Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Table of Contents

Experimental	(Page 02)
Characterizations of compounds	(Page 03-16)
NMR spectra of the products	(Page 17-97)

General Information.

The starting materials and reagents, purchased from commercial suppliers, were used without further purification. Literature procedures were used for the preparation of substrates 2e, 2f, 2h, 2i, 2j, 2k and 2l (*TL*, 2015, 56, 2512). Solvents were purified by standard methods. DCE was stored in Amber laboratory bottles for 3 to 5 weeks before use. Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. Flash chromatography was carried out using silica gel 200–300. ¹HNMR (600 MHz) and ¹³CNMR (150 MHz) spectra were measured with CDCl₃ as solvent. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectra (HR-MS) were recorded under electrospray ionization (ESI) conditions.

General procedure for auto-oxidative hydroxysulfenylation

Thiophenols (1, 1.0 mmol) and alkenes (2, 0.5 mmol) were dissolved in a mixed solvent (MeCN/DCE, 5:1, 10 mL) at room temperature. The reactions were performed open to air (open flask) for the desired reaction time (see **Table S1**). Thereafter Ph_3P (0.5 mmol) was added to the reaction mixture, which was stirred for another two hours. The products were isolated by silica gel column chromatography using petroleum ether/ethyl acetate (v/v 10:1 to 1:1).

Compound No.	Reaction time	Compound No.	Reaction time	Compound No.	Reaction time
3aa	1.3 h	3aa	1.3 h	5aa	1.0 h
3ba	2.5 h	3ab	5.5 h	5ab	1.0 h
3ca	2.0 h	3ac	2.3 h	5ac	1.6 h
3da	1.5 h	3ad	2.5 h	5ad	2.5 h
3ea	2.3 h	3ae	5.5 h	5ae	1.5 h
3fa	2.5 h	3af	3.3 h	5af	1.5 h
3ga	2.5 h	3ag	9.0 h	5ag	1.5 h
3ha	6.5 h	3ah	5.0 h	5ah	2.0 h
3ia	6.5 h	3ai	2.2 h	5ai	2.0 h
3ja	3.0 h	3aj	2.2 h	5aj	3.8 h
3ka	6.0 h	3ak	1.8 h	3ak	1.0 h
3la	2.3 h	3al	2.2 h	5al	1.0 h
		3gk	4.0 h	5am	1.6 h
				5an	1.8 h
				5ao	2.4 h

Table S1. Reaction time

Characterization of the products

Methyl 2-hydroxy-2-methyl-3-(p-tolylthio)propanoate (3aa). The desired pure product was obtained in 96% yield (115.4 mg) as a white solid, mp 44-46 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 3.51 (s, 1H), 3.50 (s, 3H), 3.36 (d, *J* = 13.9 Hz, 1H), 3.13 (d, *J* = 13.9 Hz, 1H), 2.30 (s, 3H), 1.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 136.9, 131.8, 131.3, 129.6, 74.6, 52.5, 45.7, 25.4, 21.0. HRMS (ESI) exact mass calcd for C₁₂H₁₆NaO₃S [M+Na] m/z 263.0718, found 263.0713.

Methyl 2-hydroxy-2-methyl-3-(m-tolylthio)propanoate (3ba). The desired pure product was obtained in 94% yield (112.8 mg) as a colorless oil.¹H NMR (600 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 7.18 – 7.13 (m, 1H), 7.00 (d, J = 7.4 Hz, 1H), 3.51 (s, 3H), 3.50 (s, 1H), 3.40 (d, J = 13.8 Hz, 1H), 3.16 (d, J = 13.8 Hz, 1H), 2.31 (s, 3H), 1.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 138.6, 135.2, 131.3, 128.7, 127.7, 127.6, 74.5, 52.5, 45.1, 25.4, 21.3. HRMS (ESI) exact mass calcd for C₁₂H₁₆NaO₃S [M+Na] m/z 263.0718, found 263.0715.

Methyl 2-hydroxy-2-methyl-3-(o-tolylthio)propanoate (3ca). The desired pure product was obtained in 87% yield (104.6 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 7.3 Hz, 1H), 7.18 – 7.09 (m, 3H), 3.50 (s, 4H), 3.37 (d, J = 13.6 Hz, 1H), 3.15 (d, J = 13.6 Hz, 1H), 2.41 (s, 3H), 1.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 139.0, 134.5, 130.8, 130.2, 126.8, 126.4, 74.5, 52.6, 44.5, 25.5, 20.7. HRMS (ESI) exact mass calcd for C₁₂H₁₆NaO₃S [M+Na] m/z 263.0718, found 263.0709.

Methyl 2-hydroxy-3-((4-isopropylphenyl)thio)-2-methylpropanoate (3da). The desired pure product was obtained in 90% yield (120.4 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 3.52 (s, 1H), 3.45 (s, 3H), 3.38 (d, *J* = 13.9 Hz, 1H), 3.13 (d, *J* = 13.9 Hz, 1H), 2.89 – 2.82 (m, 1H), 1.47 (s, 3H), 1.21 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 147.9, 132.0, 131.5, 127.0, 74.4, 52.4, 45.7, 33.7, 25.4, 23.9, 23.9. HRMS (ESI) exact mass calcd for C₁₄H₂₀NaO₃S [M+Na] m/z 291.1031, found 291.1029.

