Tethered N-Heterocyclic Carbene-Carboranes: Unique Ligands that Exhibit Unprecedented and Versatile Coordination Modes at Rhodium.

Jordan Holmes,^a Christopher M. Pask,^a Mark A. Fox^b and Charlotte E. Willans^a*

^aSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK

^bDepartment of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK

Table of Contents

Experimental and Spectroscopic Data	S1-S17
Crystallographic Data	S18-S28
References	S28

Experimental and Spectroscopic Data

General considerations

All manipulations were carried out under an inert atmosphere by means of standard Schlenk line or glovebox techniques, unless otherwise stated. Anhydrous solvents were prepared by passing over activated alumina to remove water, copper catalyst to remove oxygen and molecular sieves to remove any remaining water. via the Dow-Grubbs solvent system, and then freeze-pump-thaw degassed prior to use. 1-^tButylimidazole^[1], 6,9-bis(acetonitrile)-decaborane^[2] and 1-bromoethyl-1,2-dicarbacloso-dodecaborane^[3] were prepared using literature methods. Decaborane was purchased from KatChem and all other reagents were purchased from Sigma Aldrich and used without further purification. NMR spectra were recorded on a Bruker AV500 spectrometer. ¹H NMR and ¹³C{¹H} NMR chemical shifts were referenced against residual solvent peaks (¹H: 2.05 ppm for acetone-d₆, 2.50 ppm for dmso-d₆) and 7.26 ppm for CDCl₃; 13 C: 29.8 ppm for acetone-d₆, 39.5 ppm for dmso-d₆ and 77.2 ppm for CDCl₃). The ${}^{11}B{}^{1}H{}$ NMR spectra were referenced externally to BF₃.OEt₂. Assignment of ¹H and ¹³C{¹H} NMR spectra for all rhodium complexes was aided by the use of 2D ${}^{1}H^{1}H$ COSY, ${}^{1}H^{13}C$ HMQC, ${}^{1}H^{13}C$ HMBC and ${}^{13}C{}^{1}H{}$ DEPT 135 experiments. Mass spectra were collected on a Bruker Daltonics (micro TOF) instrument operating in the electrospray mode. Microanalyses were performed using a Carlo Erba Elemental Analyser MOD 1106.

Synthesis of imidazolium bromide salt 1

To a stirred solution of bromoethyl-1,2-dicarba-*closo*-dodecaborane (4.0 g, 15.9 mmol) in toluene (20 mL) heated at 75 °C was added a toluene (20mL) solution of 1-^{*i*}butylimidazole (1.8 g, 14.5 mmol) dropwise over 1 hour. The reaction was kept at 75 °C for a further 18 hours. The solvent was removed *in vacuo* and hexane (10 mL) was added resulting in an off-white precipitate. This was filtered, washed with further hexane (2 × 10 mL) then diethyl ether (3 × 10 mL) and dried *in vacuo* to afford the product as a beige crystalline solid in 72 % yield (3.91 g, 10.4 mmol). Crystals suitable for X-ray diffraction analysis were grown by the slow diffusion of diethyl ether into a concentrated solution of **1** in acetonitrile.

¹H NMR (500 MHz, dmso-d₆): δ 9.41 (s, 1H, imidazolium NC*H*N), 8.03 (t, J = 1.9 Hz, 1H, imidazolium NC*H*), 7.90 (t, J = 1.9 Hz, 1H, imidazolium NC*H*), 5.38 (br. s, 1H, carborane cage C*H*), 4.33 (m, 2H, CH₂), 2.99 (m, 2H, CH₂), 1.57 (s, 9H, (CH₃)₃). ¹³C{¹H} NMR (126 MHz, dmso-d₆): δ 134.9 (imidazolium NCN), 122.6 (imidazolium NCC), 120.2 (imidazolium NCC), 72.4 (carborane cage quaternary *C*), 63.2 (carborane cage *C*H), 59.6 (*C*(CH₃)₃), 47.0 (*C*H₂), 35.3 (*C*H₂), 28.9 ((*C*H₃)₃). ¹¹B{¹H} NMR (161 MHz, dmso-d₆): δ -2.8 (1B), -5.5 (1B), -9.6 (2B), -11.8 (6B). HRMS (ESI⁺): m/z 295.3188 [C₁₁H₂₇B₁₀N₂]⁺, calcd. [M-Br]⁺ 295.3177. Anal. calcd. for C₁₁H₂₇B₁₀N₂Br: C, 35.20; H, 7.25; N, 7.46. Found: C, 34.90; H, 7.30; N, 7.10.

