Supporting Information

Whole-cell microtiter plate screening assay for terminal hydroxylation of fatty acids by P450s

Martin J. Weissenborn,§^a Sandra Notonier,§^a Sarah-Luise Lang,^a Konrad B. Otte,^a Susanne Herter,^b Nicholas J. Turner,^b Sabine L. Flitsch^b and Bernhard Hauer^{*a}

^aInstitute of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany ^bManchester Institute of Biotechnology & School of Chemistry, University of Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom *E-mail bernhard.hauer@itb.uni-stuttgart.de

[§] These authors contributed equally to the work

Table of contents

Ma	terial and Method	2
1.	Chemicals, bacterial strains and plasmids2	2
2.	Sequence alignments and designed primers2)
3.	Fermentation, galactose oxidase expression and purification	;
4.	CYP153A _{M.aq} -CPR _{BM3} expression, whole resting cell preparation and biocatalytic performance3	;
4.1	Bacterial cell fermentation and P450 expression	;
4.2	Lysate preparation and <i>in vitro</i> performance	;
4.3	Whole resting cell biotransformation	ł
5.	Galactose oxidase assay4	ł
6.	CO spectra4	ł
7.	GC-FID analysis	ł
Su	pporting tables and figures	;
1.	Galactose oxidase substrates panel5	ý
2.	Heating step5	;
3.	ω-OHC ₁₂ detection limit	5
4.	Controls	5
5.	Selectivity of the GOase _{M3-5}	1
6.	Small focussed mutant library7	1
Re	ferences	\$

Material and Method

1. Chemicals, bacterial strains and plasmids

Yeast extract, agar and tryptone were purchased from Roth (Germany), fatty acids (substrate and product ω -OHFA) and all other chemicals were acquired from Sigma-Aldrich (Germany). *E. coli* strain BL21 (DE3) was purchased from Novagen (Madison, WI, USA). The plasmid pET-30 containing the galactose oxidase mutant M₃₋₅ (GOase_{M3-5}) gene was kindly provided by the Manchester Institute of Biotechnology, University of Manchester.¹ The plasmid pET-28a(+) (Novagen, Madison, WI, USA) with P450_{BM3} from *Bacillus megaterium* and pET-28a(+) harbouring the fusion construct between the heme domain of CYP153A from *Marinobacter aquaeolei* and the reductase domain of P450_{BM3} (CYP153A_{*M.aq*}-CPR_{BM3}) wild type and each variant from the mutant library were generated at the University of Stuttgart.²

2. Sequence alignments and designed primers

The substitutions selected for mutagenesis were based on amino acids frequencies deriving from conservation analysis in CYPs families.^{3,4} Site-directed mutagenesis was performed by QuikChange method to generate the small focussed library.

Variants	Primers	Sequences (5'> 3')
V306I	Forward	ctg ctc ata <u>ATT</u> ggc ggc aac gat acg acg
10001	Reverse	cgt cgt atc gtt gcc gcc <u>AAT</u> tat gac cag
G307R	Forward	ctg ctc ata gtc <u>CGT</u> ggc aac gat acg acg
	Reverse	cgt cgt atc gtt gcc ACG gac tat gag cag
F455V	Forward	cgg gtg cag tcc aac <u>GTG</u> gtg cgg ggc tat
	Reverse	ata gcc ccg cac <u>CAC</u> gtt gga ctg cac ccg
D134V	Forward	ccg caa atc att ctc ggt GTG cct ccg gag ggg ctg tcg
	Reverse	cga cag ccc ctc cgg agg <u>CAC</u> acc gag aat gat ttg cgc
I145L	Forward	gaa atg ttc <u>CTG</u> gcg atg gat ccg ccg
	Reverse	cgg cgg atc cat cgc <u>CAG</u> gaa cat ttc
S453A	Forward	cgg gtg cag <u>GCG</u> aac ttc gtg cgg ggc tat
	Reverse	ata gcc ccg cac gaa gtt <u>CGC</u> ctg cac ccg

Table S1. Designed primers for the generation of a small-focussed mutant library

The PCR mixture contained: DNA polymerase buffer with MgSO₄ 10X (1X, 5 μ L), forward/reverse primer (10 pmol, 1 μ L each), DNTP mix (50 mM, 1 μ L), plasmid template (100 ng, 2 μ L), *pfu* Ultra II polymerase enzyme (1 μ L) and sterile water to a final volume of 50 μ L. The PCR program included:

