Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Intermolecular Dearomative C2-Arylation of N-Ac Indoles Activated by FeCl₃

Raj Kumar Nandi,^a Friederike Ratsch,^a Rodolphe Beaud,^a Régis Guillot,^a Cyrille Kouklovsky^a and Guillaume Vincent^{a*}

Table of Contents

General Information	S2
Procedures and characterizations data of compounds	S2
1H NMR and 13C NMR spectra	S23
X-Ray Crystal data	S51

I. General Information

Unless otherwise stated, all reactions were carried out under air atmosphere. Dichloromethane was distilled under argon over CaH₂. Unless otherwise noted, all reagentgrade chemicals and other solvents were obtained from commercial suppliers and were used as received. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel 60 F254 plates and visualized under UV (254 nm) and/or by staining with vanillin (1%) + sulfuric acid (5%) in EtOH or KMnO₄ solution followed by heating. Flash chromatography were performed on silica gel (Chromagel Si60ACC [70-200 µm]) as stationary phase. ¹H NMR spectra were recorded on Bruker AC250 (250 MHz), Bruker DRX300 (300 MHz), Bruker AM360 (360 MHz), Bruker 400 (400 MHz) instruments; chemical shifts (δ) are given in parts per million with respect to the residual protonated solvent ($\delta = 7.26$ ppm for CDCl₃, 2.50 ppm for DMSO-d⁶), which served as an internal standard. ¹³C NMR spectra were recorded on Bruker AC250 (62 MHz), DRX300 (75 MHz), AM360 (90 MHz) and Bruker 400 (100 MHz) instruments; chemical shifts are expressed with respect to the deuterated solvent ($\delta = 77.16$ ppm for CDCl₃, 39.52 ppm for DMSO-d⁶). Coupling constant(s) in hertz (Hz) were measured from one-dimensional spectra and multiplicities were abbreviated as following: br (broad), s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). Melting points were measured with a Reichert Austria microscope. Infrared spectra were recorded as neat on a Bruker Vertex 70 with ATR-GE spectrometer and some of compounds recorded as thin films on NaCl plates. High resolution mass spectra (HRMS) were recorded using Electrospray Ionization (ESI) method with a Bruker Daltonics MicrOTOF-Q instrument.

II. Procedures and characterizations data of compounds

General procedure for the synthesis of N-Ac indoles

Commercially available N-H indoles were transformed into N-Ac indoles according to the procedure described in:

A. Coste, M. Toumi, K. Wright, V. Razafimahaléo, F. Couty, J. Marot, G. Evano *Org. Lett.* 2008, **10**, 3841-3844.

The N-H precursors of N-Ac indoles 13a,b were prepared according to:

- 1. D. Bardiot, G. Carlens, K. Dallmeier, S. Kaptein, M. McNaughton, A. Marchand, J. Neyts, W. Smets, *PCT Int. Appl.* **2013**, *WO 2013045516 A1 20130404*.
- 2. T. Tomoo, T. Nakatsuka, T. Katayama, Y. Hayashi, Y. Fujieda, M. Terakawa, K. Nagahira, *J.Med.Chem.* **2014**, *57*, 7244–7262.

General procedure I for the 2-hydroarylation of N-Ac indole derivatives:

To a solution of the N-acetyl indole derivative 7 (1 eq.) in CH_2Cl_2 (0.5M), was successively added arene (2.2 equiv) 5 and FeCl₃ (2.2 equiv). After 1 hr at RT, the consumption of the starting indole 7 was checked by TLC (20% AcOEt/Petroleum ether; if indole 7 is not completely consumed, FeCl₃ (0.2 -0.4 equiv) were added and the mixture was stirred for an additional 1 hr after which a TLC control was done). The reaction was then quenched with a saturated NaCl aqueous solution and diluted with AcOEt. The organic and aqueous phases were separated. The aqueous phase was then extracted twice with AcOEt. The combined organic phases were then dried over Na₂SO₄, filtered and concentrated under vacuum. The crude oil was then purified by flash column chromatography or PTLC (20% to 50% AcOEt/ Petroleum ether).

8a was obtained from 1-Acetylindole **7a** (80 mg, 0.502 mmol) following above general procedure using anisole **5a** as electron-rich arene. Flash column chromatography purification (Cyclohexane/EtOAc : 9/1 to 8/2) led to *N*-Acetyl-2-(4-methoxyphenyl)indoline **8a** as colorless oil (42 mg, 0.157 mmol, **32%**) and *N*-Acetyl-2-(2-methoxyphenyl)indoline **8a**' as a white solid (52 mg, 0.195 mmol, **39%**) along with an inseparable mixture (1/3) of **8a** and **8a**' respectively (21 mg, 0.078 mmol, **15%**).

N-Acetyl-2-(4-methoxyphenyl)indoline (8a):

 $\mathbf{R}_{\mathbf{f}}$: 0.14 (Cyclohexane/EtOAc : 8/2)

¹**H NMR (360 MHz, CDCl₃)** *δ* (**ppm)** : 2.04 (s, 3H), 2.94 (dd, *J* = 16.1, 1.8 Hz, 1H), 3.76 (s, 3H), 3.79-3.71 (m, 1H), 5.32 (d, *J* = 10.0 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 2H), 7.14-7.02 (m, 4H), 7.26 (t, *J* = 7.7 Hz, 1H), 8.31 (d, *J* = 7.9 Hz, 1H).

¹³C NMR (90 MHz, CDCl₃) δ (ppm) : 24.3, 39.2, 55.4, 63.2, 114.5, 117.1, 124.1, 125.0, 126.3, 126.3, 127.8, 127.8, 129.4, 135.4, 143.4, 159.2, 169.7.

IR (NaCl), v (cm⁻¹): 3002, 2955, 2836, 1660, 1611, 1598, 1512, 1480, 1394, 1248, 1177, 755

HRMS (ESI⁺) : calculated: 290.1151 ($[C_{17}H_{17}NNaO_2]^+$; $[M+Na]^+$); found: 290.1149

N-Acetyl-2-(2-methoxyphenyl)indoline (8a[/]) :

M.p. : 107-109 °C

 $\mathbf{R}_{\mathbf{f}}$: 0.22 (Cyclohexane/EtOAc : 8/2)

¹**H** NMR (300 MHz, CDCl₃) δ (ppm) : 2.01 (s, 3H)), 2.86 (dd, J = 16.2, 1.9 Hz, 1H), 3.75 (dd, J = 16.2, 10.0 Hz, 1H), 3.92 (s, 3H), 5.73 (dd, J = 10.0, 1.9 Hz, 1H), 6.83 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.97 (dd, J = 7.7, 1.4 Hz, 1H), 7.02 (td, J = 7.3, 1.0 Hz, 1H), 7.11-7.08 (m, 1H), 7.28-7.21 (m, 2H), 8.33 (d, J = 8.2 Hz, 1H).

