Fluorescent liquid pyrene derivative-in-water microemulsions

Supporting Information

M. J. Hollamby,^a* A. E. Danks,^b Z. A. C. Schnepp,^b S. E. Rogers,^c S. Hart,^d and T. Nakanishi^e

- a. School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST55BG, UK; Tel:
 +44 1782 733532; E-mail: m.hollamby@keele.ac.uk
- b. School of Chemistry, University of Birmingham, B15 2TT, UK
- c. ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, UK.
- d. Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, ST55BG, UK.
- e. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan.

Experimental

Chemicals

2-Decyl-1-tetradecanol, Zn powder, HgCl₂, CrO₃, pyrene, hexaethylene glycol mono dodecyl ether ($C_{12}E_6$) and D_2O (99.5% D) were purchased from Sigma-Aldrich. Oxalyl chloride and anhydrous AlCl₃ was purchased from Acros Organics, while CDCl₃ and CD₂Cl₂ were purchased from Goss Scientific. Organic solvents and reagents CH₂Cl₂, CHCl₃, n-hexane, petroleum ether 40-60, diethyl ether, H₂SO₄, HCl and anhydrous MgSO₄ were all sourced from Fisher Scientific. All chemicals were used without further purification.

Techniques

NMR measurements were carried out using a Bruker Avance 300 spectrometer. All UVvisible absorption spectroscopy measurements were carried out on a Jasco V660 spectrophotometer. Photoluminescence spectroscopy measurements of the solutions of pyrene and 1, and of the film state of 1 were carried out on a JASCO FP-8300 Spectrofluorometer, while those on the microemulsion droplets were carried out on a Varian Cary Eclipse Fluorescence Spectrophotometer. The photoluminescence quantum yields were measured using a Hamamatsu C9920-02 instrument. MALDI-TOF-MS was performed using a 4800 Tof/Tof instrument (ABSciex, Framingham, MA). Samples were prepared using 2-(4-Hydroxyphenylazo)benzoic acid matrix solution (mass spectrometry grade, Sigma Aldrich) prepared at 10 mg ml⁻¹ in CHCl₃, spotting at sample:matrix 1:1 (v/v) using a dried-droplet method.¹ The following parameters were used: acquisition in positive ion reflectron mode, 500-1500 m/z, automatic control with fixed laser power, 50 shots per sub-spectrum. 150-200 sub-spectra were summed to create a final summed spectrum. The laser power was optimised for each sample, with a laser fluence being selected above threshold irradiance without detector saturation. Close external calibration was performed using C_{60} molecular ion. Data processing (peak labelling) was performed using Data Explorer.

Synthesis

Step 1: Jones oxidation of 2-decyl-1-tetradecanol to form 1b

To prepare the Jones reagent, CrO₃ (70 g, 0.7 mol) was dissolved in 100 mL water and cooled to 0 °C. 18 M H₂SO₄ (61 mL, 1.1 mol) was then added cautiously, alongside 200 mL water. Then, 2-decyl-1-tetradecanol (10 g, 0.0282 mol) was dissolved in acetone (280 mL) and the Jones reagent slowly added, until the reaction mixture changed colour from green to orange/brown. Water (400 mL) was then added and the product was extracted with *n*-hexane. The organic layer was washed with brine, dried over anhydrous MgSO₄ and the solvent was removed via evaporation. The crude product was purified by silica column chromatography (10 vol% acetone in petroleum ether 40-60) to yield **1b** as a white solid (9.60 g, 92.3%). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ / ppm: 11.3 (1H, broad, COO<u>H</u>), 2.35 (1H, m, -C<u>H</u>-), 1.63 - 1.27 (40H, m, -C<u>H</u>₂-), 0.90 (6H, m, -C<u>H</u>₃).