- 1) Denaturation: 95 °C, 2 min
- 2) Denaturation: 95 °C, 30 sec
- 3) Annealing: 55 °C, 60 sec x 18 cycles
- 4) Extension: 72°C, 4 min (30 sec/kb of plasmid length)
- 5) Final extension: 72°C, 7 min
- 6) Storage at 8 °C

Following the PCR, the mixtures were treated for 2 h at 37 °C (digestion step) with 1 μ L of *Dpn I* restriction enzyme (Fermentas, Darmstadt, Germany), and subsequently purified and concentrated by a ZymoClean DNA concentrator kit prior to a chemical transformation into *E. coli* DH5 α cells.

3. Fermentation, galactose oxidase expression and purification

GOase_{M3-5} was transformed into *E. coli* BL21 StarTM (DE3) cells (Invitrogen) according to manufacturer's specifications. A single colony was picked from an overnight LB plate containing 1 μ L of kanamycin of a 30 mg mL⁻¹ stock solution per mL of agar and used to inoculate 5 mL LB medium supplemented with 5 μ L kanamycin and grown overnight at 37 °C and 250 rpm. 500 μ L of the overnight culture was used to inoculate 250 mL of an auto-induction medium (8ZY-4LAC)⁵ and supplemented with 250 μ L of kanamycin in a 2-L-baffled Erlenmeyer flask. The cells were grown at 26 °C and 250 rpm for 60 h. Cells were harvested by centrifugation at 8967 *g* and 4 °C for 20 min and subsequently prepared for protein purification. The protein purification was accomplished on ÄKTA purifier 10 (GE Healthcare Biosciences, Uppsala, Sweden) using a Strep-Tag-II column as described elsewhere.⁵

4. CYP153A_{*M.aq*}-CPR_{BM3} expression, whole resting cell preparation and biocatalytic performance

4.1. Bacterial cell fermentation and P450 expression

For overnight cultures, a fresh *E. coli* transformant was used to inoculate 5 mL of LB medium $(30 \ \mu g \ mL^{-1})$ of kanamycin) and $100 \ \mu L$ were used to carry out a protein expression in 2 mL TB medium containing 2 μ L kanamycin in 24-deep well plates. The cells were grown at 37 °C and 180 rpm on a plate shaker until an OD_{600nm} of 0.8-1 and the plates were covered with a plate sealer (Greiner Bio-One, Frickenhausen, Germany). For protein induction, 0.1 mM of IPTG, 0.5 mM of 5-aminolevulinic acid and 0.5 mM of FeCl₃ were added and the protein expression performed at 25 °C and 180 rpm for 10-16 h.

4.2. Lysate preparation and *in vitro* performance

For the preparation of cell extract subsequently after the protein expression, the cells were centrifuged (2752 g, 4 °C, 20 min) and the pellet resuspended in potassium phosphate buffer, 100 mM pH 7.4. The cells were lysed by sonication on ice (3x2 min, 1 min interval, 40 % amplitude, 0.35 s cycle time (Branson Sonifier 250, Schwäbisch Gmünd, Germany)) and centrifuged for removal of cells debris (34864 g, 45 min, 4 °C). A screen of activities in lysate was performed in 100 mM potassium phosphate buffer pH 7.4 with 1 mM of dodecanoic acid (C₁₂), 5 % DMSO (v/v), 1 mM NADPH, cofactor regeneration, and 0.5 μ M of lysate for 2 h at 30 °C.

4.3. Whole resting cell biotransformation

To perform whole resting cell biotransformations consequently after the protein expression the plates were centrifuged for 10 min at 2752 *g* and 4 °C. The medium was discarded and the cell pellets washed once with 2 mL of 100 mM potassium phosphate buffer pH 7.4. After centrifugation at 3000 *g* for 3 min, the cell pellets were resuspended in the same buffer to reach 100 g_{cww} L⁻¹ (corresponding to 1-2 mL buffer added). The biotransformations were performed with 1 mL of 50 g_{cww} L⁻¹ resting cells in the presence of C₁₂ and product 12-hydroxydodecanoic acid (ω -OHC₁₂), 5 % DMSO (v/v, not exceeding the solubility limit), for 2 h at 25 °C and 500 rpm. Negative controls were accomplished in the same fashion with the same concentration of organic co-solvent added. The reactions were stopped by centrifugation for 3 min at 3000 *g* and the supernatant was stored at -20 °C until further analysis.