¹³C NMR (75.5 MHz, CDCl₃) δ (ppm) : 23.8, 37.8, 55.5, 58.2, 110.5, 117.2, 121.1, 124.0, 125.0, 125.1, 127.6, 128.7, 130.1, 131.0, 143.4, 155.6, 169.7.

IR (NaCl), v (cm⁻¹) : 3005, 2936, 2837, 1662, 1599, 1481, 1462, 1396, 1243, 1107, 1027, 753 **HRMS (ESI**⁺) : calculated: 290.1151 ([C₁₇H₁₇NNaO₂]⁺;[M+Na]⁺); found: 290.1145

N-Acetyl-2-(2-methoxy-5-methylphenyl)indoline (8b):

Compounds 8b (246.6 mg, 86%) was obtained from 4-Me anisole **5b** (275 mg, 2.25 mmol), N-Ac indole **7a** (162.7 mg, 1.02 mmol) and FeCl₃ (396 mg, 2.44 mmol) in 2 mL of CH₂Cl₂.

Melting point: 72 - 80 °C.

R_f: 0.35 (EtOAc/pet. ether 20:80).

¹H-NMR (250 MHz, CDCl₃) δ (ppm) : 2.04(s, 3H), 2.17 (s, 3H), 2.88 (dd, J = 16.2, 2.2 Hz, 1H), 3.77 (dd, J = 16.2, 10.2 Hz, 1H), 3.89 (s, 3H), 5.72 (dd, J = 10.2, 2.2 Hz, 1H), 6.77 (d, J = 1.7 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 7.02-7.13 (m, 3H), 7.25-7.31 (m, 1H), 8.37 (d, J = 8 Hz, 1H).

¹³C NMR (90 MHz, CDCl₃) δ (ppm) : 20.7, 23.8, 37.8, 55.5, 58.0, 110.5, 117.1, 123.9, 124.9, 125.4, 127.5, 128.9, 130.2, 130.3, 130.7, 143.4, 153.5, 169.7.

IR (ATR), v (cm⁻¹): 2951, 1655, 1484, 1397, 1246, 1034, 760

HRMS (ESI⁺): calculated ($C_{18}H_{20}NO_2^+$): 282.1489 [M + H⁺]; found: 282.1488.

calculated ($C_{18}H_{19}NNaO_2^+$): 304.1308 [M + Na⁺]; found: 304.1305.

1-(2-(2,5-dimethoxyphenyl)indolin-1-yl)ethan-1-one (8c) :

Compounds 8c (180.4 mg, 59%) was obtained from 1,4-dimethoxy benzene **5c** (305 mg, 2.20 mmol), N-Ac indole **7a** (163.0 mg, 1.02 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 67 – 69 °C.

R_f: 0.25 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**360 MHz, CDCl**₃) δ (**ppm**) : 2.04 (s, 3H), 2.87 (d, J = 16.2 Hz, 1H), 3.63 (s, 3H), 3.75 (dd, J = 16.2, 10.1 Hz, 1H), 3.86 (s, 3H), 5.70 (d, J = 10.1 Hz, 1H), 6.58 (d, J = 2.1 Hz, 1H), 6.74 (dd, J = 8.6, 2.5 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 8.33 (d, J = 7.9 Hz, 1H).

¹³C-NMR (90 MHz, CDCl₃) δ (ppm) : 23.7, 37.7, 55.5, 55.9, 58.0, 111.4, 111.8, 112.2, 117.1, 123.9, 124.9, 127.6, 129.9, 132.1, 143.2, 149.7, 153.9, 169.5.

IR (ATR), v (cm⁻¹) : 2948, 1652, 1485, 1397, 1244, 1034, 837.

HRMS (ESI⁺): calculated ($C_{18}H_{19}NNaO_3^+$): 320.1257 [M + Na⁺]; found: 320.1257.

1-(2-(2,4-dimethoxyphenyl)indolin-1-yl)ethanone (8d) :

Compounds 8d (286.1 mg, 48%) was obtained from 1,3-dimethoxy benzene **5d** (609.1 mg, 4.4 mmol), N-Ac indole **7a** (319.0 mg, 2.00 mmol) and FeCl₃ (778.4 mg, 4.8 mmol) in 3 mL of CH₂Cl₂.

melting point: 76 – 78 °C.

R_f: 0.31 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** δ (**ppm)** : 2.04 (s, 3H), 2.85 (dd, J = 15.8, 1.4 Hz, 1H), 3.72 (dd, J = 15.8, 10.1 Hz, 1H), 3.77 (s, 3H), 3.89 (s, 3H), 5.66 (dd, J = 9.4, 1.8 Hz, 1H), 6.35 (dd, J = 8.6, 2.1 Hz, 1H), 6.50 (d, J = 2.1 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 7.2 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 8.33 (d, J = 8.2 Hz, 1H).

¹³C-NMR (**75** MHz, CDCl₃) *δ* (ppm) : 23.6, 37.9, 55.3, 55.4, 57.9, 98.7, 104.2, 116.9, 123.3, 123.8, 124.9, 125.5, 127.4, 130.1, 143.3, 156.6, 160.3, 169.6.

IR (**ATR**), v (cm⁻¹) : 1653, 1615, 1584, 1502, 1481, 1402, 1214, 1161, 1030, 759.

HRMS (ESI⁺): calculated ($C_{18}H_{19}NNaO_3^+$): 320.1257 [M + Na⁺]; found: 320.1259.

1-(2-(2-hydroxy-5-methylphenyl)indolin-1-yl)ethanone (8e) :

M: 267.33 g/mol.

Compounds 8e (122.9 mg, 46%; off-white solid) was obtained from *p*-cresol **5e** (276 mg, 2.5 mmol), N-Ac indole **7a** (160.8 mg, 1.01 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 91 - 100 °C.

R_f: 0.29 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**250 MHz, acetone-d**⁶ δ (**ppm**) : 1.99 (s, 3H), 2.10 (s, 3H), 2.90 (d, J = 16.5 Hz, 1H), 3.78 (dd, J = 16.5, 10 Hz, 1H), 5.84 (d, J = 9.7 Hz, 1H), 6.69 (s, 1H), 6.84-6.95 (m, 2H), 7.03 (d, t, J = 7.1 Hz, 1H) 7.16-7.27 (m, 2H), 8.30 (d, J = 8 Hz, 1H), 8.82 (s, 1H).