Step 2: Friedel-Crafts acylation to form 1a from 1b and pyrene

1b (5 g, 0.0136 mol) was dissolved in CH_2Cl_2 (20 mL). Oxalyl chloride (2.4 mL, 0.028 mol) was added, followed by a drop of dimethylformamide to initiate the reaction. After 1 hr, the intermediate acyl chloride was recovered by evaporation, and immediately re-dissolved in CH_2Cl_2 (20 mL). In a separate flask, pyrene (2.635 g, 0.0130 mol) and anhydrous AlCl₃ (2.855 g, 0.0214 mol) were suspended in CH_2Cl_2 (20 mL). The intermediate acyl chloride solution was added drop-wise to the suspension, and the reaction was left to stir overnight. After completion, the vessel contents were poured over a mixture of ice (50 g) and conc. HCl (25 mL) and extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over anhydrous MgSO₄ and the solvent was removed via evaporation. The crude product was

purified by silica column chromatography (25 vol% CHCl₃ in *n*-hexane) to yield **1a** as a yellow solid (4.58 g, 61.0%). ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ / ppm: 8.74 (1H, d, *J* = 9.2 Hz, pyr-<u>H</u> [2-position]) 8.29–8.04 (7H, m, pyr-<u>H</u>), 3.57 (1H, m, -C<u>H</u>-), 1.91 (2H, m, CH-C<u>H</u>₂-CH₂), 1.61 (2H, m, CH-C'<u>H</u>₂-CH₂) 1.45–1.19 (36H, m, -C<u>H</u>₂-), 0.88 (6H, m, -C<u>H</u>₃).

Step 3: Clemmensen reduction to form 1 from 1a

Zn powder (33 g) was activated by vigorous stirring in 5% HCl (50 mL \times 3). The activated powder was then washed sequentially in H₂O, acetone and diethyl ether and any remaining solvent was removed under reduced pressure. Activated Zn powder (2 g) was mixed with an aqueous 5% HgCl₂ solution (4.2 mL) and left for 1 hr. The solution was decanted and the Zn(Hg) was covered with conc. HCl (10 mL) and water (7 mL). To this, ketone 1a (0.4 g, 0.725 mmol) dissolved in toluene (2.5 mL) was added. The mixure was then heated under reflux for 1.5 hr, then allowed to cool. The mixture was extracted with diethyl ether, washed with water then brine, dried over anhydrous MgSO₄ and the solvent was removed via evaporation. The crude product was purified by silica column chromatography (5 vol% toluene in *n*-hexane) to yield **1** as a light yellow oil (0.106 g, 27.1%). MALDI-TOF-MS [M+] calc.: 538.45, found: 538.46. ¹H NMR (300 MHz, CD_2Cl_2) δ_H / ppm: 8.32–7.84 (9H, m, pyr-<u>H</u>), 3.26 (2H, d, J = 7.2 Hz, pyr-CH₂-CH), 1.93 (1H, m, CH), 1.45–1.23 (40H, m, -CH₂-), 0.96–0.86 (6H, m, -CH₃). ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ / ppm: 136.48, 131.47, 130.95, 129.67, 129.06, 128.39, 127.55, 126.91, 126.44, 125.70, 125.14, 125.09, 124.72, 124.56, 124.46, 123.81, 40.10, 38.51, 33.61, 31.94, 31.92, 30.92, 29.68, 29.65, 29.64, 29.62, 29.36, 29.33, 26.61, 22.70, 22.68, 14.11. MALDI-TOF-MS, plus ¹H and ¹³C NMR spectra are provided for reference.

Microemulsion preparation

Microemulsions were prepared by mixing **1** with $C_{12}E_6$ and water, and gently agitating. The $C_{12}E_6$ concentrations 25 – 100 mM were chosen as they span a reasonable range and are high enough to obtain a good SANS signal in reasonable measurement times (< 1 hr), without being so high as to risk multiple scattering and/or large structure factors.

Small-angle neutron scattering, SANS

SANS measurements were carried out on the LOQ beamline at the ISIS Neutron and Muon source, Rutherford Appleton Laboratory, UK. The samples were contained in 2 mm pathlength Hellma cells. A thermostated sample changer provided temperature control. A beam width of 8 mm was used, providing a detectable Q range of order 0.008 - 0.3 Å⁻¹. Absolute intensities for I(Q) (in cm⁻¹) were determined by calibrating the received signal for a polymer standard and correcting for sample transmission and solvent background.