Methyl 2-hydroxy-3-((4-methoxyphenyl)thio)-2-methylpropanoate (3ea). The desired pure product was obtained in 69% yield (87.8 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 3.77 (s, 3H), 3.50 (s, 4H), 3.31 (d, *J* = 13.9 Hz, 1H), 3.07 (d, *J* = 13.9 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 159.2, 134.0, 125.7, 114.5, 74.5, 55.3, 52.5, 46.8, 25.4. HRMS (ESI) exact mass calcd for C₁₂H₁₆NaO₄S [M+Na] m/z 279.0667, found 279.0672.

Methyl 2-hydroxy-2-methyl-3-(phenylthio)propanoate (3fa). The desired pure product was obtained in 94% yield (106.0 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.40 (m, 2H), 7.29 – 7.24 (m, 2H), 7.21 – 7.17 (m, 1H), 3.52 (s, 1H), 3.50 (s, 3H), 3.41 (d, *J* = 13.9 Hz, 1H), 3.18 (d, *J* = 13.9 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 135.5, 130.7, 128.9, 126.7, 74.5, 52.6, 45.1, 25.4. HRMS (ESI) exact mass calcd for C₁₁H₁₄NaO₃S [M+Na] m/z 249.0561, found 249.0566.

Methyl 3-((4-fluorophenyl)thio)-2-hydroxy-2-methylpropanoate (3ga). The desired pure product was obtained in 89%yield (108.8 mg) as a white solid, mp 58-60 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.01 – 6.94 (m, 2H), 3.54 (s, 3H), 3.49 (s, 1H), 3.34 (d, *J* = 13.9 Hz, 1H), 3.13 (d, *J* = 13.9 Hz, 1H), 1.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 162.9, 161.2, 133.5, 133.6, 130.6, 116.0, 115.9, 74.6, 52.6, 46.1, 25.5. HRMS (ESI) exact mass calcd for C₁₁H₁₃FNaO₃S [M+Na] m/z 267.0467, found 267.0476.

Methyl 3-((4-chlorophenyl)thio)-2-hydroxy-2-methylpropanoate (3ha). The desired pure product was obtained in 96% yield (126.2 mg) as a white solid, mp 64–66 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.25 – 7.21 (m, 2H), 3.56 (s, 3H), 3.49 (s, 1H), 3.35 (d, *J* = 13.9 Hz, 1H), 3.16 (d, *J* = 13.9 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 134.2, 132.7, 132.0, 128.9, 74.7, 52.7, 45.1, 25.5. HRMS (ESI) exact mass calcd for C₁₁H₁₃ClNaO₃S [M+Na] m/z 283.0172, found 283.0178.

Methyl 3-((4-bromophenyl)thio)-2-hydroxy-2-methylpropanoate (3ia). The desired pure product was obtained in 81% yield (123.5 mg) as a white solid, mp 54–56 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.30 – 7.26 (m, 2H), 3.57 (s, 3H), 3.48 (s, 1H), 3.35 (d, *J* = 13.9 Hz, 1H), 3.16 (d, *J* = 13.9 Hz, 1H), 1.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.3, 134.9, 132.1, 131.9, 120.6, 74.7, 52.7, 45.0, 25.5. HRMS (ESI) exact mass calcd for C₁₁H₁₃BrNaO₃S [M+Na] m/z 326.9666, found 326.9660.

Methyl 3-((2,4-dimethylphenyl)thio)-2-hydroxy-2-methylpropanoate (3ja). The desired pure product was obtained in 93% yield (117.7 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 7.9 Hz, 1H), 6.99 (s, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 3.51 (s, 3H), 3.49 (s, 1H), 3.32 (d, *J* = 13.6 Hz, 1H), 3.10 (d, *J* = 13.6 Hz, 1H), 2.38 (s, 3H), 2.27 (s, 3H), 1.47 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 139.3, 137.0, 131.8, 131.1, 130.8, 127.2, 74.5, 52.5, 45.1, 25.5, 20.9, 20.7. HRMS (ESI) exact mass calcd for C₁₃H₁₈NaO₃S [M+Na] m/z 277.0874, found 277.0882.

Methyl 3-((2,6-dimethylphenyl)thio)-2-hydroxy-2-methylpropanoate (3ka). The desired pure product was obtained in 96% yield (123.3 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.11 – 7.05 (m, 3H), 3.54 (s, 1H), 3.48 (s, 3H), 3.16 (d, J = 13.1 Hz, 1H), 2.97 (d, J = 13.1 Hz, 1H), 2.52 (s, 6H), 1.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.6, 142.6, 133.0, 128.2, 128.2, 74.5, 52.6, 45.2, 25.7, 22.0. HRMS (ESI) exact mass calcd for C₁₃H₁₈NaO₃S [M+Na] m/z 277.0874, found 277.0878.

