Electronic Supplementary Information

Observation of phase-retention behavior of HC(NH₂)₂PbI₃ black perovskite polymorph upon mesoporous oxide scaffolds

Yuanyuan Zhou^{*a*,*}, Joonsuh Kwun^{*a*}, Hector. F. Garces^{*a*}, Shuping Pang^{*b*,*}, Nitin P. Padture^{*a*,*}

^a School of Engineering, Brown University, Providence, RI 02912, USA <u>yuanyuan zhou@brown.edu</u> (Y.Z.), <u>nitin padture@brown.edu</u> (N.P.P.)

^b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China

pangsp@qibet.ac.cn (S.P.)

Experimental Procedure

Film Fabrication. The deposition of phase-pure α-HC(NH₂)₂PbI₃ perovskite layers follows the method reported elsewhere.^{S1} For the deposition of PbI₂ thin films, a 40 wt% PbI₂ DMF solution was spin-coated on the substrates. In the case of compact TiO₂-coated FTO substrate, the spin-coating condition used was 3000 rpm for 40 s. In the case of mesoporous TiO₂ scaffold (250 nm thick) coated FTO substrate, the spin-coating condition used was 6000 rpm for 40 s. A similar procedure was followed for mesoporous Al₂O₃ scaffold (~250 nm thickness). Subsequently, the as-formed PbI₂ thin films were aged at room temperature for 2 h or treated at 100 °C for 10 s for the purpose of their facile conversion to α-HC(NH₂)₂PbI₃ perovskite in the following processes. After deposition of PbI₂ thin films, fresh HC(NH₂)₂I solution of 20 mg.ml⁻¹ in anhydrous isopropanol was spin-coated onto the as-prepared PbI₂ thin films, and then annealed at 170 °C for 1 min, which constitutes the first spincoating/annealing (SCA) cycle. This SCA cycle was then repeated three times. The excess MAI was washed using isopropyl alcohol, and the final thin films were annealed at 170 °C for 15 min to obtain a dark-colored α-HC(NH₂)₂PbI₃ perovskite film.

Materials Characterization. The morphologies of the films were observed in a scanning electron microscope (SEM; LEO 1530VP, Carl Zeiss, Germany). Conductive c-AFM images (MFP-3D Origin, Oxford Instruments) were collected in open air using an electrically-conductive diamond-coated tip in contact mode. A current map of the perovskite film was captured using 256 scan lines and 256 scan points with a scan rate of 0.5 Hz. X-ray diffraction (XRD) was performed on a X-ray diffractometer (D8 Discover, Bruker AXS, Karlsruhe, Germany) using Cu Ka₁ radiation (λ =1.5406 Å) at step size/time 0.02°/10 s. Grazing Incident X-ray Diffraction (GIXRD) data were collected from the surface of the perovskite film at an incident angle of ω =0.7° using a high resolution X-ray diffraction diffractometer (D8 Discover, Bruker AXS, Karlsruhe, Germany) equipped with a Göbel mirror and a Ge022ACC monochromator (Cu Ka1 radiation).

Supplementary Figures

Figure S1. The retention of absorption at 500 nm of the FAPbI₃ thin film as a function of the thickness of the mesoporous TiO_2 scaffold (MTS). The total perovskite thickness is constant at ~400 nm. Use of 150-nm, 250-nm, and 400-nm MTS are expected to add 17 m², 29 m², and 26 m² per m² area, respectively, to the substrate.

Figure S2. An α -FAPbI₃ perovskite thin film deposited on a ~250-nm mesoporous Al₂O₃ scaffold (A) before and (B) after 24-h exposure to the ambient.

References

[S1] Y. Zhou, M. Yang, J. Kwun, O. S. Games, Y. Zhao, S. Pang, N. P. Padture and K. Zhu, *Nanoscale*, 2016, 8, 6265-6270.