Electronic Supplementary Information

Silica materials with wall-embedded nitroxides provide efficient

polarisation matrices for dynamic nuclear polarization NMR

Eric Besson,*a Fabio Ziarelli,^b Emily Bloch,^c Guillaume Gerbaud,^d Séverine Queyroy,^a

Stéphane Viel*a,e and Stéphane Gastaldi*a

^aAix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, ^bAix-Marseille Université, Centrale Marseille, CNRS, Fédération des Sciences Chimiques FR 1739, 13397 Marseille, France. ^cAix-Marseille Université, CNRS, MADIREL UMR 7246, 13397 Marseille, France. ^dAix-Marseille Université, CNRS, BIP UMR 7281, 13402 Marseille, France ^eInstitut Universitaire de France, 75005 Paris, France.

TABLE OF CONTENTS:

1. Experimental procedures for organic precursors	3
1.1. General procedures	3
1.2. Chemicals	3
1.3. Synthesis of precursor 1	3
2. Experimental procedures for materials	5
2.1. Thermogravimetric analysis (TGA), X-rays and Nitrogen adsorption/desorption	5
2.2. Solid-state NMR	5
2.3. Chemicals	6
2.4. Synthesis of SBAn-1 silicas	6
2.5. Synthesis of silica of reference with TEMPO moieties in the pores	7
2.6. Synthesis of SBA _m -2 silicas	8
3. Experimental Procedures for EPR Analysis	10
3.1. EPR Spectroscopy	10
3.2. Pulsed EPR spectroscopy	10
3.3. Main EPR results for TCE-impregnated SBA _m -2 samples	11
4. MD simulations	11
5. Experimental Procedures for DNP NMR Analysis	12
5.1. Experimental parameters	12
5.2. Main experimental results for DNP SSNMR experiments	13
6. ¹ H and ¹³ C liquid-state NMR spectra	13
6.1. 1-[(4-{[(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}phenyl)methoxy]-2	,2,6,6-
tetramethylpiperidin-4-ol (3): ⁺ H NMR	14
6.2. 1-[(4-{[(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}phenyl)methoxy]-2	,2,6,6-
tetramethylpiperidin-4-ol (3): ¹² C NMR	15
6.3. 2,2,6,6-tetramethyl-4-(prop-2-en-1-yloxy)-1-{[4-({[2,2,6,6-tetramethyl-4-(prop-2-en	-1-
yloxy)piperidin-1-yl]oxy}methyl)phenyl]methoxy}piperidine (2): "H NMR	16
6.4. 2,2,6,6-tetramethyl-4-(prop-2-en-1-yloxy)-1-{[4-({[2,2,6,6-tetramethyl-4-(prop-2-en	-1-
yloxy)piperidin-1-yl]oxy}methyl)phenyl]methoxy}piperidine (2): ¹³ C NMR	. 17
6.5. 2,2,6,6-tetramethyl-1-({4-[({2,2,6,6-tetramethyl-4-[3-(triethoxysilyl)propoxy]piperia	lin-1-
yl}oxy)methyl]phenyl}methoxy)-4-[3-(triethoxysilyl)propoxy]piperidine (1): ⁺ H NMR	
6.6. $2,2,6,6$ -tetramethyl-1-($\{4-[(\{2,2,6,6-tetramethy -4-[3-(triethoxysilyl)propoxy]piperio$	lin-1-
yl}oxy)methyl]phenyl}methoxy)-4-[3-(triethoxysilyl)propoxy]piperidine (1): ²² C NMR (APT)	19
7. Small Angle X-Ray Scattering (SAXS) of SBA _n -1 silicas and SBA ₃₀ -3	20
7.1. $SBA_n - 1$	20
7.2. SBA ₃₀ -3	20
8. Nitrogen adsorption/desorption analysis	21
8.1. SBA ₃₉ -1	21
8.2. SBA ₅₆ -1	21
8.3. SBA ₆₃ -1	22
8.4. SBA_{30} -3	22
9. ¹³ C and ¹³ Si CPMAS solid-state NMR of SBA _n -1 silicas	23
9.1. C CPMAS of SBA ₃₉ -1	23
9.2. SI CPMAS OF SBA ₃₀ -1	23
9.3. C CPMAS OF SBA ₅₆ -1	24
9.4. SI CPMAS OF SBA ₅₆ -1 $a = \frac{13}{2}$ CDMAC of CDA 1	24
$9.5. \qquad \cup \cup PNIAS OJ SBA_{63}-1$	25
9.0. SI CPIVIAS OF SBA ₆₃ -1 $0.7 = \frac{13}{13}$ C CDMAS of SBA 2	25
$9.7. \qquad C CP (MAS OJ SBA_{43}-2)$	26
10. I GA I OF SBAn-1 SIIICaS	26
$11. I \cup A = 10 F S \cup BA_{30} - 5$	27
12. IGA IOF 58A22-2 and 58A34-2	27