¹³C-NMR (62 MHz, acetone-d⁶ δ (ppm): 19.8, 22.8, 37.5, 57.9, 115.4, 116.4, 123.5, 124.9, 127.1, 128.7, 128.8, 129.6, 130.4, 143.9, 151.3, 168.8.

IR (**ATR**), v (cm⁻¹) : 3113, 1623, 1484, 1411, 1267, 753, 734.

HRMS (ESI⁺): calculated (C₁₇H₁₇NNaO₂⁺): 290.1151 [M + Na⁺]; found: 290.1146.

1-(2-(2,5-dimethylphenyl)indolin-1-yl)ethanone (8f) :

Compounds 8f (142.5 mg, 54%; colourless solid) was obtained from *p*-xylene **5f** (233 mg, 2.2 mmol), N-Ac indole **7a** (159.2 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 77-80 °C.

R_f: 0.53 (EtOAc/pet. ether 20:80).

¹**H-NMR (300 MHz, CDCl₃)** *δ* (**ppm**) **:** 1.99 (s, 3H), 2.19 (s, 3H), 2.38 (s, 3H), 2.87 (dd, *J* = 15.9, 2.1 Hz, 1H), 3.82 (dd, *J* = 15.9, 10.2 Hz, 1H), 5.53 (dd, *J* = 10.2, 2.4 Hz, 1H), 6.80 (s, 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 704-7.14 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 1H), 8.38 (d, *J* = 7.8 Hz, 1H).

¹³C-NMR (75 MHz, CDCl₃) δ (ppm) : 19.0, 21.3, 23.9, 37.7, 60.5, 117.2, 124.2, 124.4, 125.1, 127.9, 128.3, 129.3, 130.3, 130.9, 136.6, 141.0, 143.6, 169.7.

IR (ATR), v (cm⁻¹) : 2946, 1653, 1499, 1397, 1276, 1245, 1034, 837.

HRMS (ESI⁺): calculated ($C_{18}H_{19}NNaO^+$): 288.1359 [M + Na⁺]; found: 288.1360.

1-(2-(3,5-dimethylphenyl)indolin-1-yl)ethanone (8g) :

Compounds 8g (157.5 mg, 60%; brown solid) was obtained from *m*-xylene **5g** (233.2 mg, 2.2 mmol), N-Ac indole **7a** (160.0 mg, 1.00 mmol) and FeCl₃ (388.7 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 39-45 °C.

R_f: 0.26 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** δ (**ppm) :** 1.97 (s, 3H), 2.27 (s, 3H), 2.38 (s, 3H), 2.83 (dd, J = 15.8, 1.4 Hz, 1H), 3.79 (dd, J = 15.8, 10.0 Hz, 1H), 5.51 (dd, J = 10.0, 2.1 Hz, 1H), 6.87 (s, 2H), 7.01-7.11 (m, 3H), 7.27 (t, J = 7.5 Hz, 1H), 8.35 (d, J = 8.2 Hz, 1H).

¹**H-NMR (62 MHz, CDCl₃)** *δ* (**ppm**) **:** 19.3, 20.9, 23.8, 37.7, 60.4, 117.0, 123.9, 124.1, 125.0, 127.5, 127.8, 129.3, 131.7, 133.2, 137.2, 138.2, 143.5, 169.6.

IR (ATR), v (cm⁻¹) : 2918, 1659, 1481, 1396, 1277, 1033, 761.

HRMS (ESI⁺): calculated ($C_{18}H_{20}NO^+$): 266.1539 [M + H⁺]; found: 266.1537.

1-(2-(3,4-dimethylphenyl)indolin-1-yl)ethanone (8h):

Compounds 8h (52.9 mg, 47%; yellow foam) was obtained from *o*-xylene **5h** (155 μ L, 1.28 mmol), N-Ac indole **7a** (68.0 mg, 0.427 mmol) and FeCl₃ (180.3 mg, 1.11 mmol) in 0.6 mL of CH₂Cl₂.

R_f: 0.45 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** δ (**ppm) :** 2.06 (s, 3H), 2.22 (s, 3H), 2.24 (s, 3H), 2.97 (dd, J = 15.7, 2.1 Hz, 1H), 3.78 (dd, J = 15.7, 10.3 Hz, 1H), 5.34 (dd, J = 10.3, 2.4, 1H), 6.89-6.94 (m, 2H), 7.04-7.15 (m, 3H), 7.28 (t, J = 8.0 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H).

¹³**C-NMR** (75 MHz, CDCl₃): *δ* [ppm] = 19.4, 19.9, 24.2, 39.1, 63.4, 117.0, 122.4, 124.0, 124.9, 126.1, 127.7, 129.3, 130.3, 136.1, 137.4, 140.7, 143.4, 169.7.

IR (ATR): \tilde{v} [cm⁻¹] = 2920, 1662, 1598, 1480, 1461, 1395, 1276.

HRMS (ESI⁺): calculated ($C_{18}H_{19}NNaO^{+}$): 288.1359 [M + Na⁺]; found: 288.1354.

1-(2-(4-fluoro-2-methoxyphenyl)indolin-1-yl)ethanone (8i) :

Compounds 8i (172.1 mg, 57%; off-white solid) was obtained from 1-fluoro-3methoxybenzene **5i** (296 mg, 2.35 mmol), N-Ac indole **7a** (170 mg, 1.06 mmol) and FeCl₃ (412 mg, 2.54 mmol) in 2 mL of CH_2Cl_2 .

melting point: 59-65 °C.

R_f: 0.26 (EtOAc/pet. ether 20:80).

¹**H-NMR (300 MHz, CDCl₃)** δ (**ppm) :** 2.00 (s, 3H), 2.82 (d, J = 16.2 Hz, 1H), 3.72 (dd, J = 16.2, 10.2 Hz, 1H), 3.88 (s, 3H), 5.65 (d, J = 9.3 Hz, 1H), 6.51 (td, J = 8.1, 2.1 Hz, 1H), 6.64 (dd, J = 10.5, 2.1 Hz, 1H), 6.87-6.92 (m, 1H), 6.99-7.11 (m, 2H), 7.22-7.27 (m, 1H), 8.31 (d, J = 7.8 Hz, 1H).

¹**H-NMR (75 MHz, CDCl₃)** δ (**ppm)** : 23.7, 37.8, 55.8, 57.8, 99.0 (d, J = 26 Hz), 107.1 (d, J = 26 Hz), 117.0, 124.0, 124.9, 125.9 (d, J = 10 Hz), 126.6, 127.6, 129.8, 143.2, 156.7 (d, J = 10 Hz), 163.0 (d, J = 251 Hz), 169.4.