5. Galactose oxidase assay

Prior to the GOase based assay, the cell-free supernatants from P450-catalysed reactions were treated at 90 °C for 30 min in order to deactivate potential additional metabolic activity. The GOase assay was accomplished in 96-well plates (Greiner Bio-One GmbH, Frickenhausen, Germany) in a final volume of 200 µL. To each well was added: 118 µL of the heat-treated supernatant, 1 µL of commercially available horseradish peroxidase (HRP, from 9000 units µL⁻¹), 8 µL of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS, from 10 mM stock), 10 µL of GOase_{M3-5} (stock solution of 3.5-8 µM mL⁻¹) and 100 mM potassium phosphate buffer pH 7.4. Plates were read immediately for up to 4 h using a plate reader (POLARstar Omega BMG Labtech, Ortenberg, Germany). The formation of ABTS^{ox} ($\mathcal{E} = 3.6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) was monitored at $\lambda = 420 \text{ nm}$, taking the linear and early part of the graphs (V_{max} , where there is no limiting substrate). One unit of GOase_{M3-5} is defined as the amount of protein that oxidises 1 µmoL of substrate per minute at 30 °C.

6. CO spectra

The P450 protein concentration in whole cells was determined as described previously.^{6,7} One spatula of sodium dithionite was added to the sample prior to incubation on ice for 30 min ensuring a complete reduction of the heme domain. Subsequently, CO gas (except for the reference well) was applied to the reduced samples followed by incubation at 4 °C for 1 h. Plates were read on a plate reader in a range of $\lambda = 400-500$ nm.

7. GC-FID analysis

The samples were extracted twice with the same volume of methyl *ter*-butylether (MTBE). The organic phases were combined and evaporated (GeneVac EZ 2 Plus, Ipswich England). For derivatization, to each sample $45 \,\mu$ L of MTBE and $45 \,\mu$ L of *N*,*O*-bis(trimethylsilyl)trifluoroacetamide containing 1 % trimethylchlorsilane were added and samples incubated at 70 °C for 30 min. Decanoic acid was used as internal standard for quantification. The

reaction progress was monitored by GC-FID (Shimadzu, Japan) using a Elite-5 column (PerkinElmer, Waltham, MA, USA) and H₂ as carrier gas. For analysis of C_{12} fatty acids, the column oven was set at 140 °C for 2 min, then raised to 250 °C at a rate of 10 °C min⁻¹ for 1 min, held isotherm for 1 min, and then raised to 310 °C at 65 °C min⁻¹.

Supporting tables and figures

1. Galactose oxidase substrates panel

Table S2. Panel of primary alcohols and hydroxylated fatty acids tested as potential substrates for the GOase based assay.

Substrate	OD _{420nm} (after 10 min incubation)	
ω-OHC ₆	0.03 ± 0.022	
ω -OHC ₈	0.24 ± 0.019	
ω -OHC ₉	0.04 ± 0.0001	
ω -OHC ₁₀	0.18 ± 0.005	
ω -OHC ₁₂	0.10 ± 0.018	
1-hexanol	0.55 ± 0.069	
1-octanol	0.40 ± 0.056	
1-dodecanol	0.15 ± 0.009	

2. Heating step

Figure S1. Heating step was applied to the supernatant following a 2 h biotransformation of 2 mM of C_{12} substrate with resting *E. coli* cells (50 g_{cww} L⁻¹). This crucial step enables a maximum of absorption displayed after 1 h incubation via the GOase assay (blue curve) compared to 6 h in the absence of the heating step (red curve).

3. ω -OHC₁₂ detection limit

Figure S2. Increased concentrations of ω -OHC₁₂ applied to whole resting cell experiments after 2 h. A control assay (replacement of the product by the same volume of DMSO) was also implemented (grey circle). The intensity of the signal recorded via the assay correlates with the GC-FID analysis: a higher intensity of signal equals to a large amount of product formed.