1. Experimental procedures for organic precursors

1.1. General procedures

All reactions were carried out in dry glassware using magnetic stirring and a positive pressure of argon. Commercially available solvents were used as purchased, without further purification. CH_2Cl_2 was distilled over CaH_2 and stored under dry conditions. THF was distilled over sodium benzophenone ketyl prior to use. Dry state adsorption conditions and purification were performed on Macherey Nagel silica gel 60 Å (70-230 mesh). Analytical thin layer chromatography was performed on pre-coated silica gel plates. Visualization was accomplished by UV (254 nm) and with phosphomolybdic acid in ethanol. ¹H and ¹³C NMR spectra were recorded on 300 or 400 MHz Bruker NMR Avance III (Nanobay) spectrometers. Chemical shifts (δ) are reported in ppm downfield of TMS. Signals due to residual protonated solvent (¹H NMR) or to the solvent (¹³C NMR) served as the internal standard: CDCl₃ (7.27 ppm and 77.0 ppm). Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), br (broad). The lists of coupling constants (*J*) correspond to the order of multiplicity assignment and are reported in Hertz (Hz). The APT pulse sequence was used for assigning ¹³C NMR spectra. All melting points were uncorrected and were recorded in open capillary tubes using a melting point apparatus.

1.2. Chemicals

1,4-Bis(bromomethyl)benzene and 4-Hydroxy-TEMPO (4-Hydroxy-2,2,6,6tetramethylpiperidine) are commercially available and were used as purchased without purification.

1.3. Synthesis of precursor 1

1-[(4-{[(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}phenyl)methoxy]-

2,2,6,6-tetramethylpiperidin-4-ol (3).¹ A solution of 1,4-bis(bromomethyl)benzene (1.32 g, 5.0 mmol, 1 equiv), 4-hydroxy-TEMPO (1.72 g, 10.0 mmol, 2 equiv), 2,2'-bipyridine (3.12 g, 20.0 mmol, 4 equiv) in acetonitrile (25 mL) under argon was degassed 5 min by bubbling with argon. Then copper (630 mg, 10.0 mmol, 2 equiv) was added and the mixture stirred overnight at room temperature. After addition of AcOEt (50 mL), the mixture was filtrated and the organic phase washed with a solution of CuSO₄ (5%), water (3 times) and brine. After drying over MgSO₄, the solution was evaporated to give **3** (1.57 g, 3.5 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (s, 4 H, Ar*H*), 4.81 (s, 4 H, C*H*₂O), 3.98 (m, 2 H, C*H*OH), 1.84 (dd, *J* = 12.5 and 4.2 Hz, 4 H, C*H*_{eq}H), 1.51 (t, *J* = 11.9 Hz, 4 H, C*H*_{ax}H), 1.30 (s, 12 H, C*H*₃), 1.20 (s, 12 H, C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ : 137.2 (*C*A_r), 127.5 (CHA_r), 78.7 (*C*), 63.3 (HOCH), 60.3 (OCH₂Ph), 48.3 (CH₂), 33.2 (CH₃), 21.2 (CH₃). (ESI): *m/z*: calculated for [M+H]⁺ C₂₆H₄₅N₂O₄: 449.3374, found: 449.3369.