IR (ATR), v (cm⁻¹) : 1661, 1480, 1396, 1279, 1033, 833, 762.

HRMS (ESI⁺): calculated ($C_{17}H_{17}FNO_2^+$): 286.1238 [M + H⁺]; found: 286.1234.

1-(3-(2-fluoro-5-methylphenyl)indolin-1-yl)ethanone (6j) :

Compounds **6j** (62.1 mg, 23%; brown solid) was obtained from 1-fluoro-4-methylbenzene **5j** (242 mg, 2.2 mmol), N-Ac indole **7a** (159.1 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.54 mmol) in 2 mL of CH_2Cl_2 .

melting point: 70-75 °C.

R_f: 0.27 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** *δ* (**ppm):** 2.22 (s, 3H), 2.24 (s, 3H), 3.93 (dd, *J* = 10.4, 6.4 Hz, 1H), 4.47 (t, *J* = 10.4 Hz, 1H), 4.92 (dd, *J* = 10.4, 6.4 Hz, 1H), 6.81 (dd, *J* = 7.5, 1.4 Hz, 1H), 6.95-7.05 (m, 4H), 7.26-7.30 (m, 1H), 8.38 (d, *J* = 7.8 Hz, 1H).

¹³C-NMR (90 MHz, CDCl₃) δ (ppm): 20.8, 24.3, 39.2, 56.8, 115.2 (d, J = 21 Hz), 117.1, 124.0, 125.1, 128.3, 129.2, 129.3, 129.4, 132.9, 134.2, 143.2, 158.9 (d, J= 244 Hz), 168.7.

IR (ATR), v (cm⁻¹) : 1662, 1597, 1479, 1400, 830, 768.

HRMS (ESI⁺): calculated (C₁₇H₁₇FNO⁺): 270.1289 [M + H⁺]; found: 270.1292.

1-(3-phenylindolin-1-yl)ethanone (6k):

Compounds **6k** (65.8 mg, 27%; brown solid) was obtained from benzene **5k** (178 mg, 2.28 mmol), N-Ac indole **7a** (165 mg, 1.03 mmol) and FeCl₃ (400 mg, 2.46 mmol) in 2 mL of CH₂Cl₂.

melting point: 52-58 °C.

R_f: 0.22 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** δ (**ppm**): 2.22 (s, 3H), 3.94 (dd, J = 10.4, 6.8 Hz, 1H), 4.45 (t, J = 10.4 Hz, 1H), 4.62 (dd, J = 10.4, 6.8 Hz, 1H), 6.97-7.04 (m, 2H), 7.20 (d, J = 7.2 Hz, 2H), 7.24-7.37 (m, 4H), 8.32 (d, J = 8.2 Hz, 1H).

¹³**C-NMR (90 MHz, CDCl₃)** *δ* (**ppm**): 24.2, 26.5, 58.0, 116.9, 123.9, 125.0, 127.3, 127.8, 128.2, 128.9, 134.5, 142.9, 143.1, 168.6.

IR (ATR), v (cm⁻¹) : 1654, 1598, 1480, 1402, 1285, 761, 703.

HRMS (ESI⁺): calculated ($C_{16}H_{16}NO^+$): 238.1226 [M + H⁺]; found: 238.1227.

1-(5-methoxy-2-(2-methoxy-5-methylphenyl)indolin-1-yl)ethan-1-one (8l) :

Compound **81** (208.6 mg, 67%; yellow-brown solid) was obtained from 4-Me anisole **5b** (268.8 mg, 2.2 mmol), 5-Methoxy N-Ac indole **7b** (189.3 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

Melting point: 68-75 °C.

R_f: 0.24 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**250 MHz, CDCl₃**) δ (**ppm**): 1.99 (s, 3H), 2.15 (s, 3H), 2.81 (dd, J = 16.2, 1.2 Hz, 1H), 3.72 (dd, J = 16.2, 10.0 Hz, 1H), 3.75 (s, 3H), 3.86 (s, 3H), 5.68 (dd, J = 10, 2 Hz, 1H), 6.66 (s, 1H), 6.75 – 6.81 (m, 3H), 7.01 (dd, J = 8.5, 1.2 Hz, 1H), 8.26 (d, J = 8.7 Hz, 1H).

¹³**C-NMR (62.5 MHz, CDCl₃)** *δ* (**ppm**): 20.7, 23.6, 37.9, 55.5, 55.6, 58.3, 110.4, 111.1, 112.0, 117.7, 125.5, 128.9, 130.3, 130.7, 131.8, 137.2, 153.5, 156.6, 169.0.

IR (ATR), v (cm⁻¹) : 2950, 1651, 1485, 1397, 1245, 1034, 837, 809.

HRMS (ESI⁺): calculated ($C_{19}H_{21}NNaO_{3}^{+}$): 334.1414 [M + Na⁺]; found: 334.1406.

1-(2-(2,5-dimethoxyphenyl)-5-methoxyindolin-1-yl)ethan-1-one (8m) :

Compound **8m** (115.6 mg, 35% ; pale-white solid) was obtained from 1,4dimethoxybenzene **5c** (305 mg, 2.2 mmol), 5-Methoxy N-Ac indole **7b** (189.2 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 72-78 °C.

R_f: 0.12 (EtOAc/pet. ether 20:80).

¹**H-NMR (360 MHz, CDCl₃)** δ (**ppm) :** 1.98 (s, 3H), 2.80 (dd, J = 16.2, 1.8 Hz, 1H), 3.61 (s, 3H), 3.70 (dd, J = 16.4, 10.0 Hz, 1H), 3.73 (s, 3H), 3.83 (s, 3H), 5.66 (dd, J = 9.9, 1.8 Hz, 1H), 6.54 (d, J = 2.8 Hz, 1H), 6.64 (d, J = 2.2 Hz, 1H), 6.73 (td, J = 9, 2.8 Hz, 2H), 6.81 (d, J = 8.6 Hz, 1H), 8.21 (d, J = 9 Hz, 1H).

¹³**C-NMR (90 MHz, CDCl₃)** *δ* (**ppm**) **:** 23.5, 37.9, 55.6, 55.9, 58.3, 111.1, 111.3, 111.9, 112.1, 112.2, 117.7, 131.6, 132.1, 137.1, 149.7, 153.9, 156.6, 168.8.

IR (ATR), v (cm⁻¹) : 2837, 1654, 1487, 1398, 1276, 1220, 1028, 717.

HRMS (ESI⁺): calculated ($C_{19}H_{22}NO_4^+$): 328.1543 [M + H⁺]; found: 328.1534.