Figure S1. ¹H NMR spectrum (dmso- d_6 , 500 MHz) of imidazolium bromide salt 1.

Figure S2. ¹³C{¹H} (top) and ¹³C{¹H}-DEPT 135 (bottom) NMR spectra (dmso-d₆, 126 MHz) of imidazolium bromide salt **1**.

Figure S3. ¹¹B{¹H} NMR spectrum (dmso-d₆, 161 MHz) of imidazolium bromide

salt **1**.

Figure S4. HRMS (ESI⁺) of imidazolium-*closo*-carborane bromide **1** (top).

Calculated isotope pattern (bottom) and observed (middle) for $[M-Br]^+$.

Synthesis of imidazolium-nido-carborane zwitterion 2

To a solution of 1-^{*t*} butylimidazole (4.0 g, 32.2 mmol) in toluene (10 mL) was added 1-bromoethyl-1,2-dicarba-*closo*-dodecaborane (1.6 g, 6.35 mmol), and the reaction mixture stirred at 110 °C for 24 hours. The solvent was removed *in vacuo* to afford a brown oil to which methanol (10 mL) was added to precipitate the product. This was filtered, washed with methanol (3×10 mL) and dried *in vacuo* to afford the product as a white solid in 65 % yield (1.2 g, 4.12 mmol). Crystals suitable for X-ray diffraction analysis were grown by slow diffusion of diethyl ether into a concentrated solution of **2** in acetonitrile.

¹H NMR (500 MHz, dmso-d₆): δ 9.27 (s, 1H, imidazolium NC*H*N), 8.03 (s, 1H, imidazolium NC*H*), 7.83 (s, 1H, imidazolium NC*H*), 4.17 (m, 2H, C*H*₂), 2.11 (m, 1H, C*H*₂), 1.94 (m, 1H, C*H*₂), 1.62 (s, 9H, (C*H*₃)₃), 1.55 (br. s, 1H, carborane cage CH). ¹³C{¹H} NMR (126 MHz, dmso-d₆): δ 134.5 (imidazolium NCN), 122.8 (imidazolium NCC), 120.2 (imidazolium NCC), 59.3 (\underline{C} (CH₃)₃), 56.2 (carborane cage quaternary *C*), 50.01 (*C*H₂), 44.7 (carborane cage *C*H), 38.9 (*C*H₂), 29.0 ((*C*H₃)₃). ¹¹B{¹H} NMR (161 MHz, dmso-d₆): δ -11.1 (2B), -14.2 (1B), -15.9 (1B), -19.4 (2B), -21.6 (1B), -33.2 (1B), 37.3 (1B). HRMS (ESI⁺): *m/z* 286.3131 [C₁₁H₂₈B₉N₂]⁺, calcd. [M+H]⁺ 286.3126. Anal. calcd. for C₁₁H₂₇B₉N₂: C, 46.42; H, 9.56; N, 9.84. Found: C, 46.60; H, 9.65; N, 9.80.

Figure S5. ¹H NMR spectrum (dmso-d₆, 500 MHz) of imidazolium-*nido*-carborane

zwitterion 2.

Figure S6. ¹³C{¹H} NMR (top) and ¹³C{¹H}-DEPT 135 (bottom) spectra (dmso-d₆, 126 MHz) of imidazolium-*nido*-carborane zwitterion **2**.

Figure S7. ¹¹B $\{^{1}H\}$ NMR spectrum (dmso-d₆, 161 MHz) of imidazolium-*nido*-

carborane zwitterion 2.

Figure S8. HRMS (ESI⁺) of imidazolium-*nido*-carborane zwitterion 2 (top).

Calculated isotope pattern (bottom) and observed (middle) for [2M+H]⁺.

Synthesis of complex 4·MeCN (and crystallisation of complexes 3·MeCN and 4₂)

Imidazolium *nido*-carborane zwitterion **2** (10 mg, 0.04 mmol), NaH (1.8 mg, 0.08 mmol) and anhydrous tetrahydrofuran (0.5 mL) were added to a Young's Tap NMR tube. The suspension was heated at 60 °C for 14 hours. The clear yellow solution was removed *via* syringe from the excess NaH. The solvent was removed *in vacuo* and $[Rh(COD)Cl]_2$ (19.1 mg, 0.04 mmol) and anhydrous acetonitrile (1 mL) were added. The reaction mixture was stirred at room temperature for 3 hours. Filtration of the mixture through celite and slow diffusion of diethyl ether into the acetonitrile solution resulted in crystals of **3**·MeCN suitable for X-ray diffraction analysis.