SANS Model fitting

The scattering from microemulsion droplets was modelled as originating from disperse interacting cylinders using the SASfit fitting software,² and the following equations have been taken from the SASfit documentation. The P(Q) for a monodisperse cylinder can be expressed as follows:

$$I_{cyl} = 16(\pi R^2 L)^2 \Delta \rho^2 \int_0^1 \left(\frac{J_1(QR\sqrt{1-x^2})\sin(QLx/2)}{Q^2 RLx\sqrt{1-x^2}} \right)^2 dx \tag{1}$$

Here, $J_1(x)$ is a first order Bessel function of the first kind, while *R* is the radius of the cylinder and *L* is the length. $\Delta\rho$ is the difference between the scattering length density of the cylinder (1 + C₁₂E₆) and the solvent (D₂O), which was calculated for each value of *X* based on the densities of C₁₂E₆ and 1 being 0.99 and 0.97 g cm⁻³ respectively.

A Schultz-Zimm^{3,4} distribution of cylinder radii, *R* was assumed, which is described as:

$$SZ(R, R_a, k, N) = \frac{N_{SZ}}{R_a} \left(\frac{R}{R_a}\right)^{k-1} \frac{k^k \exp\left(\frac{-kR}{R_a}\right)}{g(k)}$$
(2)

Where g(k) is the gamma function. The parameter k is related to the variance σ by $k = 1 / \sigma^2$. In this case, R is the distributed cylinder radius, while R_a is a scaling parameter that defines the maximum of the size distribution for large values of k.

As explained in the main text, one of two different S(Q) functions were used to explain the SANS, depending on $X = [1]/[C_{12}E_6]$. The first of these is a hard sphere S(Q) of the type previously used by Vrij⁵ and Kotlarchyk et al.⁶ In that case, fitted parameters are effective hard sphere radius R_{HS} and volume fraction ϕ_{HS} . The other is an attractive Ornstein-Zernike S(Q), given as follows:

$$S(Q) = 1 + \left[\frac{\kappa}{1 + (Q\zeta)^2}\right] \tag{3}$$

This describes a decaying distribution, where ζ is a correlation length, and κ is related to the strength of interactions via the isothermal compressibility.⁶

Using the above equations, the overall scattering is then calculated by SASfit using the monodisperse approach as follows:

$$I(Q) = \left[\int_0^\infty SZ(R, R_a, Z, N) I_{cyl}\right] S(Q)$$
⁽⁴⁾

Supporting Figures and Tables

Figure S1. CIE xy chromaticity diagram showing the emission colour of **1** as a liquid film, marked by point x^a , and in solution ([**1**] = 10^{-5} M in CH₂Cl₂), marked by point x^b .

Table S1. Parameters arising from SANS data analysis, using a cylindrical form factor and structure factors $S(Q)_{OZ}$ or $S(Q)_{HS}$ as described in the text, for $1/C_{12}E_6$ /water microemulsions at 25 °C (unless otherwise specified).

						$S(Q)_{\rm OZ}$		$S(Q)_{\rm HS}$		
X	$[C_{12}E_6] / M$	R / Å	σ	L/Å	L:2R	κ	ζ/Å	$R_{\rm HS}$ / Å	$\phi_{ m HS}$	χ^2
0.02	25	22	0.24	54	1.2	0.2	54	-	-	0.9
0.035	25	25	0.11	62	1.3	-	-	48	0.010	1.1
0.05	25	26	0.08	63	1.2	-	-	48	0.012	0.9
0.1	25	28	0.09	69	1.2	-	-	48	0.016	1.0
0	50	21	0.11	64	1.5	1.6	52	-	-	1.5
0.02	50	23	0.14	61	1.3	0.5	54	-	-	1.0
0.035	50	25	0.11	66	1.3	-	-	31	0.023	0.8
0.05	50	25	0.11	64	1.3	-	-	41	0.026	1.1
0.1	50	28	0.08	70	1.3	-	-	44	0.035	1.3
0.2^{1}	50	33	0.16	86	1.3	0.9	86	-	-	2.1
0	100	22	0.11	65	1.5	1.0	63	-	-	1.5
0.02	100	23	0.14	60	1.3	1.0	150	-	-	3.1
0.035	100	24	0.13	67	1.4	-	-	33	0.049	3.0
0.05	100	25	0.10	65	1.3	-	-	40	0.057	1.3
0.1	100	27	0.11	69	1.3	-	-	43	0.069	1.5
0.2^{1}	100	32	0.17	84	1.3	1.7	210	-	-	7.9