2,2,6,6-tetramethyl-4-(prop-2-en-1-yloxy)-1-{[4-({[2,2,6,6-tetramethyl-4-(prop-2-en-1-

yloxy)piperidin-1-ylloxy}methyl)phenyl|methoxy}piperidine (2). To a 0°C solution of 3 (0.93 g, 2.0 mmol, 1 equiv) in dry DMF (12 mL) was added NaH (192 mg, 8 mmol, 4 equiv). The suspension was stirred 30 min then allylbromide (968 mg, 8 mmol, 4 equiv) was added. The resulting mixture was stirred one night. The reaction was monitored by TLC. After completion, the mixture was diluted with water, and extracted three times with AcOEt. Organic extracts were washed with water and brine, dried over MgSO₄ and concentrated. The residue was purified using silica gel column (5/95 EtOAc /pentane) to give 2 (0.7 g, 1.3 mmol, 66%). ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (s, 4 H, Ar*H*), 5.93 (ddt, *J* = 17.2, 10.4, 5.6 Hz, 2H, CH=CH₂), 5.40 (dt, *J* = 17.2, 1.5 Hz, 2H, CH=CH₂), 5.16 (dd, *J* = 10.4, 1.5 Hz, 2H, CH=CH₂), 4.81 (s, 4 H, CH₂O), 4.00 (br d, *J* = 5.6 Hz, 4H, OCH₂), 3.62 (m, 2 H, CHOCH₂), 1.87 (dd, *J* = 12.5, 3.9 Hz, 4 H, CH_{eq}H), 1.50 (t, *J* = 11.8 Hz, 4 H, CH_{ax}H), 1.29 (s, 12 H, CH₃), 1.18 (s, 12 H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ : 137.2 (*C*_{Ar}), 135.3 (CH=CH₂), 45.1(CH₂), 33.3 (CH₃), 21.3 (CH₃). HRMS (ESI): *m/z*: calculated for [M+H]⁺ C₃₂H₅₃N₂O₄: 529.4000, found: 529.4001.

¹S. Harrisson, P. Couvreur and J. Nicolas *Polym. Chem.*, 2011, **2**, 1859-1865.

2,2,6,6-tetramethyl-1-({4-[({2,2,6,6-tetramethyl-4-[3-(triethoxysilyl)propoxy]piperidin-1yl{oxy)methyl|phenyl{methoxy)-4-[3-(triethoxysilyl)propoxy]piperidine (1). То compound 2 (0.7 g, 1.3 mmol, 1 equiv) under argon was added triethoxysilane (0.9 g, 5.5 mmol, 4 equiv) and Karstedt catalyst. The medium was stirred at room temperature for one night (¹H NMR monitoring). Then, the mixture was concentrated, pentane was added and the resulting solution filtrated under argon and concentrated. The product was used without further purification (1.05 g, 1.2 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ: 7.33 (s, 4 H, ArH), 4.80 (s, 4 H, CH₂O), 3.81 (q, J = 7.0 Hz, 12H, SiOCH₂), 3.54 (m, 2 H, CHOCH₂), 3.40 (t. J = 6.9 Hz, 4H, OCH₂), 1.84 (m, 4 H, CH₂), 1.69 (m, 4H, OCH₂CH₂), 1.46 (t, J = 11.8 Hz, 4 H, CH_{ax} H), 1.28 (s, 12 H, CH_3), 1.23 (t, J = 7.0 Hz, 18H, 6 x CH_3), 1.18 (s, 12 H, CH_3), 0.64 (m, 2H, SiCH₂). ¹³C NMR (100 MHz, CDCl₃) δ: 137.2 (C_{Ar}), 127.5 (CH_{Ar}), 78.7 (C), 70.4 (OCH₂), 70.2 (OCH), 60.3 (OCH₂Ph), 58.4 (OCH₂), 45.2(CH₂), 33.3 (CH₃), 23.5 (CH₂), 21.2 (CH₃), 18.3 (CH₃), 6.5 (SiCH₂). HRMS (ESI): m/z: calculated for $[M+H]^+$ C₄₄H₈₅N₂O₁₀Si₂: 857.5737, found: 857.5739.