To obtain complex 4·MeCN only, the reaction mixture was heated at 60 °C for 18 hours instead of room temperature for 3 hours. This was subsequently filtered through celite and slow evaporation to concentrate the solution resulted in a yellow crystalline solid. The solid was filtered, washed with anhydrous diethyl ether (3×5 mL) and dried *in vacuo* to afford the product as a yellow crystalline solid in 77 % yield (23 mg, 0.03 mmol). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated solution of 4·MeCN in acetone. Crystals of 4₂ suitable for X-ray diffraction analysis of 4·MeCN in the minimum amount of acetonitrile followed by the addition of anhydrous diethyl ether and hexane in a ratio of 1:3:3.

¹H NMR (500 MHz, acetone-d₆): δ 7.45 (d, J = 1.9 Hz, 1H, NC*H*), 7.30 (s, 1H, NC*H*), 5.36 (br. s, 1H, C*H*₂), 4.84 (m, 2H, COD-C*H*), 4.32 (m, 2H, COD-C*H*), 4.22 (m, 3H,

COD-CH, CH₂), 3.81 (br. s, 1H, COD-CH), 3.66 (br. s, 1H, COD-CH), 2.45 (m, 25H, CH₂, COD-CH₂, CH₃, (CH₃)₃, carborane cage CH). ¹³C{¹H} NMR (126 MHz, acetone-d₆): δ 174.2 (d, ¹J_{Rh-C} = 50.4 Hz, NCN), 122.3 (NCCN), 96.6, 93.0, 81.5 (br, COD-CH), 75.4 (d, ¹J_{Rh-C} = 10.1 Hz, COD-CH), 75.0 (d, ¹J_{Rh-C} = 11.3 Hz, COD-CH), 59.2 (<u>C</u>(CH₃)₃), 53.7 (CH₂), 47.5 (carborane cage quaternary C), 42.6 (CH₂), 36.6 (NC<u>C</u>H₃), 34.3 (COD-CH₂), 33.8 (COD-CH₂, carborane cage CH), 32.3 ((CH₃)₃), 32.0-28.9 (COD-CH₂), 3.5 (N<u>C</u>CH₃). ¹¹B{¹H} NMR (161 MHz, dmso-d₆): δ -6.31 (2B), -10.70 (2B), -12.98 (2B), -22.07 (3B). HRMS (ESI⁺): *m/z* 706.2982 [C₂₇H₅₀B₉N₂Rh₂]⁺, calcd. [M-MeCN+H]⁺706.2971. Anal. calcd. for C₂₉H₅₂B₉N₃Rh₂: C, 46.70 ; H, 7.03; N, 5.63. Found: C, 46.40; H, 7.10; N, 5.70.

Figure S9. ¹H NMR spectrum (acetone- d_6 , 500 MHz) of complex 4·MeCN.

Figure S10. ¹³C{¹H} NMR (top) and ¹³C{¹H}-DEPT 135 (bottom) spectra (acetoned₆, 126 MHz) of complex $4 \cdot$ MeCN.

Figure S11. ¹¹B{¹H} NMR spectrum (acetone-d₆, 161 MHz) of complex $4 \cdot MeCN$.

Supporting Information

Figure S12. HRMS (ESI⁺) of complex **4**·MeCN (top). Calculated isotope pattern (bottom) and observed (middle) for [M-MeCN+H]⁺.

Synthesis of complex 5

Imidazolium *closo*-carborane bromide **1** (100 mg, 0.27 mmol), Ag₂O (62 mg, 0.27 mmol), [RhCODCl]₂ (67 mg, 0.14 mmol), several activated 4Å molecular sieves and anhydrous dichloromethane (5 mL) were added to an ampoule and heated at 45 °C for 1 hour. The solution was filtered through celite and the solvent removed *in vacuo* to yield a yellow crystalline solid. The solid was washed with hexane (3×10 mL) and dried *in vacuo* to afford the product in 74 % yield (108 mg, 0.20 mmol). Crystals suitable for X-ray diffraction analysis were grown by the slow evaporation of a concentrated solution of the product in dichloromethane.

