Electronic Supplementary Information

Experimental

Synthesis of Co-Co PBA microcubes. The uniform Co-Co PBA microcubes with size of 900 nm were sythesized by a simple precipitation method. In a typical procedure, 0.6 mmol of cobalt acetate and 0.9 mmol of sodium citrate were dissolved in 20 mL of deionized (DI) water to form solution A. At the same time, 0.4 mmol of potassium hexacyanocobaltate(III) was dissolved in 20 mL of DI water to form solution B. Then, solutions A and B were mixed together under magnetic stirring for 1 min. The obtained mixed solution was aged for 12 h at room temperature. After collected by centrifugation and washed with water and ethanol, the precipitates were dried at 70 °C overnight.

Synthesis of Co-Co PBA microframes. In a typical synthesis, 10 mg of the above as-prepared Co-Co PBA microcubes were disolved in 10 mL of ethanol with the assistance of ultrasonication for 15 min to form solution C. 5 mL of ammonia solution were disolved in 15 mL of water to form solution D. Then, solutions C and D were mixed together and the mixture was stirring at room temperature for 10 min. The final products were collected by centriugation, and washed with DI water and ethanol for three times, before dring at 70 °C overnight. Preliminary experimental results showed that it is hard to control the etching rate with more higher concentration of ammonia solution, while lower concentration of ammonia solution will lead to much longer etching time. Therefore, 5 mL of ammonia solution were chosed as the echant.

Synthesis of Co_3O_4 *microframes.* In a typical synthesis, the as-prepared Co-Co PBA microframes were annealed at 600 °C for 2 h with a heating temperature rate of 2 °C min⁻¹ in air. For comparison, the as-prepared Co-Co PBA microcubes were also annealed to prepare Co_3O_4

microcubes under the same experimental conditions. Preliminary experimental results showed that when the calcination temperature is lower than 600 °C, Co_3O_4 with poor crystallinity will be obtained, while higher calcination temperature than 600 °C will lead to the colapse of Co_3O_4 microframes. Therefore, 600 °C was chosed as the calcination temperature.

Materials characterization. The crystal phase of the products was examined by X-ray diffraction (XRD) on a Rigaku D/MAX RINT-2000 X-Ray Diffractometer. Field-emission scanning electron microscope (FESEM; JEOL-7600F) and transmission electron microscope (TEM; JEOL, JEM-2100F) were used to examine the morphology of the samples. Thermogravimetric analysis (TGA) was performed with a temperature ramp of 10 °C min⁻¹ under air flow. Fourier transform-infrared spectroscopy (FT-IR) was carried out on a Nicolet 5700 FT-IR Spectrometer. The specific surface areas of as-synthesized materials are measured on Autosorb-1 at liquid-nitrogen temperature.

Electrochemical measurments. The battery tests were carried out in a half-cell configuration. The working electrode consists of active materials, conductivity agent (Kejten black, KB), and polymer binder (polyvinylidene fluoride, PVDF) with a weight ratio of 70:20:10. The electrolyte is 1 M LiPF6 in a mixture of ethylene carbonate and diethyl carbonate (1:1 by weight). The loading mass of active materials is around 1.0 mg cm⁻². Lithium disc was used as both the counter electrode and reference electrode. The coin-type half cells were assembled in argon-filled glove box and then tested in TOSCAT 3000 battery tester (TOSCAT 3000, Toyo Systems, Tokyo, Japan) with a voltage range between 0.01 and 3 V. Cyclic Voltammetry (CV) curves were tested using AUTOLAB potentiostat/galvanostat apparatus (AUT85698). The OER activity was evaluated in a three-electrode configuration using a rotating disk electrode (RDE) (Autolab RDE/2, at a rotation speed of 1700 rpm) with an Autolab potentiostat/galvanostat (Model