2. Experimental procedures for materials

2.1. Thermogravimetric analysis (TGA), X-rays and Nitrogen adsorption/desorption

TGA measurements were carried out with a TGA Q500 apparatus (TA Instruments) under dynamic air atmosphere (sample flow rate 40 mL min⁻¹). SAXS experiments were performed on SAXSess-MC2 (Anton-Paar, GmbH, Austria) with a sealed copper tube as a X-ray source (wavelength is 0.15417 nm (Cu K- α)) and CCD camera as a detection system. The N₂ adsorption/desorption isotherms were obtained at 77 K on a Micrometrics ASAP2010. The specific surface area was determined with the Brunauer, Emmett, and Teller (BET) method and the pore size distribution was calculated from the desorption isotherms using the Barrett Joyner Halenda (BJH) method.² Prior to adsorption, the samples were outgassed at 373 K overnight under a vacuum pressure of 2 10⁻³ mbar.

2.2. Solid-state NMR

All solid-state cross polarization magic angle spinning (CPMAS) NMR spectra were obtained on a Bruker Avance III 400 MHz NMR spectrometer operating at a ¹³C and ²⁹Si Larmor resonance frequency of 101.6 MHz and 79.5 MHz, respectively. ¹³C and ²⁹Si CPMAS experiments were performed with a commercial Bruker double-bearing probehead. About 100

² Rouquerol, F., Rouquerol, J., Llewellyn, P., Maurin, G. & Sing, K. S. W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications 2nd edition (Academic Press: London, 2013).

mg of samples were placed in zirconium dioxide rotors of 4-mm outer diameter and spun at a magic-angle spinning rate of 10 kHz. The CP technique³ was applied with a ramped ¹H-pulse starting at 100% power and decreasing until 50% during the contact time in order to circumvent Hartmann-Hahn mismatches.^{4,5} The contact times were 2 ms for ¹³C CPMAS and 5 ms for ²⁹Si CPMAS. To improve the resolution, a dipolar decoupling GT8 pulse sequence⁶ was applied during the acquisition time. To obtain a good signal-to-noise ratio, 6144 scans were accumulated using a delay of 2 s in ¹³C CPMAS experiment, and 4096 scans with a delay of 5 s in ²⁹Si CPMAS experiment. The ¹³C and ²⁹Si chemical shifts were externally referenced to tetramethylsilane.

2.3. Chemicals

Tetraethylorthosilicate is commercially available and was distilled before used.

2.4. Synthesis of SBA_n-1 silicas

SBA₃₉-1. In a typical procedure, 2 g of pluronic P-123 ($EO_{20}PO_{70}EO_{20}$) were dissolved in deionized water (14 mL) and 2 M hydrochloric acid solution (60 mL) by stirring for 3 h at 40 °C. Tetraethoxysilane (4.14 g, 20 mmol, 40 equiv) and precursor 1 (436 mg, 0.5 mmol, 1 equiv), previously dissolved in a few milliliters of ethanol, were then added. The mixture was stirred 24 h at 40 °C, then warmed without stirring at 100 °C for 2 days, filtrated, washed twice with water, once with ethanol and finally extracted with a Soxlhet apparatus (ethanol) for one day. The wet powder was filtrated, washed twice with ethanol, acetone and diethylether. After one night at 80 °C under vacuum, a white powder was recovered. The molar composition of the synthesis mixture was as follows: (1-x) M TEOS : x M 1 :0.017 M P123 Polymer : 188 M H₂O : 5.8 M HCl, where x denotes the number of moles of precursor

³ J. Schaefer and E. O. R. Stejskal, J. Am. Chem. Soc. 1976, **98**, 1031–1032.

⁴ O. B. Peersen, X. Wu, I. Kustanovich and S. O. Smith, *J. Magn. Reson.* 1993, **104**, 334–339.

⁵ R. L. Cook, C. H. Langford, R. Yamdagni and C. M. Preston, Anal. Chem. 1996, 68, 3979–3986.

