539.3557$.

Found 539.3555

4 b
Calculated $\left[\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]+$
requires $\mathrm{m} / \mathrm{z}=576.3397$. requires $\mathrm{m} / \mathrm{z}=576.3397$. Found 576.3389.

$$
\begin{gathered}
\text { Calculated }\left[\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+} \\
\text {requires } m / z=497.3088 \text {. }
\end{gathered}
$$ Found 497.3081.

Calculated $\left[\mathrm{C}_{25}{ }^{40} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$ requires $m / z=526.3241$. Found 526.3240.

$\stackrel{4 \mathrm{c}}{\text { Calculated }}\left[\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$ requires $m / z=555.3870$. Found 555.3869.

requires $m / z=484.2771$.
Found 484.2768.

$\stackrel{4 \mathrm{p}}{\text { Calculated }\left[\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}}$
requires $m / z=663.3870$.
Found 663.3863 .

Calculated $\left[\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$ requires $\mathrm{m} / \mathrm{z}=650.3554$. Found 650.3557

Calculated $\left.{ }_{\left[\mathrm{C}_{34} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{~N}_{5}\right.}^{\mathrm{O}}+\mathrm{H}\right]^{+}$ requires $m / z=638.3554$. Found 638.3544 .

$\xrightarrow{\stackrel{\mathrm{S} 12}{ }} \underset{\text { Calculated }\left[\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]+}{\text { requires } \mathrm{m} / 2=639.3870 .}$
requires $m / z=639.3870$.
Found 639.3861 .

4s
Calculated $\left[\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$
requires $m / z=616.3710$.

4w
Calculated $\left[\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$ requires $m / z=617.4027$. Found 617.4023.

Sin_{16}
Calculated $\left[\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$
requires $\mathrm{m} / \mathrm{z}=590.3666$.
requires $m / z=590.3666$.
Found 590.3658.

S17
Calculated $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}+\mathrm{H}\right]^{+}$ requires $m / z=595.3278$.
Found 595.3278

Calculated $\left[\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$
Calculated $\left[\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{7}+\mathrm{H}\right]{ }^{+}$
requires $\mathrm{m} / \mathrm{z}=562.3241$.
Found 562.3237

III. Synthesis and Characterization of Quinazolin-4(3H)-one 1

2-Methyl-4H-benzo-[d][1,3]oxazin-4-one (S20): ${ }^{4}$ Anthranilic acid ($\mathbf{S 1 9}, 8.228 \mathrm{~g}, 60.0 \mathrm{mmol}$) was added to an oven-dried 40 mL sealed tube (thick-walled) equipped with a magnetic stir bar. The off-white solid was suspended in acetic anhydride ($36 \mathrm{~mL}, 381 \mathrm{mmol}$), and the vessel was purged with nitrogen, sealed tightly, and submerged into an oil bath at $130{ }^{\circ} \mathrm{C}$. The cloudy suspension quickly became a clear, deep yellow solution, which was allowed to stir at $130^{\circ} \mathrm{C}$ for 6 h . The reaction solution was allowed to cool to room temperature, and the contents of the sealed tube were transferred to a round bottom flask washing with copious PhMe. Removal of solvent under reduced pressure yielded benzoxazinone S20 ($9.503 \mathrm{~g}, 98 \%$ yield) which was used without further purification.

3-(3-Hydroxyphenyl)-2-methylquinazolin-4(3H)-one (1): ${ }^{5}$ Benzoxazinone S20 ($2.991 \mathrm{~g}, 18.6$ mmol) and m-aminophenol ($\mathbf{S 2 1}, 2.430 \mathrm{~g}, 22.3 \mathrm{mmol}$) were added to an oven-dried 40 mL sealed tube (thick-walled) equipped with a magnetic stir bar. The solid mixture was dissolved in pyridine ($16.7 \mathrm{~mL}, 1.2 \mathrm{M}$ w.r.t. S20). The vessel was purged with nitrogen, sealed tightly, and submerged in an oil bath at $145{ }^{\circ} \mathrm{C}$. The cloudy, deep red suspension began to clarify upon heating. The deep red solution was allowed to stir for 12 h at $145^{\circ} \mathrm{C}$, after which the vessel was cooled to room temperature. The contents of the sealed tube were transferred to a round bottom flask, washing with copious PhMe , and the solvent was removed under reduced pressure. The crude product was purified by automated flash chromatography using a gradient of 10-100\% EtOAc/hexanes. Fractions were pooled and concentrated in vacuo to provide a pale yellow solid, which was suspended in hot $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and vacuum filtered to remove insoluble sideproducts. The filtrate was allowed to cool to $0^{\circ} \mathrm{C}$, precipitating 2.563 g (61% yield) of pure $\mathbf{1}$ as a white solid. TLC: $\mathrm{R}_{f}=0.21$ (50% EtOAc/hexanes). IR (FT-ATR, cm^{-1}): 3310, 3090, 2819, 1661, 1591, 1570, 1291, 1112, 933. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $\delta 9.85$ (s, 1H), 8.10 (dd, $J=$ $7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (ddd, $J=8.4,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, J $=8.3,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (ddd, $J=8.3,2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (ddd, J $=7.8,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}\right.$, DMSO- d_{6}): δ 161.6, 158.7, 154.9, 147.7, 139.2, 134.9, 130.7, 127.1, 126.8, 126.7, 120.9, 119.2, 116.4, 115.8, 24.2. HRMS: Exact mass calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$requires $m / z=253.0977$. Found 253.0975 (ESI+).

