Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Specific receptor for hydrazine: Mapping the in-situ release of hydrazine in live cells and *in vitro* enzymatic assay

Firoj Ali,^a Anila H.A.,^a Nandaraj Taye,^b Devraj G. Mogare,^b Samit Chattopadhyay,^{*b} Amitava Das^{*a,c}

^aOrganic Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India.

^bChromatin and Disease Biology Lab; National Centre for Cell Science; Pune 411007, India, Email: samit@nccs.res.in.

^cPresent affiliation: CSIR-Central Salt & marine Chemicals Research Institute, Bhavnagar: 364002, Gujarat, India; E-Mail: <u>a.das@csmcri.org</u>, Fax: +91 278 2567562.

Contents	Page
Experimental details: Materials & Methods	3
General experimental procedure for UV-Vis and Fluorescence studies	3
Preparation of silica TLC test strips	3-4
General procedure for enzymatic study	4
General procedure for confocal imaging studies	4
General procedure for enzymatic study in Hct116 cells	4
Drug metabolism assay in live HepG2 liver cancer cells	4-5
Synthesis of L ₁	5
Synthesis of L ₂	5
Fig. S 1: ¹ H NMR spectrum of L ₁	6
Fig. S 2: ¹³ C NMR spectrum of L_1	6
Fig. S 3: ¹ H NMR spectrum of probe L_2	7
Fig. S 4: ¹³ C NMR spectrum of probe L ₂	7
Fig. S 5: HRMS spectrum of L_1	8
Fig. S 6: MALDI Ms spectrum of L ₂	8
Fig. S 7: IR spectrum of L ₂	9
Fig. S 8: IR spectrum of L ₁	9
Fig. S 9: UV-Vis spectra of L_2 in presence and absence of different amines	10
Fig. S 10: TLC plate images of L_2 in presence and absence of different analytes	10
Fig. S 11 & 12: Selectivity studies: Scanning with different amines	11
Fig. S 13: Intensity v/s Concentration plot	12
Fig. S 14: Change in emission intensity of probe L_2 with pH	12
Fig. S 15: Calculation of detection limit	13
Fig. S 16: Kinetic studies	13-14
Fig. S 17: Intensity v/s Concentration plot in Solid TLC plate	14
Fig. S 18: MTT assay	15
Fig. S 19: Confocal microscopic images of L_2 in presence & absence of N ₂ H ₄ in HepG2 cells	16
References	16

Experimental details:

Materials & Methods:

All commercial reagents were procured from suppliers, were used as received without further purification. Hydrazine hydrate (NH₂NH₂.H₂O) (99%) AR Grade was procured from S. D. fine chem. Limited, India. Solvents were dried as per required by using standard procedures. TLC plates, Silica Gel on Aluminum, with layer thickness 0.2 mm were used for solid state studies. ¹H and ¹³C NMR spectra were recorded on Bruker 400/500 MHz FT NMR (Model: Advance-DPX 400/500) using TMS as an internal standard. IR spectra were recorded on Bruker Alpha FT IR spectrometer. UV-Vis spectra were recorded using Shimadzu UV-1800 spectrometer. All the Fluorescence measurements were carried out on *PTI* Quanta MasterTM Steady State Spectrofluorometer. High-resolution mass spectra were recorded on JEOL JM AX 505 HA mass spectrometer. Confocal images were acquired in Olympus Fluoview microscope. Intermidate compound L was synthesised by following literature procedures.¹ Quantum yield was recorded using standard methods² and perylene ($\Phi_f = 0.94$) as reference compound in cyclohexane medium. The 3D intensity plots were obtained by using ImageJ software.

General experimental procedure for UV-Vis and Fluorescence studies:

Stock solution of probe L_2 (5 ×10⁻³ M) was prepared in DMSO and the same solution was used for all the studies after appropriate dilution to 3 ml of 0.4 mM TX100 in HEPES aqueous buffer medium having solution pH 7.2 to make the effective L_2 concentration of 7.8 μ M. Unless and otherwise mentioned, 10 mM and pH 7.2 solution of aq. HEPES buffer was used for all spectroscopic studies. All amines solutions of 1×10⁻³ M were prepared in aq-HEPES buffer (pH 7.2). All luminescence measurements were done using λ_{Ext} = 360 nm with an emission slit width of 1 nm. The fluorescence quantum yield was determined according to literature method using perylene (in cyclohexane) as reference.²

Preparation of TLC test strips and solid state fluorescence studies:

TLC test strips were prepared by drop-casting 1.5 mM of probe (L_2) solution in DMSO on silica TLC plates. Then it was dried properly and this silica coated plates were used for solid state experiments. These TLC plates were expose to the vapour as well as solution of

hydrazine and other amines for 20 minutes, dried and change of emission colour were recorded using lamp with excitation of 365 nm. Furthermore, silica coated TLC plates treated with different concentration of hydrazine were used for solid state fluorescence measurements using $\lambda_{Ext} = 360$ nm with an emission slit width of 1/1 nm.