⁶ G. Gerbaud, F. Ziarelli and S. Caldarelli, Chem. Phys. Lett. 2003, 377, 1-5.

1. ¹³C CPMAS NMR (101.6 MHz) δ : 136.1, 127.3, 77.6, 69.4, 59.9, 43.7, 30.8, 20.0, 16.2, 7.2. ²⁹Si CPMAS NMR (79.5 MHz) δ : -59.0 (T²), -67.2 (T³), -93.6 (Q²), -103.0 (Q³), -111.9 (Q⁴). BET Surface Area: 679 m²/g. BJH Desorption Average Pore Diameter: 6.4 nm. Vp : 0.973 cm³/g. SAXS: d = 11.4 nm; a = 9.8 nm.

SBA₅₆-1. The material was prepared by following the previous procedure from tetraethoxysilane (4.19 g, 20.1 mmol, 80 equiv) and precursor 1 (219 mg, 0.25 mmol, 1 equiv). ¹³C CPMAS NMR (101.6 MHz) δ : 136.0, 127.1, 77.6, 69.2, 60.2, 43.6, 30.8, 20.1, 15.0, 7.4. ²⁹Si CPMAS NMR (79.5 MHz) δ : -67.7 (T³), -94.5 (Q²), -103.7 (Q³), -112.7 (Q⁴). BET Surface Area: 661 m²/g. BJH Desorption Average Pore Diameter: 7.2 nm. Vp : 0.976 cm³/g. SAXS: d = 11.2 nm; a = 9.7 nm.

SBA₆₃-1. The material was prepared by following the previous procedure from tetraethoxysilane (4.21 g, 20 mmol, 39 equiv) and precursor 1 (145 mg, 0.17 mmol, 1 equiv). ¹³C CPMAS NMR (101.6 MHz) δ: 135.5, 127.6, 77.6, 69.1, 60.0, 43.2, 30.7, 20.1, 14.7, 7.1. ²⁹Si CPMAS NMR (79.5 MHz) δ: -67.6 (T³), -94.6 (Q²), -103.8 (Q³), -113.1 (Q⁴). BET Surface Area: 651 m²/g. BJH Desorption Average Pore Diameter: 7.2 nm. Vp : 1.011 cm³/g. SAXS: d = 11.5 nm; a = 9.9 nm.

2.5. Synthesis of silica of reference with TEMPO moieties in the pores

In order to determine the concentration of radicals after thermolysis, a silica SBA material functionalized with TEMPO moieties was synthesized (SBA₃₀-3). Precisely, the double integral of the EPR spectrum of SBA₃₀-3 was used as a calibrating reference to estimate the radical concentrations of SBA_m-2 materials from their respective EPR double integrals.

SBA₃₀-3. The material was prepared by following the previous procedure from tetraethoxysilane (4.14 g, 19.9 mmol, 39 equiv) and precursor 3^7 (192 mg, 0.51 mmol, 1 equiv).

⁷ F. Behrends, H. Wagner, A. Studer, O. Niehaus, R. Pöttgen and H. Eckert, *Macromolecules* 2013, **46**, 2553–2561.

BET Surface Area: 721 m²/g. BJH Desorption Average Pore Diameter: 7.3 nm. Vp : 1.149 cm³/g. SAXS: d = 10.6 nm; a = 9.1 nm.

2.6. Synthesis of SBA_m-2 silicas

The homolysis of C-O bonds was triggered by warming a suspension of SBA_n-1 silicas in *tert*-butylbenzene at 130°C. Specifically, in order to obtain SBA_m-2 materials displaying different concentrations in nitroxide, the thermolysis reaction time was adjusted by considering the fragmentation kinetics of SBA₆₃-1 and SBA₃₉-1 silicas as obtained by EPR studies (Figure S1 and Figure S2, respectively). After filtration, SBA_m-2 silicas were washed with ethanol and acetone. The concentration in nitroxides in SBA_m-2 materials (Table S1) was estimated by comparing their EPR signal integral with that of a SBA silica material functionalized in the pores with TEMPO radicals (for which the loading was determined by TGA).