PGSTAT-72637) workstation at ambient temperature. A glassy carbon electrode (GCE) with a diameter of 3 mm was used as the support for the working electrode. The catalyst suspension was prepared by dispersing 5 mg of catalyst in 1 mL of solution containing 0.5 mL of DI water, 0.44 mL of ethanol and 60 µL of 0.5 wt.% Nafion solution followed by ultrasonication for 30 min. 4 μ L of the catalyst suspension was pipetted onto the GCE surface using a micropipettor and then dried at ambient temperature. The catalyst loading amount is 0.286 mg cm⁻² on the GCE. A Ag/AgCl (KCl saturated) electrode was used as the reference electrode and a platinum disc electrode was used as the counter electrode. Potentials were referenced to a reversible hydrogen electrode (RHE): E(RHE) = E(Ag/AgCl) + (0.2 + 0.059 pH)V. Linear sweep voltammetry (LSV) was recorded in 1 M KOH (pH = 13.56) at a scan rate of 5 mV s⁻¹ to obtain the polarization curves. The long-term stability tests were performed by continuous LSV scans with a sweep rate of 50 mV s⁻¹. All the data presented were corrected for iR losses and background current. EIS was performed at overpotential of 370 mV with frequency from 0.1 to 100,000 Hz and an amplitude of 5 mV. The electrochemical double-layer capacitance was determined from the CV curves measured in a potential range without redox processes according to the following equation: $C_{dl} = I_c/v$, where C_{dl} , I_c , and v are the double-layer capacitance (F cm⁻²) of the electroactive materials, charging current (mA cm⁻²), and scan rate (mV s⁻¹), respectively.

Electrode materials	Cycling performance	Rate capability	References
Co ₃ O ₄ microframes	1296 mAh g ⁻¹ after 200 cycles	953 mAh g ⁻¹ at 1 A g ⁻¹	
	at 500 mA g ⁻¹	883 m A h g-l at 2 A g-l	This work
	757 mAh g ⁻¹ after 4000 cycles	oos man g at 2 A g	THIS WOLK
	at 5000 mA g ⁻¹	620 mAh g ⁻¹ at 8 A g ⁻¹	
PBA-derived Co ₃ O ₄	970 mAh g ⁻¹ after 30 cycles at	252 mAh g ⁻¹ at 2 A g ⁻¹	1
nanocages	50 mA g ⁻¹		
PBA-derived Fe ₂ O ₃ /Co ₃ O ₄	500 mAh g ⁻¹ after 50 cycles at	272 mAh g ⁻¹ at 0.8 A g ⁻¹	2
hollow microcubes	100 mA g ⁻¹		
MOF-derived agglomerated	965 mAh g ⁻¹ after 50 cycles at	Unavailable	3
Co ₃ O ₄ nanoparticles	50 mA g ⁻¹		
Co ₃ O ₄ hexagonal nanorings	1370 mAh g ⁻¹ after 30 cycles at 100 mA g ⁻¹	1335 mAh g^{-1} at 1 A g^{-1}	4
Nanocage Co ₃ O ₄	810 mAh g ⁻¹ after 100 cycles at 500 mA g ⁻¹	712 mAh g^{-1} at 1 A g^{-1}	5
Graphene/Co ₃ O ₄ ultrafine	714 mAh g ⁻¹ after 200 cycles at	877 mAh g ⁻¹ at 5 A g ⁻¹	6
nanocrystallites	200 mA g ⁻¹		
Mesoporous nanostructured	913 mAh g ⁻¹ after 60 cycles at	442 mAh g ⁻¹ at 1 A g ⁻¹	7
Co ₃ O ₄	200 mA g ⁻¹		
MWCNTs/Co ₃ O ₄	813 mAh g ⁻¹ after 100 cycles at	$514 \text{ mAh g}^{-1} \text{ at } 1 \text{ A g}^{-1}$	8
nanocomposites	100 mA g ⁻¹		
Co ₃ O ₄ hollow	1265 mAh g ⁻¹ after 140 cycles	$650 \text{ mAh } \text{g}^{-1} \text{ at } 2 \text{ A } \text{g}^{-1}$	9
dodecahedrons	at 100 mA g ⁻¹		
Co ₃ O ₄ hollow tetrahedra	1052 mAh g ⁻¹ after 60 cycles at 200 mA g ⁻¹	606 mAh g ⁻¹ at 0.8 A g ⁻¹	10
Hollow Co ₃ O ₄	1115 mAh g ⁻¹ after 50 cycles at	738 mAh g ⁻¹ at 1 A g ⁻¹	11
parallelepipeds	100 mA g ⁻¹		
Co ₃ O ₄ nanoplates	852 mAh g ⁻¹ after 100 cycles at	435 mAh g^{-1} at 2 A g^{-1}	12
	500 mA g ⁻¹		
Co ₃ O ₄ hollow dodecahedra	780 mAh g ⁻¹ after 100 cycles at	$\sim 600 \text{ mAh g}^{-1} \text{ at } 9 \text{ A g}^{-1}$	13
	100 mA g ⁻¹		

 Table S1. Comparison of LIBs performance of different Co₃O₄-based anodes.