¹H NMR (500 MHz, CDCl₃): δ 7.02 (d, J = 2.1 Hz, 1H, NC*H*), 6.84 (d, J = 2.1 Hz, 1H, NC*H*), 5.98 (td, J = 12.6, 5.0 Hz, 1H, CH₂), 5.00 (td, J = 8.0, 3.4 Hz, 1H, COD-C*H*), 4.91 (dd, J = 14.2, 7.4 Hz, 1H, COD-C*H*), 4.17 (br., 1H, carborane cage C*H*), 4.11 (td, J = 12.6, 5.0 Hz, 1H, CH₂), 3.39 (m, 1H, CH₂), 3.24 (m, 2H, COD-C*H*), 2.61 (m, 1H, CH₂), 2.49 (m, 2H, COD-CH₂), 2.35 (m, 2H, COD-CH₂), 2.02 (m, 2H, COD-CH₂) 1.94 (s, 9H, C(CH₃)₃), 1.80 (m, 2H, COD-CH₂). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 181.7 (d, ¹J_{Rh-C} = 50.4 Hz, NCN), 120.6 (NCC), 120.0 (NCC), 97.3 (d, J_{Rh-C} = 7.6 Hz, COD-CH), 95.5 (d, ¹J_{Rh-C} = 7.6 Hz, COD-CH), 73.4 (carborane cage quaternary *C*), 71.4 (d, ¹J_{Rh-C} = 15.1 Hz, COD-CH), 67.4 (d, ¹J_{Rh-C} = 15.1 Hz, COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂), 38.0 (CH₂), 34.1 (COD-CH), 63.6 (carborane cage *C*), 58.9 ((<u>C</u>CH₃)₃), 51.5 (CH₂

CH₂), 32.4 ((CH₃)₃), 31.5 (COD-CH₂), 29.8 (COD-CH₂), 28.2 (COD-CH₂). ¹¹B{¹H} NMR (161 MHz, CDCl₃): δ -2.5 (1B), -5.4 (1B), -9.2 (2B), -11.0 (2B), -12.9 (4B). HRMS (ESI⁺): m/z 505.3112 [C₁₉H₃₈B₁₀N₂Rh]⁺, calcd. [M-Cl]⁺ 505.3097. Anal. calcd. for C₁₉H₃₈B₁₀N₂ClRh: C, 42.18; H, 7.08; N, 5.18. Found: C, 42.40; H, 6.90; N, 5.50.

Figure S13. ¹H NMR spectrum (CDCl₃, 500 MHz) of complex **5**.

Figure S14. ${}^{13}C{}^{1}H$ NMR (top) and ${}^{13}C{}^{1}H$ -DEPT 135 (bottom) spectra (CDCl₃,

126 MHz) of complex 5.

Figure S15. ¹¹B{¹H} NMR spectrum (CDCl₃, 161 MHz) of complex 5.

Figure S16. HRMS (ESI⁺) of complex **5** (top). Calculated isotope pattern (bottom)

and observed (middle) for $[M-Cl]^+$.

Synthesis of complex 6

Imidazolium bromide **1** (200 mg, 0.53 mmol), Ag₂O (123 mg, 0.53 mmol), [RhCODCl]₂ (134 mg, 0.27 mmol), several activated 4Å molecular sieves and anhydrous acetonitrile (10 mL) were added to an ampoule and heated at 45 °C for 10 hours. The solution was filtered through celite and the solvent removed *in vacuo* to yield a yellow crystalline solid. This was washed with hexane (3×10 mL) and dried *in vacuo* to afford the product in 79 % yield (213 mg, 0.42 mmol). Crystals suitable for X-ray diffraction analysis were grown by the slow evaporation of a concentrated solution of the product in dichloromethane.