Starting silica (SBA _n -1)	SBA ₆₃ -1	SBA ₆₃ -1	SBA ₆₃ -1	SBA ₆₃ -1	SBA ₆₃ -1	SBA ₆₃ -1	SBA ₅₆ -1	SBA39-1
Concentration in radical precursors (µmol g ⁻¹)	229	229	229	229	229	229	252	331
Theoretical maximum concentration in TEMPO (µmol g ⁻¹)	458	458	458	458	458	458	504	662
Nitroxide functionalized silica (SBA _m -2)	SBA ₄₈₅ -2	SBA ₃₅₀ -2	SBA ₂₈₂ -2	SBA ₁₆₅ -2	SBA ₈₉ -2	SBA ₄₃ -2	SBA ₃₄ -2	SBA ₂₂ -2
Concentration in nitroxide (µmol g ⁻¹)	34	47	58	98	127	350	434	640

Table S1. References and concentrations in nitroxide of the different materials.

Figure S1. Fragmentation kinetics of SBA_{63} -1 in *tert*-butylbenzene at 130°C

Figure S2. Fragmentation kinetics of SBA₃₉-1 in *tert*-butylbenzene at 130°C

3. Experimental Procedures for EPR Analysis

3.1. EPR Spectroscopy

EPR experiments were performed in the CW mode with commercially available HPLC grade solvents and reactants, which were used as received. EPR experiments were performed on an ELEXSYS Bruker instrument and the Bruker BVT 3000 set-up was utilized to control the temperature. In a 4 mm quartz-glass tube, 10 mg of functionalized silica were degassed with three freeze-pump-thaw cycles with a 10^{-5} mbar vacuum pump. EPR spectra for direct observation of sulfur centered radicals experiments were recorded with the parameters: modulation amplitude = 1 G, receiver gain = 51 dB, modulation frequency = 100 kHz, power = 0.63 mW, sweep width = 500 G, conversion time = 87.9 ms, sweep time = 90 s, number of scans = 1.

3.2. Pulsed EPR spectroscopy

X band pulsed EPR experiments were carried out on a Bruker Elexsys E580 spectrometer equipped with a dielectric ring resonator (ER4118X-MD5) and a helium flow cryostat (Oxford CF935). All measurements were performed at a temperature of 110 K. The microwave pulses were amplified with a 1 kW TWT. Field sweep ESE two-pulse experiments $(\pi/2-\tau-\pi-\tau-echo)$ were measured as a function of the magnetic field at fixed time interval of 200ns between the two microwave pulses. The phase memory times (τ_m) were measured using the same two-pulse sequence. The integrated echo intensity was measured as a function of τ , incremented in steps of 4 ns from an initial value of 200 ns. Experiments were recorded at magnetic field corresponding to the maximum intensity in the field sweep spectra. A conventional inversion-recovery sequence $(\pi - t - \pi/2 - \tau - \pi - \tau - echo)$ was applied to determine the longitudinal relaxation time, T_{1e} , with a τ delay of 250 ns and a 32 ns detector gate, centered at the maximum of the echo signal. The inversion pulse length was 32 ns and the $\pi/2$ and the refocusing π pulses were 52 ns and 104 ns, respectively. Initial delay t was 2000 ns. Experiments were recorded at magnetic field corresponding to the maximum intensity in the field sweep spectra. The resulting inversion recovery curves were fitted⁸ with a stretched exponential function such as:

$$I(t) = I_0 + I_1 \exp\left[-\left(\frac{t}{T_{1e}}\right)^{\beta}\right]$$

⁸ D. Gajan, M. Schwarzwalder, M. P. Conley, W. R. Gruning, A. J. Rossini, A. Zagdoun, M. Lelli, M. Yulikov, G. Jeschke, C. Sauvée, O. Ouari, P. Tordo, L. Veyre, A. Lesage, C. Thieuleux, L. Emsley and C. Copéret, *J. Am. Chem. Soc.*, 2013, **135**, 15459-15466.