Catalyst & Experimental condition	Overpotential at a current density of 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References
Co ₃ O ₄ microframes, 1 M KOH	370	53	This work
Commercial Ir/C	380	Unavailable	14
Mesoporous Co ₃ O ₄ nanowires, 1 M KOH	~405	72	15
Mesoporous Co ₃ O ₄ nanoflakes, 1 M KOH	380	48	16
Porous honeycomb-like Co ₃ O ₄ , 0.1 M KOH	450	89	17
Porous Co ₃ O ₄ nanoplates, 1 M KOH	~450	71	18
Multiwalled carbon nanotubes/Au/Co ₃ O ₄ , 1 M KOH	350	68	19
Co ₃ O ₄ /N-doped porous carbon, 0.1 M KOH	390	72	20
Co ₃ O ₄ -carbon porous nanowire, 0.1 M KOH	290	70	21
Fe-incorporated mesoporous Co ₃ O ₄ , 1 M KOH	380	60	22
Co ₃ O ₄ /multiwalled carbon nanotubes, 0.1 M KOH	390	65	23
Hollow fluffy Co ₃ O ₄ cages, 1 M KOH	400	70	24
Hollow Co ₃ O ₄ microspheres, 0.1 M KOH	400	Unavailable	25
nanocast Co ₃ O ₄ , 0.1 M KOH	496	Unavailable	26
Co ₃ O ₄ /Co ₂ MnO ₄ nanocomposites, 0.1 M KOH	540	Unavailable	27
Co ₃ O ₄ /NiCo ₂ O ₄ double-shelled nanocages, 1 M KOH	340	88	28
Nanostructured NiCo ₂ O ₄ , 0.1 M KOH	390	87	29

Table S2. Comparison of OER performance of Co₃O₄-based electrocatalysts

Fig. S1 XRD patterns (a) and FT-IR spectra (b) of Co-Co PBA microcubes and microframes.

Fig. S2 SEM images (a-d) and TEM images (e-h) of the as-obtained products after etching with ammonia solution at different time intervals: 0 min (a, e), 3 min (b, f), 5 min (c, g), and 10 min (d, h), respectively. Schematic illustration for the formation process of Co-Co PBA microframes (i-l).

Fig. S3 TGA curves of Co-Co PBA microframes and microcubes in air in the temperature range from 30 to 800 °C with a heating rate of 10 °C min⁻¹.

Fig. S4 XRD patterns of Co₃O₄ microframes and microcubes.

Fig. S5 SEM images (a-b) and TEM images (c-d) of Co_3O_4 microcubes synthesized using Co-Co PBA microcubes as precursor.

Fig. S6 N₂ adsorption and desorption isotherms of Co₃O₄ microframes (a) and microcubes (b).

Fig. S7 CV curves of Co₃O₄ microframes for the first 5 cycles at a scan rate of 0.2 mV s⁻¹.

Fig. S8 CV curves of Co₃O₄ microcubes for the first 5 cycles at a scan rate of 0.2 mV s⁻¹.

Fig. S9 SEM image of electrode after cycling test at 0.5 A g⁻¹ for 200 cycles.

Fig. S10 Cycling performance of Co_3O_4 microframes and microcubes and the corresponding Coulombic efficiency of Co_3O_4 microframes at a current density of 1 A g⁻¹

Fig. S11 Optimization of Co₃O₄ microframes electrocatalyst loading on glassy carbon electrode.

Fig. S12 LSV curves (a) and Tafel plots (b) of Co_3O_4 microframes and microcubes. (c) EIS Nyquist plots of Co_3O_4 microframes and microcubes in 1 M KOH at an overpotential of 370 mV; (d) Plots showing the extraction of the C_{dl} for Co_3O_4 microframes and microcubes.