Methyl 2-hydroxy-2-methyl-3-(naphthalen-2-ylthio)propanoate (3la). The desired pure product was obtained in 46% yield (63.2 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (s, 1H),7.80 – 7.71 (m, 3H), 7.53 – 7.40 (m, 3H), 3.55 (s, 1H), 3.50 (d, *J* = 13.9 Hz, 1H), 3.42 (s, 3H), 3.27 (d, *J* = 13.9 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 133.5, 132.8, 132.0, 129.0, 128.4, 128.3, 127.6, 127.2, 126.6, 126.0, 74.6, 52.6, 44.9, 25.5. HRMS (ESI) exact mass calcd for C₁₅H₁₆NaO₃S [M+Na] m/z 299.0718, found 299.0708.

Butyl 2-hydroxy-2-methyl-3-(p-tolylthio)propanoate (3ab). The desired pure product was obtained in 49% yield (66.0 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 4.36 (dd, *J* = 10.2, 5.6 Hz, 1H), 4.11 – 4.05(m, 1H), 4.00 – 3.94 (m, 1H), 3.34 (dd, *J* = 14.0, 4.1 Hz, 1H), 3.21 (dd, *J* = 14.0, 5.7 Hz, 1H), 3.13 (d, *J* = 6.2 Hz, 1H), 2.31 (s, 3H), 1.59 – 1.51 (m, 2H), 1.36 – 1.29 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.9, 137.0, 131.3, 129.7, 69.5, 65.8, 39.8, 30.4, 21.0, 19.0, 13.6. HRMS (ESI) exact mass calcd for C₁₄H₂₀NaO₃S [M+Na] m/z 291.1031, found 291.1039.

Allyl 2-hydroxy-2-methyl-3-(p-tolylthio)propanoate (3ac). The desired pure product was obtained in 93% yield (124.3 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 5.84 – 5.72 (m, 1H), 5.25 (dd, *J*=17.2, 1.3 Hz, 1H), 5.22 (dd, *J*=10.5, 0.9 Hz, 1H), 4.50 (dd, *J* = 13.0, 5.9 Hz, 1H), 4.27 (dd, *J* = 13.0, 5.8 Hz, 1H), 3.48 (s, 1H), 3.38 (d, *J* = 13.8 Hz, 1H), 3.16 (d, *J* = 13.8 Hz, 1H), 2.30 (s, 3H), 1.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.6, 136.9, 131.9, 131.4, 131.4, 129.6, 118.8, 74.6, 66.3, 45.7, 25.4, 21.0. HRMS (ESI) exact mass calcd for C₁₄H₁₈NaO₃S [M+Na] m/z 289.0874, found 289.0877.

2-hydroxyethyl 2-hydroxy-2-methyl-3-(p-tolylthio)propanoate (3ad). The desired pure product was obtained in 72% yield (96.7 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 4.14 – 4.04 (m, 2H), 3.76 (s, 1H), 3.75 – 3.71 (m, 2H), 3.38 (d, *J* = 13.6 Hz, 1H), 3.18 (d, *J* = 13.7 Hz, 1H), 2.57 (s, 1H), 2.29 (s, 3H), 1.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.9, 137.1, 131.7, 131.2, 129.7, 75.1, 67.2, 60.6, 45.6, 25.5, 21.0. HRMS (ESI) exact mass calcd for C₁₃H₁₈NaO₄S [M+Na] m/z 293.0823, found 293.0816.

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-hydroxy-2methyl-3-(p-tolylthio)propanoate (3ae). The desired pure product was obtained in 71% yield (220.2 mg) as a colorless oil.¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H), 7.07 (d, J = 7.2 Hz, 2H), 5.38 – 5.30 (m, 1H), 5.16 (dd, J = 15.1, 8.7 Hz, 1H), 5.02 (dd, J = 15.1, 8.7 Hz, 1H), 4.54 – 4.45 (m, 1H), 3.51 (d, J = 8.9 Hz, 1H), 3.36 – 3.31 (m, 1H), 3.17 (d, J = 13.6 Hz, 1H), 2.32 – 2.23 (m, 4H), 2.09 – 2.02 (m, 1H), 2.01 – 1.94 (m, 2H), 1.90 – 1.78 (m, 2H), 1.75 – 1.67 (m, 1H), 1.65 – 1.60 (m, 1H), 1.59 – 1.38 (m, 12H), 1.30 – 1.23 (m, 1H), 1.22 – 1.12 (m, 3H), 1.11 – 0.90 (m, 10H), 0.89 – 0.76 (m, 9H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 139.2, 139.1, 138.3, 136.7, 132.4, 132.4, 131.2, 131.1, 129.6, 129.6, 129.3, 123.0, 122.9, 76.0, 74.7, 74.6, 56.7, 55.9, 51.2, 50.0, 45.6, 42.2, 40.5, 396, 37.8, 36.8, 36.5, 36.5, 31.9, 31.8, 28.9, 27.3, 25.5, 25.4, 24.3, 21.2, 21.1, 21.0, 21.00, 19.3, 19.00, 12.2, 12.0. HRMS (ESI) exact mass calcd for C₄₀H₆₀NaO₃S [M+Na] m/z 643.4161, found 643.4171.