1-(2-(2-methoxy-5-methylphenyl)-5-methylindolin-1-yl)ethan-1-one (8n):

Compound **8n** (218.3 mg, 74%; off-white solid) was obtained from 4-Me anisole **5b** (271.6 mg, 2.2 mmol), 5-Methyl N-Ac indole **7c** (173 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 67-72 °C.

R_f: 0.47 (EtOAc/pet. ether 20:80).

¹**H-NMR (300 MHz, CDCl₃)** δ (**ppm)** : 2.00 (s, 3H), 2.15 (s, 3H), 2.30 (s, 3H), 2.82 (d, J = 16.2 Hz, 1H), 3.71 (dd, 16.2, 10.2 Hz, 1H), 3.87 (s, 3H), 5.69 (d, J = 9.9 Hz, 1H), 6.76 (s, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.91 (s, 1H), 7.00-7.07 (m, 2H), 8.22 (d, J = 8.4 Hz, 1H).

¹³C-NMR (**75** MHz, CDCl₃) δ (ppm) : 20.7, 21.1, 23.8, 37.9, 55.6, 58.2, 110.5, 116.9, 125.5, 125.6, 128.0, 128.9, 130.2, 130.3, 130.9, 133.6, 141.2, 153.5, 169.4.

IR (ATR), v (cm⁻¹) : 1652, 1486, 1398, 1276, 1245, 1034, 809, 753.

HRMS (ESI⁺): calculated ($C_{19}H_{21}NNaO_{2}^{+}$): 318.1465 [M + Na⁺]; found: 318.1458.

1-(5-bromo-2-(2-methoxy-5-methylphenyl)indolin-1-yl)ethan-1-one (80):

Compound **8o** (298.8 mg, 83% ; light yellow solid) was obtained from 4-Me-anisole **5b** (270.3 mg, 2.2 mmol), 5-Bromo N-Ac indole **7d** (238.6 mg, 1.00 mmol) and FeCl₃ (350 mg, 2.2 mmol) in 2 mL of CH₂Cl₂.

melting point: 47 - 55 °C.

R_f: 0.42 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**250 MHz, CDCl₃**) δ (**ppm**) : 2.00 (s, 3H), 2.16 (s, 3H), 2.83 (dd, J = 16.5, 2 Hz, 1H), 3.71 (dd, J = 16.5, 10 Hz, 1H), 3.86 (s, 3H), 5.69 (dd, J = 10, 2.2 Hz, 1H), 6.70 (d, J = 1.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 7.02 (dd, J = 8.2, 1.5 Hz, 1H), 7.20 (s, 1H), 7.35 (dd, J = 8.5, 1.7 Hz, 1H), 8.22 (d, J = 8.7 Hz, 1H).

¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm) : 20.7, 23.7, 37.6, 55.6, 58.3, 110.6, 116.3, 118.5, 125.3, 127.9, 129.2, 130.2, 130.4, 132.6, 142.6, 153.5, 169.8.

IR (ATR), v (cm⁻¹): 1652, 1485, 1398, 1245, 1034, 837, 809.

HRMS (ESI⁺): calculated ($C_{18}H_{18}BrNNaO_2^+$): 382.0413 [M + Na⁺]; found: 382.0400.

1-(5-bromo-2-(2,5-dimethoxyphenyl)indolin-1-yl)ethan-1-one (8p) :

Compound **8p** (203 mg, 54%; off-white solid) was obtained from 1,4dimethoxybenzene **5c** (305 mg, 2.2 mmol), 5-Bromo N-Ac indole **7d** (238.2 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 73-79 °C.

R_f: 0.29 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**250 MHz, CDCl₃**) δ (**ppm**) : 2.01 (s, 3H), 2.83 (dd, J = 16.5, 1.4 Hz, 1H), 3.64 (s, 3H), 3.71 (dd, J = 16.5, 10.2 Hz, 1H), 3.84 (s, 3H), 5.68 (dd, J = 10.0, 1.9 Hz, 1H), 6.50 (d, J = 2.9 Hz, 1H), 6.74 (dd, J = 8.9, 2.9 Hz, 1H), 6.83 (d, J = 8.9 Hz, 1H), 7.19 (s, 1H), 7.33 (dd, J = 8.6, 1.9 Hz, 1H), 8.18 (d, J = 8.6 Hz, 1H).

¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm) : 23.7, 37.5, 55.7, 55.9, 58.4, 111.5, 111.9, 112.5, 116.4, 118.5, 127.9, 130.5, 131.7, 132.5, 142.5, 149.7, 154, 169.6.

IR (ATR), v (cm⁻¹): 1662, 1495, 1471, 1387, 1218, 1054, 826.

HRMS (ESI⁺): calculated (C₁₈H₁₉BrNO₃⁺): 376.0543 [M + H⁺]; found: 376.0547.

1-(2-(2-methoxy-5-methylphenyl)-5-nitroindolin-1-yl)ethanone (8q):

Compound **8q** (129.9 mg, 40%; light brown solid) was obtained from 4-Me anisole **5b** (268.8 mg, 2.2 mmol), 5-Nitro N-Ac indole **7e** (204.8 mg, 1.00 mmol) and FeCl₃ (389 mg, 2.4 mmol) in 2 mL of CH_2Cl_2 .

melting point: 88 – 97 °C.

R_f: 0.63 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**250 MHz, CDCl**₃) δ (**ppm**) : 2.05 (s, 3H), 2.16 (s, 3H), 2.95 (dd, J = 16.7, 2.2 Hz, 1H), 3.77 (dd, J = 16.7, 10.2 Hz, 1H), 3.86 (s, 3H), 5.81 (dd, J = 10.5, 2.2 Hz, 1H), 6.65 (d, J = 2 Hz, 1H), 6.82 (d, J = 8 Hz, 1H), 7.05 (dd, J = 8.5, 2 Hz, 1H), 7.97 (s, 1H), 8.19 (dd, J = 9, 2.2 Hz, 1H), 8.43 (d, J = 8.7 Hz, 1H).

¹³C-NMR (62.5 MHz, CDCl₃) δ (ppm) : 20.7, 23.9, 37.3, 55.7, 59.2, 110.9, 116.4, 120.8, 124.8, 125.3, 129.6, 130.6, 131.7, 144.0, 148.9, 153.5, 170.6.

IR (ATR), v (cm⁻¹) : 1674, 1654, 1599, 1500, 1485, 1395, 1334, 1246, 1034, 810, 754.

HRMS (ESI⁺): calculated ($C_{18}H_{18}N_2NaO_4^+$): 349.1159 [M + Na⁺]; found: 349.1156.