IV. Bromination Procedures and Characterization of Tribromide 2

A. Peptide Screening Procedure

To an oven-dried 20 mL vial equipped with a magnetic stir bar was added 3-(3-hydroxyphenyl)-2-methyl-quinazolin-4(3H)-one ($1,12.6 \mathrm{mg}, 0.050 \mathrm{mmol}$) and peptide catalyst ($0.005 \mathrm{mmol}, 10$ mol\% w.r.t. 1). The solid mixture was suspended in 5 mL of $\mathrm{PhMe} / \mathrm{CHCl}_{3}(9: 1 \mathrm{v} / \mathrm{v}, 0.01 \mathrm{M}$ w.r.t. 1), and the resulting suspension was allowed to stir vigorously at rt. N -Bromosuccinimide (NBS, $26.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv w.r.t. 1) was added in one portion to the stirring solution at rt. The vial was sealed with a cap, and the reaction solution was allowed to stir for 60 minutes. (Note: A color change from colorless to yellow was observed within 15 minutes. In some cases, the clear yellow or pale yellow reaction solutions turned cloudy.) The reaction was quenched by addition of 1 mL of MeOH followed by (trimethylsilyl)diazomethane solution ($\mathrm{TMSCHN}_{2}, 2.0 \mathrm{M}$ in hexanes) until the bright yellow color persisted in solution (Note: the yellow reaction solution became clear and colorless before turning bright yellow). The solution was allowed to stir 15-20 minutes at rt, after which glacial acetic acid was added dropwise until the solution became clear and colorless. The solvent was removed in vacuo, and the crude reaction mixture was purified by flash chromatography through a pipette silica plug ($1 \times 6 \mathrm{~cm} \mathrm{SiO}_{2}$) washing with EtOAc/hexanes ($1: 1 \mathrm{v} / \mathrm{v}$). The fractions were pooled and concentrated in vacuo. The resulting white foam (or clear oil) was dried thoroughly on high vacuum to provide 3-(2,4,6-tribromo-3-methoxyphenyl)-2-methyl-quinazolin-4(3H)-one (2), which was analyzed by chiral HPLC to assess the enantioselectivity of the reaction. Chiral HPLC (Chiralcel OJ-H column, 10\% $\mathrm{EtOH} /$ hexanes eluent, 2 mL injection, $1 \mathrm{mLmin}^{-1}$ flow rate, regulated at $20{ }^{\circ} \mathrm{C}, 230 \mathrm{~nm}$): major enantiomer $\mathrm{t}_{\mathrm{R}}=9.7 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min}$. (Note: Conversion of 1 was always complete, and thus only er values were tabulated in Figure 2 and Figure S1.).

B. Cumulative Peptide Screening Data

Figure S1 presents our cumulative peptide results from this work, as well as our previous report. ${ }^{6}$ All results were obtained using the Peptide Screening Procedure described above (section IV.A).

Figure S1: Cumulative peptide screening data for the atroposelective bromination of 1. New entries from this study are presented in blue. Entries from ref. 6 are presented in red. Entries that appear in both ref. 6 and this study are in purple.

C. Preparative Bromination Procedure Using 4I

(\pm

N -Bromosuccinimide (NBS, $53.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv w.r.t. 1) was added to a 10 mL scintillation vial shielded from light, and 3.5 mL of $\mathrm{PhMe} / \mathrm{CHCl}_{3}(9: 1 \mathrm{v} / \mathrm{v})$ were added to the vial. The suspension of NBS was allowed to stir as 0.5 mL of acetone was added (to facilitate dissolution of NBS). The vial was sealed with a PTFE-lined cap, and the contents were allowed to stir at rt. Complete NBS dissolution typically required 5-10 minutes. In the meantime, quinazolinone 1 ($25.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) and Boc-Dmaa-D-Pro-Acpc-Leu-OMe ($41,5.4 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$ w.r.t. $1 \mathrm{or} 0.54 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$ w.r.t. 1) were added to a flame-dried 50 mL round bottom flask equipped with a magnetic stir bar. The solid mixture was suspended in 6 mL of $\mathrm{PhMe} / \mathrm{CHCl}_{3}(9: 1 \mathrm{v} / \mathrm{v})$, and the resulting cloudy suspension was allowed to stir vigorously under N_{2} at $0^{\circ} \mathrm{C}$. Once the NBS was completely dissolved, the delivery solution was taken up into a 5 mL syringe (12.46 mm diameter) and delivered into the substrate/peptide solution over 150 minutes ($1.6 \mathrm{mLh}^{-1}$) at $0{ }^{\circ} \mathrm{C}$ using a syringe pump (Note: An 18 G needle was used to avoid clogging by NBS precipitation). During this time, the syringe was shielded from light using aluminum foil and the lights within the fume hood were turned off. After the addition was complete, the clear, colorless yellow solution was allowed to stir 30 minutes at under N_{2}. The reaction was quenched by addition of 2 mL of MeOH , followed by (trimethylsilyl)diazomethane solution (TMSCHN $2,2 \mathrm{M}$ in hexanes) until the bright yellow color persisted in solution. The solution was allowed to stir 15-20 minutes at rt, after which glacial acetic acid was added dropwise until the solution became clear and colorless. The solvent was removed in vacuo, and the crude reaction mixture was purified by flash chromatography on a Biotage Isolera One instrument (10 g SNAP Ultra column, 7-60\% EtOAc/hexanes over 12 column volumes, loading in dichloromethane). The appropriate fractions were pooled, concentrated in vacuo, and dried thrice azeotropically with dichloromethane. The resulting white foam was dried thoroughly on high vacuum to provide 2-Methyl-3-(2,4,6-tribromo-3-methoxyphenyl)-quinazolin-4(3H)-one (2) ${ }^{6}$ as a foamy, white solid in 92% yield when $10 \mathrm{~mol} \%$ of 4 l was used and 80% yield when $1 \mathrm{~mol} \%$ of 4 l was used. TLC: $\mathrm{R}_{f}=0.32(30 \%$ EtOAc/hexanes). IR (FT-ATR, cm ${ }^{-1}$): 3067, 2937, 1690, 1605, 1569, 1371, 996. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.29$ (dd, $\left.J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J=8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 160.3,155.4,152.5,147.5,136.9,135.9,135.1,127.3,127.1,126.9,120.8,120.4$, 120.1, 118.8, 61.0, 22.9. HRMS: Exact mass calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{3}+\mathrm{H}\right]^{+}$requires $\mathrm{m} / \mathrm{z}=$ 500.8448. Found 500.8449 (ESI+). Optical: $[\alpha]_{D}^{20}=+24.3\left(c=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 97: 3\right.$ er). HPLC (Chiralcel OJ-H column, $10 \% \mathrm{EtOH} /$ hexanes eluent, $2 \mu \mathrm{~L}$ injection, $1 \mathrm{mLmin}^{-1}$ flow rate, regulated at $20^{\circ} \mathrm{C}, 230 \mathrm{~nm}$): major enantiomer $\mathrm{t}_{\mathrm{R}}=9.5 \mathrm{~min}$, minor enantiomer $\mathrm{t}_{\mathrm{R}}=12.4 \mathrm{~min}$, 97:3 er ($10 \mathrm{~mol} \% \mathrm{4I}$) and 97:3 er ($1 \mathrm{~mol} \% \mathrm{4I}$).