Accordingly, the electron mean relaxation time $\langle T_{1e} \rangle$ was obtained using:

$$\langle T_{1e} \rangle = \frac{T_{1e}}{\beta} \Gamma\left(\frac{1}{\beta}\right)$$

where Γ is the Euler Gamma function.

Samples	Radical (µmol g ⁻¹)	$\Delta v_{\frac{1}{2}}(G)$	T_{1e}	β	< <i>T</i> _{1e} >
SBA485-2	34	11.9	105.9	0.73(5)	128.5
SBA350-2	47	12.2	-	-	-
SBA ₂₈₂ -2	58	12.3	-	-	-
SBA ₁₆₅ -2	98	12.3	76.2	0.69(9)	96.6
SBA89-2	127	11.9	-	-	-
SBA ₄₃ -2	350	12.8	46.6	0.65(2)	63.4
SBA₃₄-2	434	13.3	-	-	-
SBA22-2	640	14.5	29.4	0.53(1)	53.0

3.3. Main EPR results for TCE-impregnated SBA_m-2 samples

4. MD simulations

In order to study the distance between the two oxygen atoms in precursor (1) in all possible conformations, molecular dynamics simulations were performed with the DLPOLY 4 software.⁹ Precursor (1), where Si(OEt)₃ end-groups were replaced by SiH₃ end-groups, was immersed in a box of 2744 water molecules. This system was first submitted to a NPT equilibration run (at 300 K and 1 atm) using the Melchionna modification of the Nosé-Hoover algorithm¹⁰ (thermostat relaxation time: 0.5 ps, barostat relaxation time: 5 ps). Then the NVT production runs were performed at 300 K during 5 ns, using a Nosé-Hoover type thermostat with a relaxation time of 0.5 ps. The time step was 1 fs. Long-range interactions were cut-off after 14 Å. Electrostatics interactions were handled with Ewald summations (precision 10⁻⁶). Trajectory snapshots and system properties were recorded every ps for future analysis. The simulation box was cubic and its size settled to 44 Å side after relaxation. These classical simulations used DREIDING¹¹ force field for the precursor and SPCE¹² for the water. The charges for the precursor were obtained following the RESP procedure¹³ using Gaussian 09 software.

⁹W. G. Hoover, *Phys. Rev. A* 1985, **31**, 1695–1697.

 ¹⁰ S. Melchionna, G. Ciccotti and B. L. Holian, *Mol. Phys.*, 1993, **78**, 533–544.
 ¹¹ S. Mayo, B. Olafson and W. A. Goddard III, *J. Phys. Chem.*, 1990, **94**, 8897–8909.
 ¹² H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, *J. Phys. Chem.*, 1987, **91**, 6269–6271.

¹³ J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, J. Comput. Chem. 2004, 25, 1157–1174; Erratum in J. Comput. Chem. 2005, 26, 114.

5. Experimental Procedures for DNP NMR Analysis

5.1. Experimental parameters

All DNP SSNMR experiments described in this work were recorded on a commercially available Bruker AVANCE-III spectrometer operating at 9.4 T (400 MHz for the ¹H Larmor frequency), which was located at Bruker Biospin (Wissembourg, France). This spectrometer was equipped with a 3.2 mm low-temperature DNP ¹H/X double-resonance MAS probe manufactured by Bruker. The sample temperature was roughly 110 K. The DNP SSNMR spectrometer was equipped with a gyrotron that provided microwave (MW) irradiation of the sample. Specifically, the field sweep coil of the NMR magnet was set so that MW irradiation occurred at the maximum DNP enhancement of TOTAPOL (263.334 GHz).¹⁴ The estimated power of the MW beam at the output of the probe waveguide was ~6 W. The pulse sequence used for CPMAS experiment was as described in the work by Lesage et al.¹⁵ with the MW irradiation field that was either turned off or continuously on. During Cross Polarization (CP), the amplitude of the ¹H contact pulse was linearly ramped in order to improve CP efficiency.16 Hartmann-Hahn matching conditions and CP contact times were optimized directly on the samples under study. Detailed experimental parameters are reported Table S2. Sapphire rotors were used for all DNP experiments. They were sealed with a Teflon insert and capped with zirconia caps. Typically, 20 mg of SBA_m-2 silicas were impregnated with 40 µL of solution according to the protocol described by Lesage et al.¹⁵