1-(6-chloro-2-(2-methoxy-5-methylphenyl)indolin-1-yl)ethan-1-one (8r) :

Compound **8r** (174.2 mg, 55%; (off-white solid) was obtained from 4-Me anisole **5b** (268.8 mg, 2.2 mmol), 6-Chloro N-Ac indole **7f** (193.6 mg, 1.00 mmol) and FeCl₃ (389 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 61-70 °C.

R_f: 0.25 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**360 MHz, CDCl₃**) δ (**ppm**) : 2.00 (s, 3H), 2.17 (s, 3H), 2.82 (dd, J = 16.2, 2.2 Hz, 1H), 3.68 (dd, 16.5, 10.0 Hz, 1H), 3.86 (s, 1H), 5.72 (dd, J = 10.0, 2.1 Hz, 1H), 6.71 (s, 1H), 6.80 (d, J = 8.2 Hz, 1H), 6.99-7.04 (m, 3H), 8.38 (s, 1H).

¹³**C-NMR (90 MHz, CDCl₃)** *δ* (**ppm**) **:** 20.7, 23.8, 37.4, 55.6, 58.7, 110.6, 117.4, 123.9, 125.3, 125.6, 128.7, 129.2, 130.3, 130.4, 133.1, 144.4, 153.5, 169.9.

IR (ATR), v (cm⁻¹) : 1649, 1483, 1395, 1274, 1242, 1219, 1032, 836, 808.

HRMS (ESI⁺): calculated ($C_{18}H_{18}CINNaO_2^+$): 338.0918 [M + Na⁺]; found: 338.0907.

1-(6-chloro-2-(2,5-dimethoxyphenyl)indolin-1-yl)ethan-1-one (8s) :

Compound **8s** (205.5 mg, 62%; off-white solid) was obtained from 1,4dimethoxybenzene **5c** (306.8 mg, 2.2 mmol), 6-Chloro N-Ac indole **7f** (193.8 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 64-65 °C.

R_f: 0.43 (EtOAc/pet. ether 20:80).

¹**H-NMR (300 MHz, CDCl₃)** δ (**ppm) :** 2.00 (s, 3H), 2.82 (d, *J* = 16.5 Hz, 1H), 3.63 (s, 3H), 3.67 (dd, *J* = 16.2, 9.9 Hz, 1H), 3.84 (s, 3H), 5.70 (d, *J* = 9.6 Hz, 1H), 6.51 (d, 2.7 Hz, 1H), 6.74 (dd, *J* = 9, 3 Hz, 1H), 6.83 (d, *J* = 8.7 Hz, 1H), 6.97 (s, 2H), 8.34 (s, 1H).

¹³**C-NMR (75 MHz, CDCl₃)** *δ* (**ppm**) **:** 23.7, 37.4, 55.7, 55.9, 58.7, 111.5, 111.9, 112.4, 117.4, 123.9, 125.6, 128.5, 131.8, 133.2, 144.4, 149.7, 154.0, 169.7.

IR (ATR), v (cm⁻¹) : 1650, 1497, 1275, 1244, 1033, 836, 808.

HRMS (ESI⁺): calculated (C₁₈H₁₉ClNO₃): 332.1048 [M + H⁺]; found: 332.1050.

1-(4-bromo-2-(2-methoxy-5-methylphenyl)indolin-1-yl)ethanone (8t) :

Compound **8t** (308.4 mg, 86%; (off-white solid) was obtained from 4-Me anisole **5b** (268.5 mg, 2.2 mmol), 4-Bromo N-Ac indole **7h** (239.5 mg, 1.00 mmol) and FeCl₃ (389.3 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

melting point: 70-78 °C.

R_f: 0.42 (EtOAc/pet. ether 20:80).

¹**H-NMR** (360 MHz, **CDCl**₃) δ (**ppm**) : 2.01 (s, 3H), 2.17 (s, 3H), 2.87 (dd, J = 16.9, 2.4 Hz, 1H), 3.64 – 3.72 (dd, J = 16.9, 10.3 Hz, 1H), 3.87 (s, 3H), 5.72 (dd, J = 10.1, 2.1 Hz, 1H), 6.75 (s, 1H), 6.81 (d, J = 8.3 Hz, 1H), 7.03 (d, J = 7.9 Hz, 1H), 7.11 – 7.15 (m, 1H), 7.17 (dd, J = 8.0, 1.2 Hz, 1H), 8.30 (d, J = 7.5 Hz, 1H).

¹³C-NMR (90 MHz, CDCl₃) δ (ppm) : 20.7, 23.8, 39.3, 55.6, 57.6, 110.6, 115.8, 119.5, 125.3, 126.7, 129.2, 129.3, 130.3, 130.8, 144.3, 153.4, 170.0.

IR (ATR), v (cm⁻¹) : 1672, 1499, 1446, 1377, 1246, 780, 767, 707.

HRMS (ESI⁺): calculated ($C_{18}H_{19}BrNaO_2^+$): 360.0594 [M + H⁺]; found: 360.0612.

Compound **8u** (41 mg, 30%; colorless oil) was obtained from 4-Me anisole **5b** (268.5 mg, 2.2 mmol), 1-Acetyl-2-methylindole **7i** (80 mg, 0.461 mmol) and FeCl₃ (180 mg, 1.1 mmol) in 1 mL of CH₂Cl₂ (along with 3-Acetyl-2-methylindole as a white solid; 22 mg, 28%).

1-(2-(2-methoxy-5-methylphenyl)-2-methylindolin-1-yl)ethanone (8u) :

 $\mathbf{R}_{\mathbf{f}}$: 0.26 (EtOAc/Cyclohexane 20:80).

¹**H NMR (360 MHz, CDCl₃) δ (ppm) :** 1.73 (s, 3H), 1.88 (s, 3H), 2.32 (s, 3H), 3.06 (d, *J* = 14.5 Hz, 1H), 3.59 (s, 3H), 3.59 (d, *J* = 14.5 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 7.05-7.00 (m, 1H), 7.15-7.08 (m, 2H), 7.17 (d, *J* = 1.8 Hz, 1H), 7.25-7.19 (m, 1H), 8.38 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (90 MHz, CDCl₃) δ (ppm) : 20.9, 24.6, 27.1, 47.4, 55.9, 67.1, 112.2, 118.4, 123.4, 123.9, 127.4, 127.5, 129.6, 129.6, 129.8, 132.7, 143.5, 155.5, 169.7.