General procedure for enzymatic study:

N-Acetyl-hydrazine was purchased from commercially available sources. 1×10^{-1} M Acetylhydrazine solution was prepared in 10 mM aq-HEPES buffer solution (pH 7.2). Enzyme solution was prepared according to the requirement by dissolving 1 mg/ml in 10 mM aq-HEPES buffer solution (pH 7.2). A fixed concentration of acetyl-hydrazine (200 equiv.) was added to the 7.8 μ M of L₂ in 0.4 mM Triton X 100 solution. Since 1 mg of solid enzyme contains 3301 units of protein and 1 unit can hydrolyse 1 μ M of substrate, accordingly enzyme concentration was varied with respect to the substrate concentration.

General procedure for confocal studies:

Hct116 cells were seeded on cover slips placed in 6 well plates. After 24 hours cells were treated with L_2 (7.8 μ M) for 40 minutes. Cells were then washed thrice with Phosphate Buffer Saline (1X PBS) and fixed with 4% PFA for 10 minutes and washed again with Phosphate Buffer Saline (1X PBS). Permeabilization of the cells was done using 0.2% Triton X 100 for 5 minutes. The L₂-stained colon cancer cells Hct116 incubated with hydrazine (20 μ M) for 40 min. Again three washes were given and then cover slips mounted using mounting medium. Nail paints was used to seal the coverslips mounted on the glass slides. Images were acquired in Olympus Fluoview Microscope.

General procedure for enzymatic study in Hct116 cells:

Hct116 cells were incubated with L_2 (7.8 μ M) for 40 minutes, then cells were washed thoroughly with buffer and acetyl hydrazine (1 mM) was incubated for 40 mins. After that different concentration of Aminoacylase-1 (0, 0.4, 0.7, 1.0 mU) were added to cellular medium for 1h and after the above mentioned treatment, CLMS images were captured.

Drug metabolism assay in live HepG2 liver cancer cells:

For drug metabolism studies, HepG2 cells (3×10^5) were seeded on cover slips placed in 6 well plates. After 24 hours, HepG2 cells were treated with 1 mM of Isoniazid (a well known

drug for Tuberculosis) for 3h at 37°C in a 5% CO₂ air environment. Cells were then washed thrice with Phosphate Buffer (1X PBS). Then L₂ (7.8 μ M) was incubated for 1h and fixed with 4% PFA for 20 minutes and washed again with 1X PBS. Nail paint was used to seal the cover slips mounted on the glass slides for each well plates. For control experiment HepG2 cells were treated L₂ (7.8 μ M) for 1h. Then cells were washed thrice with media and followed under same conditions. Confocal laser scanning microscopic (CLSM) images were acquired in Olympus Fluoview Microscope with $\lambda_{Ext}/\lambda_{Mon} = 352/455$ nm.

Synthesis of L₁:

Compound L (100 mg, 0.27 mmol) was dissolved in 5 ml of methanol. H₂O (3 ml) and Fe (200 mg, 3.58 mmol) were added and the reaction mixture was heated to reflux. Hydrochloric acid in a methanol solution (2 ml, 0.6 mol L⁻¹) was added drop wise. The solution was refluxed for 2 h until TLC monitoring indicated complete consumption of the starting material. After cooling to room temperature, it was filtered and concentrate at reduced pressure, the crude product was purified by silica-gel column chromatography. Yield: 68%, HRMS (ESI) (m/z) calculated for [C₂₁H₁₅N₃+H⁺]: 310.1266 , observed: 310.1333 [M + H⁺], ¹H NMR [500 MHz, DMSO-d6: δ (ppm)]: 8.82 (2H, s), 8.53 (2H, d, *J* = 7.8), 7.99 (2H, d, *J* = 8.5), 7.77 (2H, d, *J* = 14.8), 7.72 (2H, d, *J* = 14.9), 6.83 (2H, d, *J* = 8.5); ¹³C NMR (125 MHz, DMSO-d₆, δ (ppm)) : 152.89, 149.38, 129.76, 128.44, 128.22, 127.69, 127.18, 124.56, 122.73, 122.00, 114.15, 111.45.