 ¹⁴ C. S. Song, K. N. Hu, C. G. Joo, T. M. Swager and R. G. Griffin, *J. Am. Chem. Soc.*, 2006, **128**, 11385-11390.
 ¹⁵ A. Lesage, M. Lelli, D. Gajan, M. A. Caporini, V. Vitzthum, P. Mieville, J. Alauzun, A. Roussey, C.

Thieuleux, A. Mehdi, G. Bodenhausen, C. Copéret and L. Emsley, *J. Am. Chem. Soc.*, 2010, **132**, 15459-15461. ¹⁶ G. Metz, X. Wu and S. O. Smith, *J. Magn. Reson. Ser. A*, 1994, **110**, 219-227.

Parameters				
Number of scans	8			
Recycle delay (s)	15 (*)			
Sample spinning rate (Hz)	10000			
Sweep width (ppm)	295.8			
Acquisition length (ms)	34.4			
¹ H 90° pulse (μs)	2.8			
¹ H SPINAL-64 decoupling pulse length (μs)	5.8			
Cross-polarization: ${}^{1}H \rightarrow {}^{13}C$				
CP contact time (ms)	1.0			
¹ H RF field (kHz)	50			
	(Ramp: 50%->100%)			
¹³ C RF field (kHz)	50			

Table S2. Parameters used to record the ¹³C DNP CPMAS experiments (with the microwave field *on* or *off*).

5.2. Main experimental results for DNP SSNMR experiments

Sample	Radical $(\mu mol g^{-1})$	${m {\cal E}}_{ m H}$	E C,CP
SBA485-2	34	5	5
SBA ₃₅₀ -2	47	8	8
SBA ₂₈₂ -2	58	8	8
SBA ₁₆₅ -2	98	11	11
SBA ₈₉ -2	127	18	18
SBA ₄₃ -2	350	34	34
SBA₃₄-2	434	24	24
SBA ₂₂ -2	640	16	16

6. ¹H and ¹³C liquid-state NMR spectra

•

• 1• 4

ΗQ

T/A (T/A 1

6.3. 2,2,6,6-tetramethyl-4-(prop-2-en-1-yloxy)-1-{[4-({[2,2,6,6tetramethyl-4-(prop-2-en-1-yloxy)piperidin-1yl]oxy}methyl)phenyl]methoxy}piperidine (2): ¹H NMR

6.4. 2,2,6,6-tetramethyl-4-(prop-2-en-1-yloxy)-1-{[4-({[2,2,6,6tetramethyl-4-(prop-2-en-1-yloxy)piperidin-1yl]oxy}methyl)phenyl]methoxy}piperidine (2): ¹³C NMR

7. <u>Small Angle X-Ray Scattering (SAXS) of SBA_n-1 silicas and SBA₃₀-3</u>

7.1. SBA_n-1

7.2. SBA₃₀-3

8. Nitrogen adsorption/desorption analysis

8.1. SBA₃₉-1

8.2. SBA₅₆-1

9. ¹³C and ²⁹Si CPMAS solid-state NMR of SBA_n-1 silicas

9.1. ¹³C CPMAS of SBA₃₉-1

9.2. ²⁹Si CPMAS of SBA₃₉-1

59.0257 67.2459	93 505	109763	111.8541
		i	ì

9.3. ¹³C CPMAS of SBA₅₆-1

9.4. ²⁹Si CPMAS of SBA₅₆-1

9.5. ¹³C CPMAS of SBA₆₃-1

9.6. ²⁹Si CPMAS of SBA₆₃-1

9.7. ¹³C CPMAS of SBA₄₃-2

10.<u>TGA for SBA_n-1 silicas</u>

11.TGA for SBA₃₀-3

12.TGA for SBA₂₂-2 and SBA₃₄-2