IR (NaCl), v (cm⁻¹): 2935, 2834, 1649, 1598, 1498, 1481, 1461, 1379, 1250, 1140, 1028, 754

HRMS (**ESI**⁺) : calculated: 318.1465 ($[C_{19}H_{21}NNaO_2]^+$; $[M+Na]^+$); found: 318.1456

3-Acetyl-2-methylindole :

melting point: 155-160 °C

Rf: 0.26 (EtOAc/Cyclohexane 30:70)

¹**H NMR (300 MHz, DMSO-**d⁶) **δ (ppm) :** 2.51 (s, 3H), 2.67 (s, 3H), 7.16-7.10 (m, 2H), 7.39-7.33 (m, 1H), 8.04-7.98 (m, 1H), 11.83 (br, 1H).

¹³C NMR (75.5 MHz, DMSO-d⁶) δ (ppm) : 15.0, 30.9, 111.1, 113.5, 120.6, 121.2, 121.7, 126.9, 134.7, 144.1, 193.0.

IR (NaCl), v (cm⁻¹): 3169, 3102, 2918, 1610, 1578, 1486, 1458, 1415, 1192, 1027, 969, 738

HRMS (**ESI**⁺) : calculated: 174.0913 ([C₁₁H₁₂NO]⁺;[M+H]⁺); found: 174.0908

1-(2-(3-methylbenzofuran-2-yl)indolin-1-yl)ethanone (10a) :

Compounds **10a** (40 mg, 14% ;gummy) and **11a** (349.4 mg, 83% ; yellow solid) were obtained from 3-methylbenzofuran **9a** (290.2 mg, 2.2 mmol), N-Ac indole **7a** (159.4 mg, 1.00 mmol) and FeCl₃ (389 mg, 2.4 mmol) in 2 mL of CH₂Cl₂.

R_f: 0.25 (EtOAc/pet. ether 20:80).

¹**H-NMR** (250 MHz, **CDCl₃**) δ (**ppm**) : 2.21 (s, 3H), 2.45 (br s, 3H), 3.11 (d, J = 15.7 Hz, 1H), 3.76 (dd, J = 15.7, 10.3 Hz, 1H), 5.67 (d, J = 10.3 Hz, 1H), 6.91-6.93 (m, 2H), 7.04-7.32 (m, 5H), 8.28 (d, J = 7.5 Hz, 1H).

¹³C-NMR (75 MHz, CDCl₃) δ (ppm) : 23.9, 39.3, 60.0, 117.3, 123.7, 124.1, 124.4, 124.9, 126.7, 127.8, 129.0, 146.2, 169.1.

IR (ATR), v (cm⁻¹) : 2902, 1655, 1477, 1398, 1277, 1238, 752, 731.

HRMS (**ESI**⁺): calculated (C₁₉H₁₈NO₂⁺): 292.1332 [M + H⁺]; found: 292.1342.

N-(2-(2,2-bis(3-methylbenzofuran-2-yl)ethyl)phenyl)acetamide (11a) :

Melting point: 49-56°C.

R_f: 0.07 (EtOAc/pet. ether 20:80).

¹**H-NMR** (**360 MHz, CDCl₃**) δ (**ppm**) : 2.00 (s, 6H), 2.03 (s, 3H), 3.57 (d, J = 7.5, 2H), 4.64 (t, J = 7.5 Hz, 1H), 7.00 (br, 1H), 7.10 (t, J = 7.9 Hz, 1H), 7.18-7.32 (m, 6H), 7.44 (d, J = 7.2 Hz, 2H), 7.51 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H).

¹³C NMR (90 MHz, CDCl₃) δ (ppm): 7.7, 24.1, 33.4, 37.9, 111.1, 111.7, 119.4, 122.6, 124.1, 124.9, 125.9, 127.5, 130.0, 130.4, 131.6, 135.6, 150.9, 153.9, 168.8.

IR (ATR), v (cm⁻¹): 3244, 1689, 1454, 1181, 1043, 744.

HRMS (ESI⁺): calculated ($C_{28}H_{25}NNaO_3^+$): 446.1727 [M + Na⁺]; found: 446.1748.

Compounds **10b** (21.9 mg, 14% ;yellow gum) and **11b** (129 mg, 56%, yellow gum) were obtained from 3-methylbenzothiophen **9b** (133 μ L, 1.018 mmol), N-Ac indole **7a** (81.0 mg, 0.509 mmol) and FeCl₃ (214.8 mg, 1.32 mmol) in 0.6 mL of CH₂Cl₂.

1-(2-(3-methylbenzo[b]thiophen-2-yl)indolin-1-yl)ethanone (10b) :

R_f: 0.65 (EtOAc/pet. ether 30:70).

¹**H-NMR (300 MHz, CDCl₃)** δ (**ppm)** : 2.16 (s, 3H), 2.49 (s, 3H), 3.11 (d, *J* = 15.8 Hz, 1H), 3.84 (dd, *J* = 15.8, 9.5 Hz, 1H), 5.84 (d, *J* = 9.5 Hz, 1H), 7.06-7.41 (m, 5H), 7.65-7.70 (m, 2H), 8.31 (d, *J* = 7.5 Hz, 1H).

¹³**C-NMR** (90 MHz, **CDCl**₃) *δ* (**ppm**) **:** 11.9, 23.9, 38.4, 58.6, 117.4, 121.6, 122.5, 124.2, 124.3, 124.6, 124.8, 128.0, 128.8, 137.9, 140.2, 169.1.

HRMS (ESI⁺): calculated (C₁₉H₁₇NNaOS⁺): 330.0923 [M + Na⁺]; found: 330.0924.

N-(2-(2,2-bis(3-methylbenzo[b]thiophen-2-yl)ethyl)phenyl)acetamide (11b) :

R_f: 0.40 (EtOAc/pet. ether 30:70).

¹**H-NMR** (250 MHz, **CDCl₃**) δ (**ppm**) : 1.78 (s, 3H), 2.02 (s, 6H), 3.52 (d, J = 7.5 Hz, 2H), 5.07 (t, J = 7.5 Hz, 1H), 6.43 (br, 1H), 7.15-7.44 (m, 7H), 7.56-7.63 (m, 3H), 7.81-7.85 (m, 2H)

¹³C-NMR (90 MHz, CDCl₃) δ (ppm) : 11.4, 23.6, 39.7, 41.4, 121.9, 122.4, 124.4, 124.5, 124.7, 125.7, 127.5, 128.9, 130.9, 131.2, 136.0, 138.0, 140.1, 140.3, 168.6.

HRMS (ESI⁺): calculated ($C_{28}H_{25}NOS_2Na^+$): 478.127 [M + Na⁺]; found: 478.1269.