Racemic:

Enantioenriched using $10 \mathrm{~mol} \%$ of 41 :

Enantioenriched using $1 \mathrm{~mol} \%$ of 4I:

V. Solution-Phase NMR Studies of 3 and 4I

A. NMR Methods

To fully characterize peptides in solution, one-dimensional ${ }^{1} \mathrm{H}$ and two-dimensional gCOSY and NOESY experiments were carried out for each compound. All data were collected on Varian Inova 600 MHz spectrometers that were equipped with VnmrJ, version 4.2 revision A. Varian provided the pulse sequences for all experiments. All samples were prepared in $\mathrm{C}_{6} \mathrm{D}_{6}$ (with $\mathrm{C}_{6} \mathrm{H}_{6}$ set to 7.15 ppm) ${ }^{1}$ at a concentration of 0.01 M , which was demonstrated to be below the aggregation limit for these peptides.

The NOESY spectra for 3 and 41 were acquired at $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, respectively, the difference in temperatures being the result of instrument defaults at the time of acquisition. NOESY data for each peptide was collected with a mixing time of 300 ms , a spectral width of 9615.4 Hz , and a d1 time of 3 s . The data was acquired with a total of 256 transients, 1442 points in the f2 dimension, and 256 points in the f 1 dimension. The spectra were processed using MestReNova, version 9.0.0-12821. Zero-filling sized the spectra to 2048, 2048. Automatic phasing was used in conjunction with manual adjustments. Additionally, apodization was accomplished with a sine square function $\left(90^{\circ}\right)$ in both dimensions. Each spectrum was automatically baseline corrected in each dimension using the Bernstein third order polynomial fit and treated with COSY-like symmetrization. The NOESY spectra of 3 and 41 were inspected before and after symmetrization, and peaks deemed to be artifacts were discarded. Two peaks, both of which appeared in t 1 ridges in the unsymmetrized data, were discarded from the analysis of peptide 4I. Further refinement included treatment of the spectrum to reduce t 1 noise.

NOESY spectra were integrated to extract distances from observed through-space interactions between protons on each peptide. After integrating NOESY cross-peaks, the peaks' volumes were converted to distances using the equation (ESI-1), ${ }^{7}$ where $r_{i j}$ is the calculated distance, $r_{r e f}$ is a reference distance, $v_{\text {ref }}$ is the volume of a reference peak, and $v_{i j}$ is the volume of the cross-peak in question. Reference peaks were chosen to be those that corresponded to interactions between δ-protons on the peptide's respective D-Pro residue. References distances that corresponded to these volumes were extracted from the appropriate peptide crystal structure.

$$
\begin{equation*}
r_{i j}=r_{r e f} \sqrt[6]{\left(\frac{v_{r e f}}{v_{i j}}\right)} \tag{ESI-1}
\end{equation*}
$$

Integrated volumes were corrected using equation (ESI-2), ${ }^{8}$ where v is the volume corresponding to either the reference or the peak in question from ESI-1, $v_{\text {raw }}$ is the uncorrected volume of a peak in question, and $v_{\text {diag1 }}$ and $v_{\text {diag2 }}$ correspond to the volumes of the diagonal peaks for each respective interacting proton.

$$
\begin{equation*}
v=\frac{2 v_{\text {raw }}}{\left(v_{\text {diag } 1}+v_{\text {diag } 2}\right)} \tag{ESI-2}
\end{equation*}
$$

The restraints were then processed using the standard Crystallography and NMR Systems (CNS) ${ }^{9}$ simulated annealing protocol. A parameter file for each residue was assembled within the program. Each peptide was treated with the macro commands generate_seq, generate_extended, and anneal. By altering the energy-scoring threshold in the program's accept input file, we were able to cull the 10-lowest energy scored conformations for each structure. The accept feature of CNS also generated the average structure of these 10 conformers, which in turn, became the input for DFT calculations. Bins were defined at 1.8 to $2.5 \AA, 1.8$ to $3.0 \AA, 1.8$ to $3.5 \AA$, and 1.8 to $4.5 \AA$. Distances that were calculated to be over 4.5 Å were not included in the CNS restraint file.

The simulated annealing outputs from CNS were then used as a starting geometries for optimization and frequency calculation at the B3LYP/6-31G(d,p) level of theory using Gaussian 09. ${ }^{10,11}$ Benzene was specified as the implicit solvent using the IEFPCM protocol. ${ }^{12}$ Each structure was restrained using nOe-derived redundant internal coordinates. For peptide 3, the following redundant internal coordinates were specified: $\mathrm{NH}_{\text {Leu }}$ to $N H_{\text {Dmaa }}$ was restrained to 3.3 $\AA, \beta_{\text {Dmaa }}$ to $\beta_{\text {Leu }}$ was restrained to $3.9 \AA$, and $N H_{\text {Leu }}$ to $\alpha_{D-P r o}$ was restrained to $3.9 \AA$. For peptide 4I, the following redundant internal coordinates were specified: $N H_{\text {Leu }}$ to $N H_{\text {Dmaa }}$ was restrained to $4.2 \AA, N H_{\text {Leu }}$ to $N H_{\text {Acpc }}$ was restrained to $3.2 \AA$, and $N H_{\text {Leu }}$ to $\alpha_{0-P r o}$ was restrained to $3.7 \AA$. The optimization outputs were subsequently checked for consistency with the nOe-derived distances. In most cases, the optimized structures were in good accord with the NMR restraints.