(3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-hydroxy-2-methyl-3-(p-tolylthio)propanoate (*3af*). The desired pure product was obtained in 80% yield (198.2 mg) as a white solid, mp 125–128 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (dd, J = 7.9, 4.3 Hz, 2H), 7.07 (dd, J = 7.8, 4.0 Hz, 2H), 5.37 (dd, J = 23.8, 4.8 Hz, 1H), 4.52 – 4.44 (m, 1H), 3.49 (d, J = 5.2 Hz, 1H), 3.33 (dd, J = 13.7, 3.6 Hz, 1H), 3.17 (d, J = 13.7 Hz, 1H), 2.45 (dd, J = 19.3, 8.8 Hz, 1H), 2.35 – 2.23 (m, 4H), 2.13 – 2.08 (m, 2H), 1.98 – 1.91 (m, 1H), 1.88 – 1.80 (m, 3H), 1.70 – 1.60 (m, 4H), 1.58 – 1.49 (m, 2H), 1.48 – 1.42 (m, 4H), 1.32 – 1.25 (m, 2H), 1.15 – 1.04 (m, 1H), 1.03 – 0.97 (m, 4H), 0.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 220.9, 174.5, 139.5, 139.5, 136.8, 136.7, 132.4, 131.2, 131.1, 129.7, 129.6, 122.2, 122.1, 75.7, 75.7, 74.7, 74.7, 51.7, 50.1, 47.5, 45.6, 45.6, 37.8, 37.5, 36.8, 36.7, 36.6, 35.8, 31.4, 31.4, 30.8, 27.5, 27.3, 25.5, 21.9, 21., 21.0, 20.3, 19.3, 19.3, 13.5. HRMS (ESI) exact mass calcd for C₃₀H₄₀NaO₄S [M+Na] m/z 519.2545, found 519.2540.

Methyl 2-hydroxy-3-(p-tolylthio)propanoate (3ag). The desired pure product was obtained in 59% yield (67.0 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 4.36 (dd, J = 10.2, 5.8 Hz, 1H), 3.61 (s, 3H), 3.33 (dd, J = 14.0, 4.2 Hz, 1H), 3.21 (dd, J = 14.1, 5.8 Hz, 1H), 3.11 (d, J = 6.3 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.2, 137.2, 131.4, 131.0, 129.8, 69.4, 52.5, 39.8, 21.0. HRMS (ESI) exact mass calcd for C₁₁H₁₄NaO₃S [M+Na] m/z 249.0561, found 249.0549.

2-hydroxy-2-methyl-N-phenyl-3-(p-tolylthio)propanamide (3ah). The desired pure product was obtained in 48% yield (71.9 mg) as a white solid, mp 78–80 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.61 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.34 – 7.27 (m, 4H), 7.11– 7.07 (m, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 3.74 (d, *J* = 14.0 Hz, 1H), 3.55 (s, 1H), 3.14 (d, *J* = 14.0 Hz, 1H), 2.24 (s, 3H), 1.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.2, 137.5, 137.2, 131.4, 130.4, 130.0, 128.8, 124.3, 119.6, 75.2, 45.5, 26.1, 21.0. HRMS (ESI) exact mass calcd for C₁₇H₁₉NNaO₂S [M+Na] m/z 324.1034, found 324.1028.

2-hydroxy-2-methyl-N-(p-tolyl)-3-(p-tolylthio)propanamide (3ai). The desired pure product was obtained in 63% yield (93.3 mg) as a white solid, mp 88–90 °C. ¹H NMR (600 MHz, CDCl₃) ¹H NMR (600 MHz, CDCl₃) δ 8.54 (s, 1H), 7.34 – 7.28 (m, 4H), 7.09 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 3.73 (d, J = 14.0 Hz, 1H), 3.46 (s, 1H), 3.14 (d, J = 14.0 Hz, 1H), 2.31 (s, 3H), 2.25 (s, 3H), 1.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 137.4, 134.7, 133.9, 131.3, 130.6, 129.9, 129.3, 119.6, 75.3, 45.5, 26.1, 21.0, 20.8. HRMS (ESI) exact mass calcd for C₁₈H₂₁NNaO₂S [M+Na] m/z 338.1191, found 338.1200.

N-(*4*-*bromophenyl*)-2-*hydroxy*-2-*methyl*-3-(*p*-*tolylthio*)*propanamide* (3*aj*). The desired pure product was obtained in 61% yield (115.1 mg) as a white solid, mp 114–116°C. ¹H NMR (600 MHz, CDCl₃) δ 8.61 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.33 – 7.28 (m, 4H), 7.00 (d, *J* = 7.9 Hz, 2H), 3.74 (d, *J* = 14.1 Hz, 1H), 3.57 (s, 1H), 3.10 (d, *J* = 14.1 Hz, 1H), 2.23 (s, 3H), 1.50 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 137.6, 136.3, 131.7, 131.5, 130.1, 129.9, 121.1, 116.9, 75.2, 45.4, 26.1, 21.0. HRMS (ESI) exact mass calcd for C₁₇H₁₈BrNNaO₂S [M+Na] m/z 402.0139, found 402.0144.