¹These samples were measured at 45 $^{\circ}$ C

Table S2. Summary of values calculated from the fitted parameters using a cylindrical form factor (Table S4) : (i) The number of $C_{12}E_6$ (N_{surf}) and *n*-decane (N_1) molecules per micelle; (ii) the approximate area occupied by a $C_{12}E_6$ molecule at the interface (a_h); (iii) the difference between the number density of $C_{12}E_6 + n$ -decane molecules found by SANS analysis and known to be in solution (n_{exp}/n_{calc}).

X	$[C_{12}E_6] / M$	N _{surf}	N_1	$a_{\rm h}$ / Å ²	$a_{ m h,IF}$ / ${ m \AA}^2$	n _{fit} /n _{calc}
0.02	25	110	2	95	76	1.0
0.035	25	160	6	86	70	1.1
0.05	25	170	9	85	70	1.0
0.1	25	200	22	84	70	1.0
0	50	120	0	92	73	0.94
0.02	50	130	3	90	73	1.0
0.035	50	170	6	85	70	1.1
0.05	50	160	9	86	71	1.1
0.1	50	200	22	84	70	1.0
0.2	50	300	75	81	70	0.85
0	100	130	0	91	72	0.99
0.02	100	130	3	91	73	1.0
0.035	100	160	6	86	70	1.1
0.05	100	170	9	86	71	1.0
0.1	100	190	21	85	71	1.1
0.2	100	280	71	83	71	0.96

Supporting references

- 1 U. Bahr, M. Karas and F. Hillenkamp, Z. Anal. Chem., 1994, 348, 783-791.
- 2 I. Breßler, J. Kohlbrecher and A. F. Thünemann, J. Appl. Cryst., 2015, 48, 1587–1598.
- 3 G. V. Z. Schulz, Phys. Chem., 1939, B43, 25.
- 4 B. H. Zimm, J. Chem. Phys., 1948, 16, 1099.
- 5 A. Vrij, J. Chem. Phys., 1979, 71, 3267-3270.
- 6 M. Kotlarchyk, S.-H. Chen, J. S. Huang and M. W. Kim, *Phys. Rev. A*, 1984, **29**, 2054–2069.

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

06/04/2016 15:56:38

Acquisition Time (sec)	5.3084 (Comment	C10C14-PYR P	ROTON CD2C	I2 {C:\Bruker\T	OPSPIN2.1pl6	} YP3 5			
Date	06 Apr 2016 15:20:00		Date Stam	Date Stamp 06 Apr 2016 15:20:00			0			
File Name	\\ufs.chem\chemnmr\	\data\YP3\nmr\5-06-04-`	YP3\10\pdata\1\1r	Frequency	/ (MHz)	300.13	Nucleus	1	Н	
Number of Transients	16 (Origin	spect	Original P	oints Count	32768	Owner	r	mr	
Points Count	32768 I	Pulse Sequence	zg30	Receiver C	Gain	90.50	SW(cyclic	al) (Hz) 6	172.84	
Solvent	DICHLOROMETHAN	NE-d2		Spectrum	Offset (Hz)	1842.0570	Spectrum	Type S	TANDARD	
Sweep Width (Hz)	6172.65	Temperature (degree C	;) 18.460							
1H-NMR_c10c14 1.0 0.9 0.8 1H-NMR_c10c14 1.0 0.9 0.8 1 0.9 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.1 0.2 0.1 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-pyrene. e%erticalSc 8.580 8.0400 9.00 8.5 8.0	aleFactor = 1	,	23131 23131 23131 23131 23131 23311 23	deuterated dic	hloromethan 4.0 3.5	2132 2.17 3.0	0.93	1.3877 1.3877 1.3895 1.3895 0.9088 0.9089 0.9089 0.90895 0.90895 0.90895 0.90895 0.90895 0.90895 0.908868 0.90897 0.908868 0.90897 0.908868 0.9088888 0.908888 0.90888 0.90888 0.90888888 0.90888	0.5 0
No. (ppm)	Annotation		Laver No.	Created By	Creat	ed At	Modified By	Modified A	t	
1 [5.215.39]	solvent = deutera	ted dichloromethane	1	MJH	Wed 06/04/2	016 15:56:17				
		Non-Negativo V/			1]	
1 5926 1 5256 5940										
	2.32030/490+									
2 80572.030.93286	00/2 3.83553960e+	0.93286872								
3 1373 3.362.17322	803 8.93534320e+	-7 2.17322803								