B. Full ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Assignment of Peptides 3 and 41

${ }^{1} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, 0.01 \mathrm{M}$ in $\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$) : ${ }^{6} \delta 8.06\left(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {Leu }}\right.$), $7.10(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {Dmaa }}$), 6.74 (s, $1 \mathrm{H}, ~ N H_{\text {Acpo }}$), 5.25 (td, $J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha_{\text {Leuu }}$), 4.56 (q, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\alpha_{\text {Dmaa }}$), 4.13 (dd, $J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \alpha_{D-P r o}$), $3.76\left(\mathrm{dt}, J=9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \delta_{\text {D-Pro }}\right), 3.22$ (dt, $J=9.6$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \delta_{\mathrm{D}-\mathrm{Pro}}$), 2.87 (dd, J = 12.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\mathrm{Dmaa}}$), 2.66 (s, 3H, NMe Lequ), 2.63 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{N} M e^{\prime}$ Leu) , 2.54 ($\mathrm{dd}, J=12.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\text {Dmaa }}$), 2.12 ($\mathrm{dd}, ~ J=13.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\text {Leu }}$), 2.09 (s , $6 \mathrm{H}, 2 x \mathrm{~N} M e_{\text {Dmaa }}$), 2.04 (dtd, $\left.J=8.4,6.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \gamma_{\text {Leu }}\right), 1.93-1.87$ (m, 1H, $\beta_{\text {Aic }}$), 1.78 (dt, $J=$ $10.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta^{\prime}{ }_{\text {Dmaa }}$), 1.72 (dt, $J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\mathrm{D}-\mathrm{Pro}}$), 1.63 (ddd, $J=15.3,7.6,3.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \quad \beta^{\prime}{ }_{\text {Leu }}\right), 1.57\left(\mathrm{dt}, J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \gamma_{\mathrm{o} \text {-Pro }}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$ - $\left.\mathrm{Bu}_{\text {Dmaa }}\right), 1.49-1.42\left(\mathrm{~m}, 1 \mathrm{H}, \beta_{\mathrm{D}}{ }^{\prime}\right.$

Pro), 1.19 (dt, $\left.J=12.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \gamma_{\text {D-Pro }}^{\prime}\right), 1.02\left(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 6 \mathrm{H}, \delta_{\text {Leu }}\right), 0.96-0.89(\mathrm{~m}, 2 \mathrm{H}$, $\beta{ }^{\prime \prime}{ }_{\text {Асрс }}$).

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, 0.01 \mathrm{M}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): $\delta 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ Leu), $7.67(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}_{\text {Acpc }}$), 5.82 (s, $1 \mathrm{H}, \mathrm{NH} H_{\text {Dmaa }}$), 5.06 (ddd, $J=10.0,7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha_{\text {Leu }}$), 4.42 (dd, $J=8.7,4.4$ $\mathrm{Hz}, 1 \mathrm{H}, \alpha_{\text {D-Pro }}$), $4.13-4.07$ ($\mathrm{m}, 1 \mathrm{H}$, $\alpha_{\text {Dmaa }}$), 3.62 (td, $J=8.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \delta_{\text {D-Pro }}$), 3.36 ($\mathrm{s}, 3 \mathrm{H}$, OMe ${ }_{\text {Leu }}$), 2.91 ($\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \delta_{\text {D-Pro }}^{\prime}$), 2.45 (dd, $J=12.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\text {Dmaa }}$), $2.28-2.22(\mathrm{~m}$, $1 \mathrm{H}, \beta_{\text {Acpc }}$), 2.18 ($\mathrm{m}, 1 \mathrm{H}, \gamma_{\text {Leu }}$), 2.16 ($\mathrm{m}, 1 \mathrm{H}, \beta_{\text {Leu }}$), 2.11 (dd, $J=11.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta_{\text {Dmaa }}$), 1.82 (s ,

 -1.11 ($\mathrm{m}, 1 \mathrm{H}, \gamma_{\mathrm{D} \text {-Pro }}$), 1.06 (ddd, $J=10.1,7.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta^{\prime \prime \prime}{ }_{\text {Acpc }}$), 1.00 (dd, $J=30.0,6.3 \mathrm{~Hz}$, $6 \mathrm{H}, \delta_{\text {Leu }}$).

C. Tabular Representation of NOESY Cross-Peaks and Their Corresponding ${ }^{1} \mathrm{H}$ to ${ }^{1} \mathrm{H}$ Distances

The notation used below is as follows: each proton is designated by the three-letter code of its amino acid residue. Protons on the tert-butoxycarbonyl (Boc) N-terminal cap are called BocMe protons. Additional notation equates the following: $A=\alpha, B=\beta, C=\gamma, D=\delta$. Finally, for protons that are on the same carbon but are NMR-distinct, " 1 " is attributed to the more downfield proton and " 2 " to the more upfield proton. As an example, LeuHB1 is the notation for the more downfield β-proton of the leucine residue in our peptide. The NOESY spectrum and nOe-map for each peptide is shown below. Each nOe map is accompanied by a legend that color-codes the distance between the protons whose through-space interactions were detected by our NOESY experiments.

Peptide 3

Table S1: NOESY-Derived Distances and Assignments for Peptide

	f2	$f 1$	Normalized	Absolute	Assignment	Corrected Distances (Normalized)
1	8.06	1.04	-0.54	-0.29	LeuNH-LeuHD	4.29
	1.02	8.06	-0.64	-0.34		
2	8.06	0.92	-0.48	-0.26	LeuNH-AcpcHB1	3.66
	0.91	8.07	-0.52	-0.28		
3	8.06	7.11	-1	-0.53	LeuNH-DmaaNH	3.26
	7.11	8.08	-0.97	-0.52		
4	8.06	6.75	-5.67	-3.02	LeuNH-AcpcNH	2.42
	6.73	8.08	-5.58	-2.97		
5	8.06	2.04	-1.78	-0.95	LeuNH-LeuHC	3.00
	2.03	8.06	-1.7	-0.91		
6	8.06	2.11	-4.37	-2.32	LeuNH-LeuHB1	2.39
	2.11	8.06	-4.59	-2.44		
7	8.05	4.14	-0.4	-0.21	LeuNH-DProHA	3.89
	4.12	8.06	-0.36	-0.19		