Synthesis probe L₂:

A mixture of L₁ (280 mg, 0.96 mmol) and phthalic anhydride (331 mg, 2.24 mmol) in acetic acid (15 ml) then heated to reflex and stirred for 8 hours. It was filtered under hot condition and solid was collected washed with excess amount of acetic acid. Yield: 71%. MALDI-Ms (m/z) calculated for [C₂₉H₁₇N₃O₂+ H⁺] : 440.4642, observed: 440.0731 [M + H⁺], ¹H NMR [500 MHz, DMSO-d6: δ (ppm)]: 8.93 (2H, d, *J* = 7.8), 8.74 (2H, d, *J* = 7.3), 8.55 (2H, d, *J* = 7.7), 8.02 (2H, s), 7.95 (2H, s), 7.85 – 7.77 (4H, m), 7.75 (2H, d, *J* = 7.0). ¹³C NMR (125 MHz, DMSO-d6, δ (ppm)): 169.15, 167.31, 148.21, 135.35, 133.99, 133.27, 132.00, 131.25, 128.79, 128.49, 128.12, 127.99, 127.80, 126.66, 124.58, 124.02, 122.75.

¹H NMR spectrum of L₁:

Fig. S 1: ¹H NMR of L₁ in DMSO-d₆.

¹³C NMR spectrum of L₁:

Fig. S 2: 13 C NMR of L₁ in DMSO-d₆.

¹H NMR spectrum of probe L₂:

Fig. S 3: ¹H NMR of probe L_2 in DMSO-d₆.

¹³C NMR spectrum of probe L₂:

Fig. S 4: 13 C NMR of probe L₂ in DMSO-d₆.

HRMS spectrum of L₁:

Fig. S 5: HRMS spectrum of L₁ in Methanol.

MALDI Ms spectrum of L₂:

Fig. S 6: MALDI Ms spectrum of probe L_2 . Spectra were recorded using Dithranol (1,8-dihydroxy-9,10-dihydroanthracen-9-one) as the inert matrix using instrument AB SCIEX MALDI TOF/TOFTM 5800.

IR spectrum of L₂:

Fig. S 7: IR spectrum of probe L₂.

IR spectrum of L₁:

Fig. S 8: IR spectrum of probe L₁.

UV-Vis spectra of L₂ in presence and absence of different amines:

Fig. S 9: Absorbance spectra of L_2 (7.8 μ M) in presence and absence of different amines (2 mM) in 0.4 mM TX100 medium at pH 7.2.

TLC plate images of L₂ in presence and absence of different analytes:

Fig. S 10: Snap shot of the visually detectable changes in fluorescence of silica surface, modified with the probe L_2 in absence and presence of different analytes (Hydrazine, ethylenediamine, ammonia, butylamine, triethylamine, diisopropyl amine, Cl⁻, H₂O₂, urea, OCl⁻ and HCl) in solution and vapour phase. Fluorescence colour changes were observed using 365 nm UV lamp; [L₂] used for the study was 1.5 mM.

Selectivity studies: Scanning with different amines

Fig. S 11: Emission response of L₂ (7.8 μ M) in the absence and presence of various (A) amines and (B) anionic analytes (200 mole equiv. each) in 0.4 mM TX100 at pH 7.2, $\lambda_{Ext} = 360$ nm, $\lambda_{Mon} = 430$ nm.

Fig. S 12: Emission response of L_2 (7.8 μ M) in the absence and presence of various (A) cationic species and (B) changes in emission intensity of L₂ (7.8 μ M) induced by hydrazine (2 mM) in the presence of other (2 mM) amines. Red bar and black bar represent emission response in the presence and absence of hydrazine, respectively in 0.4 mM TX100 at pH 7.2, $\lambda_{Ext} = 360$ nm, $\lambda_{Mon} = 430$ nm.

Intensity v/s Concentration plot

Fig. S 13: Fluorescence intensity of L₂ at 430 nm upon addition of hydrazine (0-30 μ M) in 0.4 mM TX100 at pH 7.2, $\lambda_{Ext} = 360$ nm.

Change in emission intensity of probe L₂ with pH:

Fig. S 14: Emission spectrum of L₂ at different pH, $\lambda_{Ext} = 360$ nm, $\lambda_{Mon} = 430$ nm.