N-(*4*-*cyano*-*3*-(*trifluoromethyl*)*phenyl*)-*2*-*hydroxy*-*2*-*methyl*-*3*-(*p*-*tolylthio*)*propanamide* (*3ak*). The desired pure product was obtained in 60% yield (118.2 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.95 (s, 1H), 7.89 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.68 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 3.80 (d, *J* = 14.3 Hz, 1H), 3.72 (s, 1H), 3.05 (d, *J* = 14.3 Hz, 1H), 2.17 (s, 3H), 1.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.2, 141.3, 138.0, 135.5, 133.9, 133.7, 131.7, 129.9, 129.3, 121.6, 117.1, 117.1, 117.1, 115.5, 104.4, 75.1, 45.2, 26.2, 20.9. HRMS (ESI) exact mass calcd for C₁₉H₁₇F₃N₂NaO₂S [M+Na] m/z 417.0861, found 417.0867.

2-hydroxy-N,2-dimethyl-N-phenyl-3-(p-tolylthio)propanamide (3al). The desired pure product was obtained in 73% yield (115.8 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38–7.32 (m, 3H), 7.25 – 7.19 (m, 4H), 7.09 – 7.04 (m, 2H), 4.51 (s, 1H), 3.28 (s, 3H), 2.98 (s, 2H), 2.30 (s, 3H), 1.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.0, 136.3, 132.9, 130.3, 129.6, 129.5, 128.5, 128.2, 75.7, 45.9, 41.2, 27.2, 21.0. HRMS (ESI) exact mass calcd for $C_{18}H_{21}NNaO_2S$ [M+Na] m/z 338.1191, found 338.1194.

1-phenyl-2-(p-tolylthio)ethanol (5aa). The desired pure product was obtained in 91% yield (110.8 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.32 (m, 6H), 7.31 – 7.27 (m, 1H), 7.14 (d, J = 7.9 Hz, 2H), 4.69 (dd, J = 9.6, 3.3 Hz, 1H), 3.28 (dd, J = 13.8, 3.4 Hz, 1H), 3.04 (dd, J = 13.8, 9.6 Hz, 1H), 2.90 (s, 1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.2, 137.1, 131.1, 130.9, 129.9, 128.5, 127.9, 125.8, 71.5, 44.9, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₆NaOS [M+Na] m/z 267.0820, found 267.0818.

I-(p-tolyl)-2-(p-tolylthio)ethanol (5ab). The desired pure product was obtained in 79% yield (101.8 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.18 – 7.12 (m, 4H), 4.66 (dd, *J* = 9.5, 3.4 Hz, 1H), 3.26 (dd, *J* = 13.8, 3.5 Hz, 1H), 3.05 (dd, *J* = 13.8, 9.5 Hz, 1H), 2.86 (s, 1H), 2.35 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 139.2, 137.6, 137.0, 131.1, 131.0, 129.9, 129.2, 125.8, 71.4, 44.7, 21.1, 21.1. HRMS (ESI) exact mass calcd for C₁₆H₁₈NaOS [M+Na] m/z 281.0976, found 281.0982.

I-(*4*-(*tert-butyl*)*phenyl*)-*2*-(*p-tolylthio*)*ethanol* (*5ac*). The desired pure product was obtained in 65% yield (98.2mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.12 (d, J = 7.9 Hz, 2H), 4.68 (dd, J = 9.4, 2.9 Hz, 1H), 3.28 (dd, J = 13.8, 3.4 Hz, 1H), 3.07 (dd, J = 13.8, 9.5 Hz, 1H), 2.82 (s, 1H), 2.34 (s, 3H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 139.2, 136.9, 131.2, 130.9, 129.9, 125.6, 125.4, 71.4, 44.6, 34.5, 31.3, 21.0. HRMS (ESI) exact mass calcd for C₁₉H₂₄NaOS [M+Na] m/z 323.1446, found 323.1442.

I-(4-methoxyphenyl)-2-(p-tolylthio)ethanol (5ad). The desired pure product was obtained in 91% yield (125.1 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 8.1 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.89 – 6.86 (m, 2H), 4.64 (d, J = 7.7 Hz, 1H), 3.80 (s, 3H), 3.24 (dd, J = 13.8, 3.6 Hz, 1H), 3.04 (dd, J = 13.8, 9.5 Hz, 1H), 2.84 (d, J = 1.7 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 137.0, 134.3, 131.1, 131.0, 129.9, 127.1, 113.9, 71.2, 55.3, 44.7, 21.0. HRMS (ESI) exact mass calcd for C₁₆H₁₈NaO₂S [M+Na] m/z 297.0925, found 297.0920.

1-(4-fluorophenyl)-2-(p-tolylthio)ethanol (5ae). The desired pure product was obtained in 86% yield (112.7 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.16 – 7.13 (m, 2H), 7.01– 6.99 (m, 2H), 4.65 (d, *J* = 9.4 Hz, 1H), 3.24 (dd, *J* = 13.9, 3.5 Hz, 1H), 2.99 (dd, *J* = 13.8, 9.5 Hz, 1H), 2.96 (dd, *J* = 5.7, 2.4 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.2, 161.5, 137.9, 137.9, 137.3, 131.2, 130.7, 130.0, 127.6, 127.5, 115.4, 115.3, 70.9, 44.9, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅FNaOS [M+Na] m/z 285.0725, found 285.0729.