¹H NMR (500 MHz, CDCl₃): δ 7.07 (d, J = 2.0 Hz, 1H, NC*H*), 6.83 (d, J = 2.0 Hz, 1H, NC*H*), 6.13 (td, J = 13.8, 1.85 Hz, 1H, C*H*₂), 4.83 (t, J = 7.8 Hz, 1H, COD-C*H*), 4.43 (dd, J = 15.3, 7.8 Hz, 1H, COD-C*H*), 3.90 (dt, J = 13.8, 3.45 Hz, 1H, C*H*₂), 3.82 (t, J = 7.2 Hz, 1H, COD-C*H*), 3.21 (m, 1H, COD-C*H*), 2.75 (m, 1H, C*H*₂), 2.58 (m, 1H, C*H*₂), 2.46 (m, 2H, COD-C*H*₂), 2.16 (m, 4H, COD-C*H*₂), 1.95 (s, 9H, (CC*H*₃)₃), 1.75 (m, 2H, COD-C*H*₂). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 183.2 (d, ¹J_{Rh-C} = 52.9 Hz, NCN), 121.9 (NCC), 119.2 (NCC), 95.7 (d, ¹J_{Rh-C} = 7.6 Hz, COD-C*H*), 95.0 (d, ¹J_{Rh-C} = 7.6 Hz, COD-C*H*), 79.4 (carborane cage quaternary C), 70.6 (d, ¹J_{Rh-C} = 8.8 Hz, COD-C*H*), 58.3 ((<u>C</u>CH₃)₃), 49.3 (CH₂), 41.0 (CH₂), 35.0 (COD-C*H*₂), 33.1 (COD-C*H*₂), 32.0 ((CH₃)₃), 28.4 (COD-C*H*₂), 27.3 (COD-C*H*₂). ¹¹B{¹H} NMR (161 MHz,

CDCl₃): δ -4.2 (1B), -5.0 (1B), -6.1 (2B), -6.6 (1B), -8.3 (1B), -9.0 (1B), -9.84 (2B), -10.8 (1B). HRMS (ESI⁺): m/z 505.3089 [C₁₉H₃₈B₁₀N₂Rh]⁺, calcd. [M+H]⁺ 505.3097. Anal. calcd. for C₁₉H₃₇B₁₀N₂Rh.0.3(H₂O): C, 44.44; H, 7.46; N, 5.46. Found: C, 44.35; H, 7.47; N, 5.10.

Figure S17. ¹H NMR spectrum (CDCl₃, 500 MHz) of complex **6**.

Figure S18. ¹³C{¹H} and 135 DEPT NMR spectra (CDCl₃, 126 MHz) of complex 6.

Figure S19. ¹¹B{¹H} NMR spectrum (CDCl₃, 161 MHz) of complex 6.

Figure S20. HRMS (ESI⁺) of complex 6 (top). Calculated isotope pattern (bottom)

and observed (middle) for $[M+H]^+$.

Crystallographic Data

General Considerations

X-ray diffraction data were collected on an Agilent SuperNova diffractometer fitted with an Atlas CCD detector with Mo- K α radiation ($\lambda = 0.71073$ Å). Crystals were mounted under oil on nylon loops. Data sets were corrected for absorption using a multiscan method, and the structures were solved by direct methods using SHELXS-2008 and refined by full-matrix least squares on F2 using ShelXL-2008, interfaced through the program OLEX.^[5,6] Molecular graphics for all structures were generated using POV-RAY in the X-Seed program. The carboranyl carbons were identified using the Vertex-to-Centroid Distance (VCD) Method.^[7]

Crystallographic data has been deposited in the Cambridge Crystallographic Data Centre: CCDC 1444072-1444078.

Imidazolium bromide salt 1

Figure S22. Molecular structure of imidazolium bromide 1.

Table S1.	Crystal	data ar	nd structure	refinement fo	r imidazolium	bromide salt 1.
-----------	---------	---------	--------------	---------------	---------------	-----------------

Identification code	Imidazolium bromide salt 1
Empirical formula	$C_{12}H_{28.5}B_{10}BrN_{2.5}$
Formula weight	395.88
Temperature/K	119.99(14)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.6257(3)
b/Å	25.7293(10)
c/Å	10.2076(6)
$\alpha/^{\circ}$	90.00
β/°	92.279(4)
γ/°	90.00
Volume/Å ³	2001.19(15)
Ζ	4
$\rho_{calc}g/cm^3$	1.314
μ/mm^{-1}	2.053
F(000)	812.0
Crystal size/mm ³	$0.57 \times 0.13 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.22 to 56.56
Index ranges	$-10 \le h \le 10, -34 \le k \le 34, -13 \le l \le 13$
Reflections collected	13430
Independent reflections	4963 [$R_{int} = 0.0400, R_{sigma} = 0.0517$]
Data/restraints/parameters	4963/2/232
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.0911$
Final R indexes [all data]	$R_1 = 0.0575, wR_2 = 0.0969$
Largest diff. peak/hole / e Å ⁻³	0.78/-0.68

Imidazolium-nido-carborane zwitterion 2

Figure S23. Molecular structure of imidazolium-nido-carborane zwitterion 2.