Figure S3. Control reactions were tested in the absence of one of the following components: GOase, HRP, ABTS or ω -OHC₁₂ in comparison with a positive control containing each of the above mentioned ingredients. The GOase assay is only valid with the presence of each component.

4. Controls

5. Selectivity of the GOase_{M3-5}

Figure S4. Comparison of the product formation between CYP153A_{*M.aq*}-CPR_{BM3} and P450_{BM3} measured by the GOase assay and after extraction and analysis on GC-FID. Specific activity of the GOase towards ω -OHC₁₂ as a signal of absorption is displayed during the assay only for the product of CYP153A_{*M.aq*}-CPR_{BM3}. P450_{BM3} was shown active after GC-FID analysis, however the assay does not enable the detection of the product mixture ω -1, ω -2 and ω -3-OHC₁₂.

6. Small focussed mutant library

Table S3. Positions selected for site-directed mutagenesis. The substitutions for the positions located in the active site were selected based on the results from a previous small focussed library targeting the binding pocket only.⁸ To expand the diversity three positions from the substrate access tunnel were also addressed for mutation.

Positions	Location	Selected substitution and frequency	Remarks
V306I	Active site (I –Helix)	14.98 %	Position involved in the anchoring of the carboxyl group of the substrate. Substitutions tested in the past: V306T
G307R	Active site (I –Helix)	0.71 %	Substitution G307A previously tested leading to the most active variant. Other substitution evaluated: G307V
F455V	Active site (C-terminal β-sheet loop)	6.73 %	Position influencing the substrate orientation to the heme centre. Previous substitutions tested: L, I, Y
D134V	Substrate entrance	3.18 %	Influence of the substrate access
I145L	Substrate entrance	24.40 %	tunnel evaluated by replacing with
S453A	Substrate entrance	4.33 %	hydrophobic residues

Table S4. The relative conversion and specific conversion of C_{12} from MTP and GC-FID as well as the specific activity were calculated for the parent enzyme (WT). The table displays comparisons to G307A set at 100 % and S453A mutants. (AS: active site; SE: substrate entrance, MTP: microtiter plate)

Mutants	Mutation	Rel.	P450 conc.	Rel. specific	Rel. specific	Specific activity
	locations	conversion	[µM]	conversion	conversion	[μM min ⁻¹ μM ⁻¹]
		MTP-Assay		MTP-Assay	GC-FID	
		[%]		[%]	[%]	
WT	-	76 ± 0.01	1.2 ± 0.03	60 ± 0.01	95 ± 0.04	2.50 ± 0.36
G307A	AS	100	1.3 ± 0.03	100	100	2.62 ± 0.57
S453A	SE	$\textbf{86} \pm 0.02$	0.8 ± 0.14	$\boldsymbol{119} \pm 0.03$	$\pmb{116} \pm 0.03$	$\textbf{3.06} \pm 0.28$

References

- 1 F. Escalettes and N. J. Turner, *ChemBioChem*, 2008, **9**, 857–860.
- 2 D. Scheps, S. Honda Malca, S. M. Richter, K. Marisch, B. M. Nestl and B. Hauer, *Microbial Biotechnology*, 2013, **6**, 694–707.
- 3 Ł. Grieman, C. Vogel and J. Pleiss, *Proteins: Structure, Function and Bioinformatics*, 2014, **82**, 491–504.
- 4 Ł. Gricman, C. Vogel and J. Pleiss, *Proteins*, 2015, **83**, 1593–1603.
- 5 S. E. Deacon and M. J. McPherson, *ChemBioChemm*, 2011, **12**, 593–601.
- 6 T. Omura and R. Sato, *The Journal of biological chemistry*, 1964, **239**, 2370–8.
- 7 Y. Khatri, F. Hannemann, K. M. Ewen, D. Pistorius, O. Perlova, N. Kagawa, A. O. Brachmann, R. Müller and R. Bernhardt, *Chemistry & biology*, 2010, **17**, 1295–305.
- 8 S. Honda Malca, D. Scheps, L. Kühnel, E. Venegas-Venegas, A. Seifert, B. Nestl and B. Hauer, *Chemical Communications*, 2012, **48**, 5115–5117.