1-(6,6a-dihydro-5H-benzo[a]carbazol-11(11aH)-yl)ethanone (13a):

Compound **13a** (172.0 mg, 48%; yellow gummy) was obtained from **12a** (355 mg, 1.35 mmol), and FeCl₃ (525.2 mg, 3.2 mmol) in 27 mL of CH_2Cl_2 (0.05M).

R_f: 0.25 (EtOAc/pet. ether 20:80).

¹**H-NMR (400 MHz, DMSO-d⁶, 365 K)** *δ* (**ppm) :** 1.92-1.96 (m, 1H), 2.33-2.39 (m, 1H), 2.36 (s, 3H), 2.62-2.66 (m, 2H), 3.96-4.01 (m, 1H), 5.71 (d, *J* = 8.6 Hz, 1H), 7.02-7.08 (m, 2H), 7.11-7.18 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H).

¹³C-NMR (100 MHz, DMSO-d⁶, 365K) δ (ppm) : 22.7, 23.3, 25.4, 38.8, 60.7, 116.6, 123.1, 123.3, 125.7, 126.3, 126.4, 126.8, 127.1, 135.1, 135.6, 138.1, 141.8, 168.1.

IR (ATR), v (cm⁻¹) : 1653, 1480, 1388, 1268, 1244, 751.

HRMS (ESI⁺): calculated ($C_{18}H_{17}NNaO^+$): 286.1208 [M + Na⁺]; found: 286.1205.

1-(8-bromo-6,6a-dihydro-5H-benzo[a]carbazol-11(11aH)-yl)ethanone (13b) :

Compound **13b** (140.0 mg, 41%; yellow solid) was obtained from **12b** (343 mg, 1 mmol), and FeCl₃ (390 mg, 2.4 mmol) in 20 mL of CH_2Cl_2 (0.05M).

Melting point: 95-102 °C.

R_f: 0.23 (EtOAc/pet. ether 20:80).

¹**H-NMR (400 MHz, DMSO, 360 K)** δ (**ppm) :** 1.87-1.91 (m, 1H), 2.36 (s, 3H), 2.36-2.40 (m, 1H), 2.63-2.67 (m, 2H), 4.02-4.05 (m, 1H), 5.69 (d, *J* = 8.0 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 7.13-7.20 (m, 2H), 7.29-7.36 (m, 2H), 7.40 (s, 1H), 7.56 (d, *J* = 7.5 Hz, 1H).

¹³C-NMR (100 MHz, DMSO, 360 K) δ (ppm) : 22.7, 23.2, 25.5, 38.8, 60.9, 115.2, 118.4, 125.8, 126.2, 126.3, 126.5, 127.2, 129.2, 134.6, 138.1, 138.6, 141.2, 168.2

IR (ATR), v (cm⁻¹) : 1650, 1491, 1383, 1257, 831, 793.

HRMS (ESI⁺): calculated $(C_{18}H_{17}BrNO^+)^+$: 344.0473 [M + H ⁺]; found: 344.0461.

III 1H NMR and 13C NMR spectra

Recorded in CDCl3 unless otherwise noted

S30

S31

st | ppm 180

1 80

S46

IV X-Ray Crystal data

The single crystal X-ray diffraction data of the compounds **8b** and **13b** were collected by using a Kappa X8 APEX II Bruker diffractometer with graphite-monochromated Mo_{Ka} radiation (λ = 0.71073 Å). X-ray diffraction data of compound **11b** was collected by using a Kappa VENTURE PHOTON 100 Bruker diffractometer with IµS microfocus graphitemonochromated Mo_{Ka} radiation (λ = 0.71073 Å). Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then flashfrozen in a nitrogen-gas stream at 100 K. The temperature of the crystal was maintained at the selected value (100 K) by means of a 700 series Cryostream cooling device to within an accuracy of ±1 K. The data were corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SIR-97^[1] and refined against *F*² by full-matrix least-squares techniques using SHELXL-2014^[2] with anisotropic displacement parameters for all non-hydrogen atoms. All calculations were performed by using the Crystal Structure crystallographic software package WINGX ^[3].

The crystal data collection and refinement parameters are given in Table S1.

CCDC 1450298-1450300 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/Community/Requestastructure</u>.

Compound	8b	11b	13b
	CCDC 1450298	CCDC 1450300	CCDC 1450299
Empirical Formula	$C_{18} H_{19} N O_2$	C ₁₈ H ₁₆ Br N O	C ₂₈ H ₂₅ N O ₃
<i>M</i> _r	281.34	342.23	423.49
Crystal size, mm ³	0.31 x 0.28 x 0.11	0.29 x 0.25 x 0.21	0.12 x 0.09 x0.03
Crystal system	orthorhombic	triclinic	monoclinic
Space group	Рbса	P -1	P 21/n
a, Å	9.5809(4)	7.9573(3)	7.7189(4)
b, Å	13.6588(6)	9.6303(3)	9.7482(5)
c <i>,</i> Å	22.8484(9)	10.5963(3)	29.5931(14)
α, °	90	68.1470(10)	90
β, °	90	75.128(2)	94.235(2)
γ, °	90	69.3120(10)	90
Cell volume, Å ³	2990.0(2)	697.70(4)	2220.66(19)
Z	8	2	4
Т, К	100(1)	100(1)	100(1)
F ₀₀₀	1200	348	896
μ, mm ⁻¹	0.081	2.944	0.082
heta range, °	1.783 - 33.440	2.093 - 30.685	2.200 - 31.318
Reflection collected	47 102	13 259	76 548
Reflections unique	5 808	4 228	7 273
R _{int}	0.0307	0.0362	0.0335
GOF	1.068	1.039	1.070
Refl. obs. (/>2ơ(/))	4 969	3 719	6 212
Parameters / restraints	193 / 0	191 / 0	292 / 0
wR ₂ (all data)	0.1351	0.0694	0.1247
R value (<i>I</i> >2σ(<i>I</i>))	0.0446	0.0285	0.0490
Largest diff. peak and hole (eÅ ⁻³)	-0.264 ; 0.489	-0.616; 0.677	0.268 ; 0.430

Table S1. Crystallographic data and structure refinement details for the compounds 8b, 11band 13b.

Figure S1. CSD Mercury^[4] ellipsoid view of the structure of compound **8b**. Ellipsoids are drawn at the 30% probability level.

Figure S2. CSD Mercury ellipsoid view of the structure of compound 11b. Ellipsoids are drawn at the 30% probability level.

Figure S3. CSD Mercury ellipsoid view of the structure of compound 13b. Ellipsoids are drawn at the 30% probability level.

1. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-119.

2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.

3. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.

4. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, Towler and van der Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.