					LeuNH-LeuHB2	3.20
8	$\begin{aligned} & 8.05 \\ & 1.64 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 8.07 \end{aligned}$	$\begin{aligned} & -1.09 \\ & -1.04 \end{aligned}$	$\begin{aligned} & -0.58 \\ & -0.56 \end{aligned}$		
9	8.05	2.66	-0.1	-0.05	LeuNH-LeuNMe2	4.96
	2.65	8.06	-0.11	-0.06		
10	8.05	2.63	-0.08	-0.04	LeuNH-LeuNMe1	5.27
	2.63	8.06	-0.09	-0.05		
11	7.1	2.09	-0.81	-0.43	DmaaNH-DmaaMe	4.02
	2.09	7.1	-0.74	-0.39		
12	7.1	2.89	-2.51	-1.33	DmaaNH-DmaaHB2	2.78
	2.87	7.11	-2.57	-1.37		
13	7.1	2.66	-0.21	-0.11	DmaaNH-LeuNMe2	4.53
	2.66	7.1	-0.17	-0.09		
14	7.1	2.54	-2.56	-1.36	DmaaNH-DmaaHB1	2.80
	2.53	7.1	-2.69	-1.43		
15	7.1	2.63	-0.57	-0.3	DmaaNH-LeuNMe1	3.87
	2.63	7.1	-0.56	-0.3		
16	6.73	0.93	-5.4	-2.87	AcpcNH-AcpoHB1	2.48
	0.93	6.75	-5.35	-2.85		
17	6.73	3.77	-0.93	-0.49	AcpcNH-DProHD2	3.29
	3.76	6.74	-0.94	-0.5		
18	6.73	1.61	-0.44	-0.23	AcpcNH-DProHB1	3.68
	1.58	6.74	-0.49	-0.26		
19	6.73	1.73	-0.52	-0.27	AcpcNH-DProHB2	3.73
	1.72	6.74	-0.44	-0.23		
20	6.73	4.14	-7.81	-4.16	AcpoNH-DProHA	2.36
	4.11	6.75	-7.78	-4.14		
21	5.25	2.63	-2.6	-1.38	LeuHA-LeuNMe1	3.00
	2.63	5.26	-3.14	-1.67		
22	5.25	1.02	-8.02	-4.27	LeuHA-LeuHD	2.81
	1.02	5.26	-7.98	-4.24		
23	5.25	2.67	-8.26	-4.39	LeuHA-LeuNMe2	3.43
	2.67	5.26	-8.25	-4.39		
24	5.25	2.04	-2.02	-1.07	LeuHA-LeuHC	3.02
	2.04	5.26	-2.04	-1.09		
25	4.57	3.22	-9.7	-5.16	DmaaHA-DProHD1	2.26
	3.22	4.57	-9.66	-5.14		
26	4.56	3.76	-8.64	-4.6	DmaaHA-DProHD2	2.31
	3.76	4.57	-8.65	-4.6		
27	4.56	2.1	-7.21	-3.83	DmaaHA-DmaaMe	2.78
	2.09	4.58	-7.17	-3.81		
28	4.13	3.23	-0.52	-0.28	DProHA-DProHD1	3.70
	3.22	4.13	-0.54	-0.29		
	4.13	1.2	-0.79	-0.42	DProHA-DProHC1	3.50
	1.19	4.14	-0.85	-0.45		
	4.13	2.1	-0.25	-0.13	DProHA-DmaaMe	4.97
	2.09	4.14	-0.2	-0.1		
	3.76	1.73	-1.12	-0.6	DProHD2-DProHB2	3.50
	1.72	3.76	-1.13	-0.6		
32	3.76	1.51	-0.73	-0.39	DProHD2-BocMe	4.30
	1.51	3.76	-0.73	-0.39		
33	3.22	1.46	-1.25	-0.66	DProHD1-DProHB1	3.18
	1.46	3.22	-1.25	-0.66		
34	2.88	1.64	-0.29	-0.15	DmaaHB2-LeuHB2	3.93
	1.64	2.87	-0.33	-0.17		
	2.87	2.1	-8.64	-4.59	DmaaHB2-DmaaMe	2.68
	2.09	2.87	-8.47	-4.51		
36	2.66	1.63	-1.57	-0.84	LeuNMe2-LeuHB2	320
36	1.64	2.66	-1.47	-0.78	LeuNMe2-LeukB2	3.20
37	2.65	1.02	-1.31	-0.69	LeuNMe2-LeuHD	4.10
	1.01	2.66	-1.26	-0.67		
38	2.62	1.02	-0.43	-0.23	LeuNMe1-LeuHD	459
33	1.02	2.63	-0.52	-0.28	LeunMe1-LeuHD	4.59
	2.54	2.1	-7.49	-3.98	DmaaHB1-LeuHB2	2.93
3	2.09	2.53	-7.55	-4.02	DmaahB1-LeuHB2	
	1.64	1.02	-7.41	-3.94	LeuHB2-LeuHD	2.82
	1.02	1.64	-7.67	-4.08		
41	1.51	1.79	-1.53	-0.75	BocMe-AcpcHB	3.79

1.79	1.51	-1.55	-0.76
1.51	0.92	-1.13	-0.56
0.93	1.5	-1.15	-0.56
3.77	3.23	-35.57	-18.91
3.22	3.79	-35.4	-18.82

BocMe-AcpcHB	4.00
DProHD1-DProHD2	1.80

Peptide 4I

Table S2: NOESY-Derived Distances and Assignments for Peptide 41

	f2	f1	Normalized	Absolute	Assignment	Corrected Distances (Normalized)
1	7.93	5.81	-0.24	-0.03	LeuNH-DmaaNH	4.21
	5.81	7.94	-0.24	-0.03		
2	7.93	7.67	-1.27	-0.18	LeuNH-AcpcNH	3.19
	7.67	7.93	-1.26	-0.18		
3	7.93	1.53	-0.72	-0.1	LeuNH-BocMe	4.31
	1.53	7.93	-0.7	-0.1		
4	7.93	4.42	-0.55	-0.08	LeuNH-DProHA	3.70
	4.42	7.93	-0.58	-0.08		
5	7.67	1.53	-1.75	-0.25	AcpcNH-BocMe	3.70
	1.53	7.67	-1.75	-0.25		
6	7.67	1.42	-0.95	-0.14	AcpcNH-DProHC2	3.60
	1.42	7.67	-0.9	-0.13		
7	7.67	1.06	-4.47	-0.64	AcpcNH-AcpcHB1a	2.55
	1.05	7.67	-4.48	-0.64		
8	7.67	4.42	-1.76	-0.25	AcpcNH-DProHA	3.03
	4.42	7.67	-1.76	-0.25		
9	7.67	3.62	-1.63	-0.23	AcpcNH-DProHD2	3.04
	3.62	7.67	-1.63	-0.23		
10	7.67	1.18	-1.09	-0.16	AcpcNH-AcpcHB1b	3.32
	1.18	7.67	-1.11	-0.16		
11	7.67	1.66	-0.28	-0.04	AcpcNH-AcpcHB2a	4.18
	1.66	7.67	-0.28	-0.04		
12	5.82	2.45	-5.57	-0.8	DmaaNH-DmaaHB2	2.51