1-(4-bromophenyl)-2-(p-tolylthio)ethanol (5af). The desired pure product was obtained in 86% yield (139.3 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 4.62 (d, J = 9.4 Hz, 1H), 3.23 (dd, J = 13.9, 3.4 Hz, 1H), 3.00 – 2.94 (m, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 137.4, 131.6, 131.3, 130.5, 130.0, 127.6, 121.7, 70.8, 44.8, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅BrNaOS [M+Na] m/z 344.9925, found 344.9931.

I-(*4*-chlorophenyl)-2-(*p*-tolylthio)ethanol (5ag). The desired pure product was obtained in 75% yield (104.8 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 8.1 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.28 – 7.24 (m, 2H), 7.14 (d, J = 7.9 Hz, 2H), 4.64 (dd, J = 9.5, 3.4 Hz, 1H), 3.23 (dd, J = 13.9, 3.5 Hz, 1H), 3.01 – 2.95 (m, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.6, 137.4, 133.5, 131.3, 130.6, 130.0, 128.6, 127.2, 70.8, 44.9, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅CINaOS [M+Na] m/z 301.0430, found 301.0433.

1-(3-chlorophenyl)-2-(p-tolylthio)ethanol (5ah). The desired pure product was obtained in 29% yield (40.5 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.32 (m, 3H), 7.28 – 7.23 (m, 2H), 7.22 – 7.18 (m, 1H), 7.14 (d, *J* = 7.9 Hz, 2H), 4.63 (d, *J* = 9.4 Hz, 1H), 3.25 (dd, *J* = 13.9, 3.3 Hz, 1H), 3.01 (d, *J* = 2.0 Hz, 1H), 2.98 (dd, *J* = 13.9, 9.6 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.2, 137.4, 134.4, 131.3, 130.5, 130.0, 129.8, 128.0, 126.1, 124.0, 70.8, 44.9, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅ClNaOS [M+Na] m/z 301.0437, found 301.0433.

1-(2-chlorophenyl)-2-(p-tolylthio)ethanol (5ai). The desired pure product was obtained in 87% yield (121.5 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.7 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.19 (m, 1H), 7.13 (d, *J* = 7.9 Hz, 2H), 5.07 (d, *J* = 9.7 Hz, 1H), 3.48 (dd, *J* = 14.0, 2.7 Hz, 1H), 3.05-3.03 (m, 1H), 2.83 (dd, *J* = 14.0, 9.8 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 139.5, 137.1, 131.6, 131.0, 130.4, 129.8, 129.4, 128.8, 127.2, 127.1, 68.1, 42.7, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅ClNaOS [M+Na] m/z 301.0430, found 301.0424.

4-(1-hydroxy-2-(p-tolylthio)ethyl)benzonitrile (5*aj*). The desired pure product was obtained in 96% yield (129.3 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.71 – 4.67 (m, 1H), 3.24 (dd, J = 14.0, 3.5 Hz, 1H), 3.15 (d, J = 2.3 Hz, 1H), 2.95 (dd, J = 14.0, 9.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.4, 137.7, 132.3, 131.5, 130.1, 130.1, 126.6, 118.7, 111.5, 70.7, 44.9, 21.1. HRMS (ESI) exact mass calcd for C₁₆H₁₅NNaOS [M+Na] m/z 292.0772, found 292.0765.

I-(4-nitrophenyl)-2-(p-tolylthio)ethanol (5ak). The desired pure product was obtained in 97% yield (140.9 mg) as a yellow solid, mp 83–85°C.. ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 4.74 (d, *J* = 9.3 Hz, 1H), 3.27 (dd, *J* = 14.0, 3.5 Hz, 1H), 3.18 (d, *J* = 1.7 Hz, 1H), 2.97 (dd, *J* = 13.9, 9.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 147.4, 137.8, 131.6, 130.1, 130.0, 126.7, 123.7, 70.5, 45.0, 21.1. HRMS (ESI) exact mass calcd for C₁₅H₁₅NNaO₃S [M+Na] m/z 312.0670, found 312.0677.

1-phenyl-2-(p-tolylthio)propan-1-ol (5al). The desired pure product was obtained in 57% yield (74.3 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.35 – 7.31(m, 2H), 7.30 – 7.23 (m, 3H), 7.17 (d, *J* = 7.9 Hz, 2H), 4.75 (s, 1H), 3.49 (qd, *J* = 7.0, 2.9 Hz, 1H), 2.83 – 2.79 (m, 1H), 2.37 (s, 3H), 1.13 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.9, 137.9, 133.0, 130.2, 130.0, 128.2, 127.3, 125.9, 73.0, 51.9, 21.2, 13.0. HRMS (ESI) exact mass calcd for C₁₆H₁₈NaOS [M+Na] m/z 281.0976, found 281.0983.