Table S2. Crystal data and structure refinement for imidazolium-*nido*-carboranezwitterion 2

Identification code	Imidazolium-nido-carborane zwitterion 2
Empirical formula	$C_{11}H_{27}B_9N_2$
Formula weight	284.64
Temperature/K	150.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	15.6541(15)
b/Å	13.7503(14)
c/Å	18.3750(18)
$\alpha/^{\circ}$	90.00
β/°	115.101(5)
γ/°	90.00
Volume/Å ³	3581.7(6)
Z	8
$\rho_{calc}g/cm^3$	1.056
μ/mm^{-1}	0.054
F(000)	1216.0
Crystal size/mm ³	$0.51 \times 0.41 \times 0.23$

Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	3.84 to 58.72
Index ranges	-21 $\leq h \leq$ 20, -18 $\leq k \leq$ 18, -23 $\leq l \leq$ 25
Reflections collected	58101
Independent reflections	9836 [$R_{int} = 0.0408$, $R_{sigma} = 0.0307$]
Data/restraints/parameters	9836/0/613
Goodness-of-fit on F ²	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0462, wR_2 = 0.1191$
Final R indexes [all data]	$R_1 = 0.0605, wR_2 = 0.1306$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.20

Complex 3·MeCN

Figure S24. Molecular structure of complex 3·MeCN.

Table S3. Crystal data and structure refinement for complex $3 \cdot MeCN$.

Identification code	Complex 3·MeCN
Empirical formula	$C_{31}H_{55}B_9N_4Rh_2$
Formula weight	786.90
Temperature/K	120.00(11)
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.9249(5)
b/Å	23.7834(11)
c/Å	25.2349(11)

$\alpha/^{\circ}$	90.00
$\beta^{\prime \circ}$	90.00
$\gamma^{\prime \circ}$	90.00
Volume/Å ³	7157.0(6)
Z	8
$\rho_{calc}g/cm^3$	1.461
μ/mm^{-1}	0.951
F(000)	3232.0
Crystal size/mm ³	$0.19 \times 0.13 \times 0.07$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.46 to 56.56
Index ranges	$\text{-15} \leq h \leq 14, \text{-31} \leq k \leq 30, \text{-32} \leq l \leq 33$
Reflections collected	43820
Independent reflections	8855 [$R_{int} = 0.0852, R_{sigma} = 0.0673$]
Data/restraints/parameters	8855/0/420
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1=0.0505,wR_2=0.0905$
Final R indexes [all data]	$R_1 = 0.0741, wR_2 = 0.0997$
Largest diff. peak/hole / e Å ⁻³	2.15/-1.55

Complex 4·MeCN

Figure S25. Molecular structure of complex 4·MeCN.

Identification code	Complex 4·MeCN
Empirical formula	$C_{32}H_{58}B_9N_3ORh_2$
Formula weight	803.92
Temperature/K	120.01(11)
Crystal system	triclinic
Space group	P-1
a/Å	11.1781(5)
b/Å	12.5631(5)
c/Å	14.8258(7)
α'°	111.322(4)
$\beta^{\prime \circ}$	92.917(4)
$\gamma^{/\circ}$	105.326(4)
Volume/Å ³	1845.33(15)
Z	2
$\rho_{calc}g/cm^3$	1.447
μ/mm^{-1}	0.925
F(000)	828.0
Crystal size/mm ³	$0.19 \times 0.13 \times 0.06$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.98 to 56.56
Index ranges	$-14 \le h \le 14, -13 \le k \le 16, -19 \le l \le 19$
Reflections collected	21395
Independent reflections	9142 [$R_{int} = 0.0440, R_{sigma} = 0.0615$]
Data/restraints/parameters	9142/0/430
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0387, wR_2 = 0.0791$
Final R indexes [all data]	$R_1 = 0.0490, wR_2 = 0.0855$
Largest diff. peak/hole / e Å ⁻³	1.00/-0.94

Table S4. Crystal data and structure refinement for complex $4 \cdot MeCN$.

Complex 4₂

Figure S26. Molecular structure of complex 4_2 .

Table S5. Crystal data and structure refinement for complex 4_2 .

