Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Formation of a Unique 'Unsupported' Hydridic Sn(II) Stannate

María Fernández-Millan, Lucy K. Allen, Raúl García-Rodríguez, Andrew D. Bond, Marta E. G. Mosquera,

and Dominic S. Wright

Figure S1. ¹H NMR (298K, *d*₈-toluene, 500 MHz) spectrum for crystals of 1. Asterisk (*)is [^tBu₂PH·BH₃].

Figure S2. ³¹P{¹H} NMR (298K, d_8 -toluene, 202.47 MHz) in situ NMR spectrum a 1 : 1 reaction of the original Sn(NMe₂)₂ used with ^tBu₂PHBH₃, after storage at room temperature in a J. Young NMR tube under N₂.

Figure S3. ¹H NMR (298K, *d*₈-toluene, 500 MHz) spectrum for crystals of **1** showing the hydride resonance and the satellites due to ¹¹⁹Sn and ¹¹⁷Sn coupling, $J_{117Sn} / J_{119Sn} = 0.959$. The signal appears as a triplet due to ²J_{P-H} as confirmed by ³¹P-¹H HMBC (see Fig S6) and ¹H{³¹P} experiments (Figure S4a).

Figure S4a. From bottom to top: ¹H NMR, ¹H{³¹P} NMR and ¹H{¹¹B}{³¹P} (298K, d_8 -toluene, 500 MHz) spectra for crystals of **1**, showing that the hydride signal is coupling with two phosphorus atoms (see also ¹H-³¹P HMBC experiment, Figure S5).

Figure S4b. From bottom to top: ¹H NMR, ¹H{³¹P} NMR and ¹H{¹¹B}{³¹P} (298K, d_8 -toluene, 500 MHz) spectra showing the ^tBu resonance for crystals of **1**, showing the complex coupling pattern due to phosphorus coupling. The two singlets in the ¹H{³¹P} NMR spectrum show two different environments for the ^tBu protons.

Figure S4c. From bottom to top: ¹H NMR, ¹H{¹¹B} NMR and ¹H{¹¹B}{³¹P} (298K, d_8 -toluene, 500 MHz) spectra showing the P-BH₃ resonance for crystals of **1**, confirming the P-BH₃ linkage. Signals at around 0.85-0.90 ppm are due to decomposition and residual hexane.

Figure S5. ¹H ³¹P HMBC NMR (298K, d_8 -toluene, 500 MHz) spectrum for crystals of **1** showing the coupling of the hydride signal to phosphorus.

Figure S6. ¹³C NMR (298K, d_8 -toluene, 125.65 MHz) spectrum for crystals of **1**. Toluene solvent signals at 140-120 ppm.

Figure S7. ¹H ¹³C HSQC NMR (298K, *d₈*-toluene, 500 MHz) spectrum for crystals of **1**. Asterisk (*) is [^tBu₂PH·BH₃].

Figure S8. ¹H ¹H COSY NMR (298K, d_{δ} -toluene, 500 MHz) spectrum for crystals of **1**. Showing that the hydride is only weakly coupled to the ^tBu groups and appear as a triplet due to coupling to two phosphorus atoms (see Fig S4a and S5).

Figure S9. ¹H ¹H NOESY NMR (298K, d_{δ} -toluene, 500 MHz) spectrum for crystals of **1**, showing that hydride is in near proximity to the ^tBu groups.

Figure S10. ¹¹B NMR (298K, *d*₈-toluene, 160.35 MHz) spectrum for crystals of 1. Asterisk (*) is [^tBu₂PH·BH₃].

Figure S11. ³¹P {¹H} NMR (298K, *d*₈-toluene, 202.47 MHz) spectrum for crystals of 1. Asterisk (*) is ^tBu₂PH.

Figure S12. ¹¹⁹Sn {¹H} and ¹¹⁹Sn NMR NMR (298K, *d*₈-toluene, 186.53 MHz) spectra for crystals of 1.

Figure S13. ⁷Li NMR (298K, d_8 -toluene, 194.32 MHz) spectrum for crystals of 1.

Figure S14. ¹H ⁷Li HOESY NMR (298K, d_8 -toluene, 194.32 MHz) spectrum for crystals of 1

Figure S15. IR (Nujol, cm⁻¹) 2390.0, 2354.5, 2277.1 (BH₃) 1643.3 (Sn-H)