2-phenyl-1-(*p*-tolylthio)*propan-2-ol* (5*am*). The desired pure product was obtained in 83% yield (107.5 mg) as a colorless oil.¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.36 – 7.30 (m, 2H), 7.28 – 7.23 (m, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 3.51 (d, *J* = 13.3 Hz, 1H), 3.32 (d, *J* = 13.3 Hz, 1H), 2.91 (s, 1H), 2.31 (s, 3H), 1.61 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.3, 136.6, 132.8, 130.6, 129.7, 128.2, 127.0, 124.8, 74.0, 50.3, 29.4, 21.0. HRMS (ESI) exact mass calcd for C₁₆H₁₈NaOS [M+Na] m/z 281.0976, found 281.0981.

1,1-diphenyl-2-(p-tolylthio)ethanol (5an). The desired pure product was obtained in 85% yield (136.3 mg) as a white solid, mp 68–70 °C.¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.43 (m, 4H), 7.34 – 7.27 (m, 6H), 7.27 – 7.23 (m, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 3.84 (s, 2H), 3.60 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.2, 136.9, 132.8, 130.9, 129.8, 128.2, 127.3, 126.2, 77.7, 49.8, 21.0. HRMS (ESI) exact mass calcd for C₂₁H₂₀NaOS [M+Na] m/z 343.1133, found 343.1128.

2-methyl-1-(p-tolylthio)but-3-en-2-ol (5ao). The desired pure product was obtained in 32% yield (33.2 mg) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, J = 7.8 Hz, 2H), 7.09 (d, J = 7.6 Hz, 2H), 5.89 (dd, J = 17.2, 10.7 Hz, 1H), 5.31 (d, J = 17.3 Hz, 1H), 5.09 (d, J = 10.7 Hz, 1H), 3.20 (d, J = 13.2 Hz, 1H), 3.07 (d, J = 13.2 Hz, 1H), 2.46 (s, 1H), 2.31 (s, 3H), 1.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 143.2, 136.6, 133.0, 131.0, 130.5, 129.9, 129.7, 113.2, 72.7, 48.3, 27.2, 21.0. HRMS (ESI) exact mass calcd for C₁₂H₁₆NaOS [M+Na] m/z 231.0820, found 231.0827.

N-(*4*-*cyano-3*-(*trifluoromethyl*)*phenyl*)-*3*-((*4*-*fluorophenyl*)*thio*)-*2*-*hydroxy-2*-*methylpropanamide* (*3gk*). ¹H NMR (600 MHz, CDCl₃) δ 8.99 (s, 1H), 7.91 (s, 1H), 7.75 (s, 2H), 7.41 – 7.37 (m, 2H), 6.91 – 6.85 (m, 2H), 3.75 (d, *J* = 14.2 Hz, 1H), 3.55 (s, 1H), 3.10 (d, *J* = 14.2 Hz, 1H), 1.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.0, 163.2, 161.5, 141.2, 135.7, 134.1, 133.8, 133.8, 133.7, 128.5, 123.0, 121.6, 121.1, 117.1, 117.1, 116.3, 116.2, 115.4, 104.6, 75.3, 45.7, 26.2. HRMS (ESI) exact mass calcd for C₁₈H₁₄F₄N₂NaO₂S [M+Na] m/z 421.0610, found 421.0601.

N-(*4*-*cyano*-*3*-(*trifluoromethyl*)*phenyl*)-*3*-((*4*-*fluorophenyl*)*sulfonyl*)-*2*-*hydroxy*-*2methylpropanamide*.¹⁴ ¹H NMR (600 MHz, DMSO) δ 10.36 (s, 1H), 8.41 (s, 1H), 8.20 (d, *J* = 8.6 Hz, 1H), 8.07 (d, *J* = 8.6 Hz, 1H), 7.93-7.88 (m, 2H), 7.37-7.32 (m,2H), 6.38 (s, 1H), 3.92 (d, *J* = 14.9 Hz, 1H), 3.70 (d, *J* = 14.9 Hz, 1H), 1.39 (s, 3H).

2,2,6,6-tetramethyl-1-((p-tolylthio)oxy)piperidine (6).¹⁴ ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.50 (m, 2H), 7.29 – 7.19 (m, 2H), 2.38 (s, 3H), 1.88 – 1.24 (m, 15H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 139.7, 129.5, 126.2, 61.4, 58.9, 43.7, 41.6, 35.6, 32.8, 29.0, 28.2, 21.4, 17.5.