9.00000000

3.70039808e+8

4 8243...8.349.00000000

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ Height No. (ppm) (Hz) 0.1196 1 0.86 259.4 2 0.87 260.9 0.1249 0.2496 0.89 266.2 3 4 0.89 267.9 0.2472 5 0.91 272.8 0.1336 0.0191 6 0.94 281.2 7 0.96 288.8 0.0132 8 1.23 367.9 1.0000 1.27 381.5 0.2971 9 1.33 398.6 10

10	1.33	398.6	0.1011
11	1.34	403.5	0.1124
12	1.37	411.0	0.1038
13	1.39	416.5	0.0783
14	1.41	423.6	0.0623
15	1.43	429.5	0.0351
16	1.45	435.7	0.0284
17	1.92	577.6	0.0135
18	1.94	583.2	0.0168
19	3.25	975.2	0.0880
20	3.27	982.4	0.1150
21	5.31	1594.6	0.0323
22	5.32	1595.6	0.0395
23	5.32	1596.7	0.0387
24	7.84	2353.8	0.0604
25	7.87	2361.7	0.0734
26	7.97	2391.5	0.0342
27	7.99	2399.2	0.0711
28	8.00	2401.8	0.0285
29	8.02	2406.7	0.0621
30	8.03	2410.9	0.1462
31	8.04	2413.3	0.1467
32	8.07	2422.4	0.0259
33	8.09	2426.9	0.0643
34	8.10	2431.6	0.0817
35	8.12	2436.1	0.0863
36	8.13	2439.3	0.0693
37	8.15	2447.4	0.0877
38	8.16	2448.7	0.0860
39	8.18	2455.9	0.0693
40	8.29	2488.1	0.0745
41	8.32	2497.5	0.0556

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

06/04/2016 13:33:45

Acquisition Time (sec)	1.3631	Comment	George Gandy c10c14pyr 8-3-16 Carbon.K CDCl3 {C:\Users\UG\data} UG 4						
Date	09 Mar 2016 22:34:4	40		Date Stamp	09 Mar 2016 22:34:40				
File Name	\\ufs.chem\chemnm	r\data\UG\400\GGandy c10	0c14pyr 8-3-16\10\fid			Frequency (MHz)	100.59		
Nucleus	13C	Number of Transients	1024	Origin	spect	Original Points Count	32768		
Owner	nmrsu	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	200.87		
SW(cyclical) (Hz)	24038.46	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	10055.1670	Spectrum Type	STANDARD		
Sweep Width (Hz)	24037.73	Temperature (degree C) 23.525						

5

6

7

8

9

29.33

29.36

29.62

29.64

29.65

2950.7

2953.6

2979.3

2981.5

2982.9

0.3979

0.4158

0.3205

0.6557

1.0000

14

15

16

17

18

33.61

38.51

40.10

76.69

77.00

3381.3

3873.5

4033.4

7713.9

7745.4

0.4013

0.1771

0.1982

0.8679

0.9075

23

24

25

26

27

124.56

124.72

125.09

125.14

125.70

12529.2

12546.1

12582.8

12587.9

12644.4

0.1582

0.1892

0.0806

0.1796

0.2433

32

33

34

35

36

129.06

129.68

130.95

131.47

136.48

12982.6

13044.2

13171.8

13224.7

13728.6

0.1388

0.2153

0.2352

0.1080

0.2670

Zoom of m/z 538 region