Identification code	Complex 4_2
Empirical formula	$C_{29}H_{54}B_9N_2O_{0.5}Rh_2$
Formula weight	741.85
Temperature/K	120.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.7898(6)
b/Å	11.4212(12)
c/Å	14.8764(14)
α/°	71.730(9)
β/°	83.274(6)
γ/°	69.415(8)
Volume/Å ³	1629.6(2)
Z	2

$\rho_{calc}g/cm^3$	1.512
μ/mm^{-1}	1.039
F(000)	762.0
Crystal size/mm ³	$0.48 \times 0.27 \times 0.16$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	6.4 to 56.56
Index ranges	$-13 \le h \le 14, -13 \le k \le 15, -19 \le l \le 19$
Reflections collected	19367
Independent reflections	8069 [$R_{int} = 0.0422, R_{sigma} = 0.0627$]
Data/restraints/parameters	8069/104/400
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0511, wR_2 = 0.1046$
Final R indexes [all data]	$R_1 = 0.0760, wR_2 = 0.1168$
Largest diff. peak/hole / e Å ⁻³	1.55/-1.40

Complex 5

Figure S27. Molecular structure of complex 5.

 Table S6. Crystal data and structure refinement for complex 5.

Identification code	Complex 5
Empirical formula	$C_{19}H_{38}B_{10}ClN_2Rh$
Formula weight	540.97
Temperature/K	290.87(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.3894(4)
b/Å	15.3629(5)
c/Å	13.6908(4)
a/°	90.00
β/°	93.441(3)
$\gamma/^{\circ}$	90.00
Volume/Å ³	2601.17(15)
Z	4
$\rho_{calc}g/cm^3$	1.381
μ/mm^{-1}	0.771
F(000)	1112.0
Crystal size/mm ³	$0.14 \times 0.08 \times 0.04$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	6.24 to 62.42
Index ranges	$-17 \le h \le 16, -22 \le k \le 21, -19 \le l \le 19$
Reflections collected	22805
Independent reflections	7491 [$R_{int} = 0.0595$, $R_{sigma} = 0.0762$]
Data/restraints/parameters	7491/0/301
Goodness-of-fit on F ²	1.048
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0537, wR_2 = 0.1173$
Final R indexes [all data]	$R_1 = 0.0811, wR_2 = 0.1305$
Largest diff. peak/hole / e Å ⁻³	1.64/-0.82

Complex 6

Figure S28. Molecular structure of complex 6.

 Table S7. Crystal data and structure refinement for complex 6.

Identification code	Complex 6
Empirical formula	$C_{19}H_{37}B_{10}N_2Rh$
Formula weight	504.52
Temperature/K	119.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	17.2832(5)
b/Å	10.5283(2)
c/Å	14.1775(4)
a/°	90.00
β/°	113.020(3)
$\gamma/^{\circ}$	90.00
Volume/Å ³	2374.33(10)
Z	4
$\rho_{calc}g/cm^3$	1.411
μ/mm^{-1}	0.731
F(000)	1040.0
Crystal size/mm ³	$0.65 \times 0.24 \times 0.11$

Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.12 to 56.56
Index ranges	-23 \leq h \leq 22, -13 \leq k \leq 14, -17 \leq l \leq 18
Reflections collected	20821
Independent reflections	5881 [$R_{int} = 0.0891$, $R_{sigma} = 0.0773$]
Data/restraints/parameters	5881/0/282
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0458, wR_2 = 0.1087$
Final R indexes [all data]	$R_1 = 0.0581, wR_2 = 0.1230$
Largest diff. peak/hole / e Å ⁻³	1.29/-0.65

References

[1] Fallis, K. A.; Mullica, D. F.; Sappenfield, E. L.; Stone, F. G. A. *Inorg. Chem.* **1994**, *33*, 4927.

[2] Hawthorne, M. F.; Andrews T. D.; Garrett P. M.; Olsen F. P.; Reintjes , M.;

Tebbe, F. N.; Warren, L. F.; Wegner, P. A.; Young, D. C. Inorg. Synth. 1967, 10, 91.

[3] L'Esperance, R. P.; Li, Z H.; Van Engen, D.; Jones Jr., M., *Inorg. Chem.* **1989**, *28*, 1823.

[4] Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248.

[5] SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany.

[6] Barbour, L. J. J. Supramol. Chem. 2001, 1, 189.

[7] McAnaw, A.; Scott, G.; Elrick, L.; Rosair, G. M.; Welch, A. J. *Dalton Trans.* **2013**, *42*, 645.