3. 50 3. 35 3. 35 3. 17 3. 17 3. 17 3. 14 -2.41

-1.49

19

-1.48

3ka

7. 26 7. 10 7. 09 7. 07 7. 07 7. 07 7. 07 7. 07 -1.45

27

3la

-1.52

42

-1.31

5ai

5am

 $\overbrace{-2.91}^{3.52}$ — 1. 61 -2.31

52

HO HO 3aa	 -136.90 -136.90 -131.75 -131.75 -129.61	74. 55	 85 - 98 28	

· ·				· •	· ·	· •	· I	· I	· I	· 1	· I	· I	· I	· ·	· ·	· ·	· ·	· ·	· ·	· I	· I			· ·
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

HO Bba		138. 63 135. 19 131. 30 128. 70 127. 59	74.54		59 59 59	
230 220 210 200	190 180 170 160		0 100 90 80 70 60	50 40	30 20 10 () -10

HO 3da	 	$\frac{132.01}{-127.01}$	74.42	 -33.70 55.37 53.86 23.86 23.86	61

HO HO 3ea		— 159. 19		 		17 42 1
						1
				• 1		
un na de la parte de la comunicação de la parte de la parte do de la comunicação de la comunicação de la comun	i ng fangang di kanan king da kanan					
	180 170	160 150 140	130 120	 30 70 6	0 50 40 3	10 20 10 0 -10

HO HO	 135.49 128.85 126.73		 07 63 	
3fa				
-a	 	manana ang kanang kalang kanang kalang kanang ka	 <u>n. turki zi o</u> la yona <u>na kato mpi popona na s</u>	

Cl f f f f f f f f f f f f f f f f f f f	—175.29	 74.66	 65 ⁻

Br S HO 3ia	— 175. 28	~134.94 [32.10] [31.86]	— 120. 61	 	 	66
ana antana di Antanya di Antanya di Antanya di Kamangi di Kamana Mikada antanya di Kamana di Kamana di Kamana d						nerst-udanys.org.com

•		•						•															•	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

1

-

1

.

1

- T

.

1 1 1

T

HO HO	 			-25.46 $Z^{20.88}_{20.65}$	67
3ja					
230 220 210 200	 150 140 130 120 110	100 90 80 70	60 50 40	30 20 10	0 -10

HO HO 3ka	 	-132.97 Z ^{128.18} 128.15	74.46	 	 68

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

s of					00 13.63 13.63
OH 3ab					
545					
			I		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			intygerapilesin i terretaria and interest and a superior have been and the set of the set of the set	and the second	renelisyed of hyperpolicy was have been and the second second second second second second second second second
230 220 210 200 190	180 170 160	150 140 130 120 110) 100 90 80 70 60 50	40 30	20 10 0 -10

HO Bac	—174.62	74.64	 71

S O OH	— 174. 89	-137.06 -131.167 -131.167 -129.73		 	 72
HO 3ad					
	1				

' 1	· • •	· •		' '	· I	' '	' '	· I	' 1	' '	· ·	' '	· .	· ·	' '	· ·	' '	· 1	· 1	' '	· 1	' '	· •	· 1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$ \begin{array}{c} $	 -137. 17 $-131. 44$ $-131. 01$ $-2132. 76$	69. 34	52.49	 75	
					L

-		· · ·				· •	· •	· •		· •								· •			· ·	· •			
	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\begin{array}{c} (+) \\$			45.48	
230 220 210 200 190	 	90 80 70 60	50 40 3	1 - 1 - 1 - 1 - 1 30 20 10 0 -1

S NH		$ \begin{array}{c} \overbrace{\begin{subarray}{c} 137.63\\ 131.74\\ \hline 131.45\\ \hline 131.45\\ 129.89\\ \hline 129.89\\ \hline 120.88\\ \hline 116.88\\ \end{array} $			26. 14 20. 96 82	
HO´ 3aj						
			1			
						iyubri
230 220 210 200 190) 180 170 160	150 140 130 120 110 100	90 80 70 60	50 40 3	30 20 10 0 -10	-

150 140 130 190 180 170 160 -10

to successful to the second se	 $ \begin{array}{c}139. \ 16 \\136. \ 94 \\129. \ 87 \\125. \ 41 \\ -125. \ 41 \end{array} $	—71.42	 	 83

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

150 140 и 80 180 170 160 -10

200 190 180 170 160 150 140 130 120 -10

Image: Second	— 147.43	-137.70 -137.70 -131.28 -131.49 -130.08 -118.69 -111.53	70.70	 	90

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S NO2	 -137.80 -131.57 -130.11 -129.98 -126.67 -123.68			 91
ι μ				
ers an tank di malang kang mang kang mang kang kang kang kang kang kang kang mang mang kang mang kang kang kang Mang kang na kang kang kang kang kang kan		nd an allanad gundhidda Marada barrain a laibh a sunat a gunghagt agus agus an gun a gunga agus agus agus agus agus agus agus ag	durid and the second	den attestionen die Ellen and entdeten der ein die Generationen generationen generationen gehanden.
· · · · · · · · · · · · · · · · · · ·	 			

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

•	•	•	•	•	•	•	•	•	•		•	•								•	•	•	•	•
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

mb chart i Arn al dist th

and the little state of the

Site and the

THE REP T

فالأدبير وحريك وترابعه والاستهالات

 $\begin{array}{c} \begin{array}{c} -61.39 \\ -58.93 \\ -58.93 \\ -41.62 \\ -41.62 \\ -35.58 \\ -32.84 \\ -32.84 \\ -32.84 \\ -21.44 \\ -17.53 \end{array}$

97

		· .	· .	· · ·		1		· .		• •	· 1		• •		· .		· .	· .	· .			· 1			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	()	-10