	2.45	5.83	-5.55	-0.8		
13	5.82	1.53	-0.91	-0.13	DmaaNH-BocMe	4.13
	1.53	5.82	-0.9	-0.13		
14	5.81	2.1	-1.35	-0.19	DmaaNH-DmaaHB1	3.15
	2.1	5.82	-1.31	-0.19		
16	5.06	0.99	-6.49	-0.93	LeuHA-LeuHD	2.73
	0.99	5.06	-6.57	-0.94		
17	4.1	3.62	-13.32	-1.92	DmaaHA-DProHD2	2.18
	3.62	4.1	-13.33	-1.92		
18	4.42	1.42	-0.19	-0.03	DProHA-DProHC2	4.62
	1.41	4.42	-0.18	-0.03		
19	4.1	2.91	-10.44	-1.5	DmaaHA-DProHD1	2.28
	2.91	4.1	-10.38	-1.49		
20	4.1	1.82	-7.1	-1.02	DmaaHA-DmaaMe	2.87
	1.82	4.11	-7.11	-1.02		
21	3.61	1.06	-0.27	-0.04	DProHD2-AcpcHB1a	4.10
	1.06	3.62	-0.27	-0.04		
23	2.91	1.62	-0.9	-0.13	DProHD1-DProHB1	3.31
	1.61	2.91	-0.96	-0.14		
24	2.91	2.11	-0.65	-0.09	DProHD1-DmaaHB1	3.60
	2.11	2.91	-0.64	-0.09		
25	2.44	1.82	-5.64	-0.81	DmaaHB2-DmaaMe	2.99
	1.82	2.44	-5.64	-0.81		
26	1.81	1.02	-6.61	-0.95	LeuHD(downfield)-DmaaMe	3.04
	1.02	1.82	-6.59	-0.95		
27	3.62	2.91	-40.93	-5.89	DProHD2-DProHD1	1.80
	2.91	3.61	-40.67	-5.85		

D. Ten Lowest-Energy Scored Structures from Simulated Annealing with CNS

Figure S2: Ten lowest-energy scored structures from simulated annealing of peptide 3 in CNS. The ensemble shows a high degree of homogeneity across all ten structures with the most variability being in the Boc N-terminal cap.

Figure S3: Ten lowest energy-scored structures from simulated annealing of peptide $\mathbf{4 I}$ in CNS. The ensemble shows a high degree of homogeneity across all ten structures with the most variability being in the methyl-ester C-terminal cap.

E. CNS Simulated Annealing Outputs

Table S3: CNS-Output Coordinates for Peptide 3*

Table S4: CNS-Output Coordinates for Peptide 4I*

Tag	Symbol	X	Y	Z
1	0	6.988	0.569	-1.485
2	C	6.605	-0.598	-1.568
3	0	6.868	-1.451	-2.584
4	C	7.613	-0.999	-3.766
5	C	6.854	0.14	-4.446
6	C	8.996	-0.506	-3.343
7	C	7.746	-2.179	-4.718
8	H	7.252	0.293	-5.437
9	H	6.972	1.042	-3.866
10	H	5.804	-0.108	-4.515
11	H	9.698	-1.324	-3.395
12	H	8.948	-0.134	-2.332
13	H	9.321	0.287	-4.003
14	H	8.212	-1.849	-5.633
15	H	6.767	-2.576	-4.933
16	H	8.354	-2.95	-4.264
17	N	5.852	-1.188	-0.646
18	H	5.648	-2.141	-0.745
19	C	5.618	-0.559	0.647
20	H	5.262	0.444	0.468
21	C	4.554	-1.333	1.425
22	H	3.89	-0.625	1.897
23	H	5.039	-1.92	2.19
24	N	3.766	-2.221	0.626
25	C	2.762	-1.542	-0.189
26	H	1.872	-1.377	0.398
27	H	2.522	-2.154	-1.047
28	H	3.15	-0.591	-0.52
29	C	3.141	-3.299	1.389
30	H	3.905	-3.916	1.835
31	H	2.531	-3.899	0.727
32	H	2.524	-2.879	2.168
33	C	6.91	-0.488	1.457
34	0	7.747	-1.388	1.392
35	N	7.099	0.591	2.237
36	C	8.294	0.778	3.056
37	H	8.538	-0.115	3.61
38	C	7.905	1.905	4.03
39	H	8.509	2.778	3.83
40	H	8.071	1.576	5.045
41	C	6.454	2.181	3.781
42	H	6.263	3.241	3.868
43	H	5.85	1.632	4.487
44	C	6.173	1.715	2.382
45	H	6.395	2.494	1.669
46	H	5.149	1.391	2.286
47	C	9.489	1.193	2.211
48	0	10.631	0.863	2.532
49	N	9.236	2.117	1.291
50	H	8.322	2.466	1.225
51	C	9.98	2.107	0.003
52	C	10.162	3.422	-0.747
53	C	9.205	2.378	-1.28
54	H	9.629	4.318	-0.463
55	H	10.952	3.58	-1.464
56	H	9.539	2.006	-2.238
57	H	8.203	2.778	-1.281
58	C	11.115	1.133	-0.147
59	0	12.253	1.474	0.175
60	N	10.682	-0.121	-0.057
61	H	9.731	-0.312	-0.205
62	C	11.594	-1.227	0.213
63	H	12.165	-0.977	1.095