Calculation of detection limit³:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of L_2 without hydrazine was measured 6 times and the standard deviation of blank measurements was determined. The detection limit (DL) of L_2 for hydrazine was determined from the following equation:

DL = K * Sb1/S

Where K = 2 or 3 (we took 3 in this case);

Sb1 is the standard deviation of the blank solution;

S is the slope of the calibration curve.

From the graph we get slope = 1.1798×10^7 , and Sb1 value is 0.123

Thus using the formula we get the Detection Limit = 1.58 ppb.

Fig. S 15: Fluorescence intensity at 430 nm upon addition of hydrazine in 0.4 mM Triton X $100, \lambda_{Ext} = 360$ nm.

Kinetic studies⁴:

Time dependent studies of (7.8 μ M) L₂ with different concentration of (0.5, 1.5, 3.0, 6.0 mM) hydrazine were carried out by mixing the reactants and monitored by fluorescence measurements in 0.4 mM TX100 medium of pH 7.2 at 37^oC. $\lambda_{Ext} = 360$ nm. $\lambda_{Mon} = 430$ nm. Data were collected under pseudo-first-order conditions. The pseudo-first order rate constant for the reaction was determined by fitting the fluorescence intensity changes of the samples to the pseudo first-order equation:

$$\ln[(I_{max}-I)/I_{max}] = -k_{obs} t$$

Where, I and I_{max} represent the fluorescence intensities at times t and the maximum value obtained after the reaction was complete. k_{obs} is the observed rate constant of the reaction.

From the slope we get kobs value for each reaction.

Fig. S 16: Time dependent emission studies of L₂ (7.8 μ M) in absence and presence different concentration of hydrazine in 0.4 mM of TX100 medium of pH 7.2 at 37^oC. $\lambda_{Ext} = 360$ nm. $\lambda_{Mon} = 430$ nm.

Intensity v/s Concentration plot in Solid TLC plate:

Fig. S 17: Fluorescence intensity of L_2 at 404 nm upon addition of hydrazine (0-1 mM) in silica TLC plate coated with L_2 , $\lambda_{Ext} = 360$ nm.

MTT assay:

Fig. S 18: MTT assay to determine the cell viability percentage in presence of L_2 in Hct116 colon cancer cells.

The *in vitro* cytotoxicity of L_2 on Hct116 cells (Colon cancer cell) were determined by conventional MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Hct116 colon cancer cells (7×10^3) were seeded in each well of a 96 well plate and cultured in a 37°C incubator supplied with 5% CO₂. Cells were maintained in DMEM medium, supplemented with 10% Foetal Bovine Serum and 100 Units of Penicillin Streptomycin antibiotics. After 24 hours the cells were treated with different concentrations of the L_2 in triplicates for 12 hours. After the treatment, cells were added with 0.5 µg/ml of MTT reagent. The plate was then incubated for 4 hours at 37°C. 100 µl of Isopropyl Alcohol was added to each well. Optical density was measured at 570 nm using Multiskan Go (Thermo Scientific) to find the concentration of the cell inhibition. IC₅₀ value has been calculated to be 70 µM. The formula used for the calculation of the MTT assay for evaluation of the cell viability was as follows:

Cell viability (%) = (Means of absorbance value of treated group/ Means of absorbance value of untreated control) \times 100.

Confocal microscopic images of HepG2 cells in presence & absence of hydrazine using L₂ as the imaging reagent:

Fig. S 19: (i–iii) Confocal laser scanning microscopic (CLSM) images of HepG2 cells incubated with L_2 (7.8 μ M) as control: (i) bright field, (ii) dark field laser and (iii) overlay images of (i) and (ii); (iv–vi) CLSM images of HepG2 cells incubated with L_2 (7.8 μ M) for 1h and then further exposed to N₂H₄ (20 μ M) for 1h at 37 °C: (iv) bright field, (v) dark field laser and (iv) overlay images of (iv) and (v).

References:

- 1. Y. Sun, W. Huang, C.-G. Lu and Y.-P. Cui, Dyes Pigm., 2009, 81, 10.
- F. Ali, S. Saha, A. Maity, N. Taye, M. K. Si, M. Suresh, B. Ganguly, S. Chattopadhyay and A. Das, J. Phys. Chem. B, 2015, 119, 13018.
- 3. S. Goswami, K. Aich, S. Das, S. B. Roy, B. Pakhira and S. Sarkar, RSC Adv., 2014, 4, 14210.
- 4. F. Ali, A. H.A., N. Taye, R. G. Gonnade, S. Chattopadhyay and A. Das, *Chem. Commun.*, 2015, **51**, 16932.