Tag	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
64	C	10.807	-2.512	0.478
65	H	10.162	-2.345	1.327
66	H	11.51	-3.294	0.728
67	C	9.945	-2.995	-0.69
68	H	9.649	-2.144	-1.287
69	C	10.735	-3.941	-1.581
70	H	10.505	-4.962	-1.316
71	H	11.792	-3.764	-1.447
72	H	10.469	-3.769	-2.614
73	C	8.683	-3.673	-0.175
74	H	8.843	-4.01	0.839
75	H	8.446	-4.519	-0.803
76	H	7.863	-2.97	-0.195
77	C	12.556	-1.436	-0.952
78	O	13.603	-2.071	-0.822
79	O	12.16	-0.75	-2.048
80	C	13.025	-0.818	-3.17
81	H	13.383	-1.828	-3.294
82	H	13.867	-0.161	-3.022
83	H	12.505	-0.52	-4.072

*Average of the 10 lowest-energy scored structures generated by CNS.

F. DFT-Optimization of the CNS Output for Peptides 3 and 41

Table S5: Optimized Coordinates of Peptide 3 using B3LYP/6-31G(d,p)

Tag	Symbol	X	Y	Z
1	0	3.543073	-1.293094	-0.646879
2	C	2.357681	-1.595117	-0.766759
3	0	1.808487	-2.788027	-0.438325
4	C	2.619676	-3.875842	0.132909
5	C	3.695996	-4.31157	-0.866473
6	C	3.21395	-3.439091	1.475815
7	C	1.586357	-4.986944	0.334369
8	H	3.23865	-4.574693	-1.825366
9	H	4.214653	-5.19623	-0.483595
10	H	4.425174	-3.517783	-1.029029
11	H	3.717806	-4.288076	1.948509
12	H	2.420266	-3.099452	2.149189
13	H	3.935829	-2.633428	1.340765
14	H	2.065942	-5.87183	0.762606
15	H	1.131274	-5.266564	-0.62
16	H	0.793506	-4.658852	1.012419
17	N	1.393016	-0.768313	-1.255489
18	H	0.419664	-1.072123	-1.24337
19	C	1.687983	0.587378	-1.699948
20	H	2.773484	0.676225	-1.729595
21	C	1.09403	0.860169	-3.089088
22	H	0.006689	0.806949	-2.997736
23	H	1.412024	0.059022	-3.778392
24	N	1.47185	2.194283	-3.55564
25	C	2.772211	2.207061	-4.215464
26	H	2.782087	1.634149	-5.162358
27	H	3.538796	1.780903	-3.56151
28	H	3.063008	3.238091	-4.440585
29	C	0.445684	2.810811	-4.388443
30	H	0.261229	2.26761	-5.334674
31	H	0.747507	3.831751	-4.644352
32	H	-0.493884	2.863911	-3.831938
33	C	1.073686	1.568498	-0.684456
34	0	-0.14225	1.795162	-0.686469
35	N	1.869855	2.080705	0.292021
36	C	1.27032	2.982321	1.289541
37	H	0.681256	3.756148	0.792018
38	C	2.494727	3.572786	2.027051
39	H	2.272064	3.793102	3.073133
40	H	2.785972	4.510869	1.543922
41	C	3.592171	2.513315	1.834266
42	H	3.465691	1.697889	2.554774
43	H	4.60129	2.914076	1.956087
44	C	3.342742	1.997793	0.41159
45	H	3.692651	0.975785	0.253668
46	H	3.818891	2.651622	-0.330752
47	C	0.274978	2.2932	2.242777
48	0	-0.519903	2.967812	2.885315
49	N	0.382094	0.932794	2.341785
50	H	1.038691	0.475803	1.723809
51	C	-0.494289	0.107949	3.121107
52	C	-0.600351	0.388925	4.606347
53	C	0.15891	-0.812732	4.147492
54	H	-0.054433	1.251989	4.966777
55	H	-1.580845	0.231462	5.040029
56	H	-0.302947	-1.785208	4.272931
57	H	1.243253	-0.788416	4.191314
58	C	-1.73917	-0.45159	2.464323
59	0	-2.504018	-1.173537	3.111593
60	N	-1.943221	-0.138176	1.157245
61	H	-1.282153	0.435898	0.643504

Tag	Symbol	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
62	C	-3.07787	-0.689807	0.436976
63	H	-3.535358	-1.385389	1.142712
64	C	-4.137868	0.377649	0.054945
65	H	-4.570759	0.7517	0.99016
66	H	-4.949994	-0.140264	-0.468976
67	C	-3.634585	1.567515	-0.80678
68	H	-2.697272	1.275008	-1.29428
69	C	-4.650207	1.906155	-1.909277
70	H	-4.306252	2.750065	-2.51715
71	H	-5.620862	2.182946	-1.478942
72	H	-4.813918	1.054964	-2.580059
73	C	-3.345702	2.808044	0.053373
74	H	-2.92902	3.61624	-0.556807
75	H	-2.633175	2.59831	0.854369
76	H	-4.269769	3.178754	0.515292
77	C	-2.575769	-1.452742	-0.804606
78	O	-1.488465	-1.159663	-1.318267
79	N	-3.377233	-2.415965	-1.342822
80	C	-2.961095	-3.083102	-2.573046
81	C	-4.651045	-2.879099	-0.806303
82	H	-3.733366	-2.967976	-3.342322
83	H	-2.030747	-2.638412	-2.917797
84	H	-2.809687	-4.153777	-2.392557
85	H	-4.630675	-3.97039	-0.708979
86	H	-4.855993	-2.457551	0.173872
87	H	-5.475059	-2.612945	-1.479622

Summary

Calculation Type $=$ FREQ
Calculation Method = RB3LYP
Basis Set $=6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$
Charge $=0$
Spin = Singlet
E(RB3LYP) $=-1837.78766095$ a.u.
RMS Gradient Norm $=0.00000318$ a.u.
Imaginary Freq $=0$
Dipole Moment $=5.2735$ Debye
Point Group = C1

Table S6: Optimized Coordinates of Peptide 4I using B3LYP/6-31G(d,p)

VI. Crystallographic Information

A. Experimental

Low-temperature diffraction data (ω-scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu Ka ($\lambda=1.54178 \AA$) for the structures of $\mathbf{3 (c)}$ and $\mathbf{4 I}$. The diffraction images were processed and scaled using the Rigaku CrystalClear software. ${ }^{13}$ The structure was solved with SHELXT and was refined against F^{2} on all data by full-matrix least squares with SHELXL. ${ }^{14}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. Unless stated otherwise, the isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compound $\mathbf{3 (c)}$) and $\mathbf{4 I}$ can be found in Figures S4 and S5, respectively. Full details of the X-ray structure determination are in the CIFs included as Supporting Information. CCDC number 1453125 (3(c)) and 1453124 (4I) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.

Data and Refinement Details for 3c

The only exceptions are hydrogen atoms $\mathrm{H} 2, \mathrm{H} 3$ and H 5 , which are freely refining and a part of refined hydrogen bond interactions.

Data and Refinement Details for 41

Multiple attempts to collect data at 93 K resulted in streaky reflections. The data reported here were collected at 228 K , which obscured the already difficult to locate hydrogen atoms associated with the heteroatoms. The model reported here uses riding models and geometrically placed hydrogen atoms on heteroatoms. The ester and butyl residues are disordered over two equally occupied positions. The atoms involved are distinguished with the suffix "a" and "b". The atomic displacement parameters are large (due to the relatively high temperature need for data collection). Subsequently, rigid bond restrains were used to aid the refinement.

Table S7: Details of X-Ray Crystal Structures 3(a-c) and 4I

Compound	3(a,b)*	3(c)	41
Data Code	007-15050	007-15126	007-15146
Empirical Formula	$\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{6.5}$	$\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{6}$	$\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{7}$
Temperature (K)	93(2)	93(2)	228(2)
FW	561.72	552.71	538.66
Crystal System	Monoclinic	Orthorombic	Orthorombic
Space Group	$P 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{12}{ }_{1}{ }_{1}$
$a(\hat{\text { a }}$)	16.1717(11)	11.7899(8)	11.9360(8)
b (Å)	9.364(6)	15.9908(11)	16.0501(11)
c (${ }^{\text {a }}$)	21.5606(15)	16.3363(11)	16.5597(12)
α (deg)	90	90	90
β (deg)	104.7162(2)	90	90
γ (deg)	90	90	90
$V\left(\AA^{3}\right)$	3157.9(4)	3079.9(4)	3172.4(4)
Z	4	4	4
$\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.181	1.192	1.128
$\mu\left(\mathrm{mm}^{-1}\right)$	0.693	0.691	0.676
Absolute Structure Parameter	-0.04(15)	0.01(4)	-0.01(3)
$R 1, \mathrm{w} 2$ ($\mathrm{l} \mathbf{~ 2 s (l)})$	0.0651, 0.1665	0.0287, 0.0784	0.0504, 0.1454
R1, wR2 (all data)	0.9082, 0.1864	0.0307, 0.0792	0.0534, 0.1513
GOF	1.023	1.060	1.023
Largest Diff. Peak, Hole (e A^{-3})	0.760, -0.285	0.274, -0.166	0.280, -0.190

*Data reported in ref. 6 (CSD entry 1412920).

Figure S4: The full numbering scheme of 3(c) with 50% thermal ellipsoids. The hydrogen atoms are depicted as circles for clarity.

Figure S5: The full numbering scheme of 41 with 50% thermal ellipsoids. Most of the hydrogen atoms are either not shown or depicted as circles for clarity.

B. Definition of Planes Describing Backbone Bending in Conformers 3(a,b)

To describe the degree of backbone-bending observed in the type II' β-turn conformers of peptide 3, we measured the angle between two defined planes, which were calculated using the program Mercury (Figure S6). ${ }^{15}$ For both conformers 3(a) and 3(b), Plane 1 was defined by the α-carbons of $i, i+1, i+2$, and $i+3$, and Plane 2 was defined by the α-carbons of $i, i+3$ (transMe C-atom of the NMe_{2}-group) $i+4$, and $i-1$ ($3^{\circ} \mathrm{C}$-atom of the Boc-group).

Figure S6: Intersecting planes that describe the backbone bending of conformers 3(a) (left) and 3(b) (right). The backbone bend of 3(a) was measured to be 65.9°, while the bend of 3(b) was measured to be 41.0°.

VII. References

1. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, Organometallics, 2010, 29, 2176.
2. C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61, 10827; A. El-Faham, F. Albericio, Chem. Rev., 2011, 111, 6557.
3. L.-H. Zhang, G. S. Kauffman, J. A. Pesti, and J. Yin, J. Org. Chem., 1997, 62, 6918.
4. T. Nagase, T. Mizutani, S. Ishikawa, E. Sekino, T. Sasaki, T. Fujimura, T. S. Ito, Y. Mitobe, Y. Miyamoto, R. Yoshimoto, T. Tanaka, A. Ishihara, N. Takenaga, S. Tokita, T. Fukami, and F. Sato, J. Med. Chem. 2008, 51, 4780.
5. I. I. Ponomarev, D. Y. Razorenov, and P. V. Petrovskii, Russ. Chem. Bull. 2009, 58, 2376.
6. M. E. Diener, A. J. Metrano, S. Kusano, and S. J. Miller, J. Am. Chem. Soc., 2015, 137, 12369.
7. B. A. Borgia, M. Gochin, D. J. Kehrwood, and T. L. James, Prog. NMR Spectrosc., 1990, $22,83$.
8. S. Macura, B. T. Farmer, II, and L. R. Brown, J. Mag. Res., 1986, 70, 493.
9. A. T. Brunger, P. D. Adams, G. M. Clore, P. Gros, R. W. Kunstleve-Grosse, J. Kuszewski, N. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren, Acta Cryst., 1998, 54, 905; A. T. Brunger, Nature Protocols, 2007, 2, 272.
10. All computational work was supported by the facilities and staff of Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National Science Foundation under grant \#CNS 08-21132 that partially funded acquisition of the facilities.
11. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V, Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
12. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 2005, 105, 2999.
13. CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005.
14. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
15. Mercury CSD, 2.0, C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Cryst., 2008, 41, 466.