Fig. S13 CVs in the region of 1.10-1.15 V vs. RHE for Co_3O_4 microframes (a) and microcubes (b).

Fig. S14 Cycling stability of Co₃O₄ microframes for OER at a scan rate of 50 mV s⁻¹.

Proposed Etching Reaction Mechanism

Chemical etching has been recently used to obtain diverse nanostructures. For example, xylenol orange sodium salt has been utilized as etchant to obtain frame-like and box-like ZIF-8/ZIF-67 nanostructures (*Angew. Chem. Int. Ed., 2015, 54, 14417-14421*). Huang et al. used ammonia solution as etchant to obtain Cu₂O with different shapes (*J. Phys. Chem. C, 2011, 115, 20618-20627*). The complexation between Cu⁺ and NH₃ to form [Cu(NH₃)₄]⁺ is believed to be the main etching mechanism. Inspired by this, here we also choose ammonia solution as etchant. The possible reaction mechanism is Co₃[Co(CN)₆]₂(s) + NH₃(aq) \rightarrow [Co(NH₃)₆]²⁺(aq) + [Co(CN)₆]³⁻(aq). When Co-Co PBA are etched with ammonia solution for longer time, it will be fully etched

away to form brown solution as shown in Fig. S15b. When excess ammonia solution is added to Co^{2+} solution (control), complex ion solution with similar brown color is also observed (Fig. S15c), confirming the proposed reaction mechanism.

Fig. S15 (a) Solution of Co-Co PBA; (b) Solution of fully etched out Co-Co PBA using ammonia solution; (c) Complex ion solution of Co^{2+} and ammonia.

References

- 1. N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Y. Hu, X. K. Kong and Q. W. Chen, J. *Phys. Chem. C*, 2012, **116**, 7227-7235.
- 2. Z. Q. Li, B. Li, L. W. Yin and Y. X. Qi, ACS Appl. Mater. Interfaces, 2014, 6, 8098-8107.
- 3. B. Liu, X. B. Zhang, H. Shioyama, T. Mukai, T. Sakai and Q. Xu, *J. Power Sources*, 2010, **195**, 857-861.
- 4. P. P. Su, S. C. Liao, F. Rong, F. Q. Wang, J. Chen, C. Li and Q. H. Yang, *J. Mater. Chem. A*, 2014, **2**, 17408-17414.
- 5. Y. Wang, B. F. Wang, F. Xiao, Z. G. Huang, Y. J. Wang, C. Richardson, Z. X. Chen, L. F. Jiao and H. T. Yuan, *J. Power Sources*, 2015, **298**, 203-208.
- 6. Q. T. Qu, T. Gao, H. Y. Zheng, X. X. Li, H. M. Liu, M. Shen, J. Shao and H. H. Zheng, *Carbon*, 2015, **92**, 119-125.
- 7. C. Li, T. Q. Chen, W. J. Xu, X. B. Lou, L. K. Pan, Q. Chen and B. W. Hu, *J. Mater. Chem. A*, 2015, **3**, 5585-5591.
- 8. G. Huang, F. F. Zhang, X. C. Du, Y. L. Qin, D. M. Yin and L. M. Wang, *ACS Nano*, 2015, **9**, 1592-1599.
- 9. J. Shao, Z. M. Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu and H. H. Zheng, *J. Mater. Chem. A*, 2014, **2**, 12194-12200.
- 10. D. Tian, X. L. Zhou, Y. H. Zhang, Z. Zhou and X. H. Bu, *Inorg. Chem.*, 2015, **54**, 8159-8161.
- 11. Y. Han, M. L. Zhao, L. Dong, J. M. Feng, Y. J. Wang, D. J. Li and X. F. Li, *J. Mater. Chem. A*, 2015, **3**, 22542-22546.

- 12. J. X. Guo, B. Jiang, X. Zhang, L. Tang and Y. H. Wen, *J. Mater. Chem. A*, 2015, **3**, 2251-2257.
- 13. R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. L. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang and Y. Z. Huang, *Small*, 2014, **10**, 1932-1938.
- 14. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 15. Y. C. Wang, T. Zhou, K. Jiang, P. M. Da, Z. Peng, J. Tang, B. A. Kong, W. B. Cai, Z. Q. Yang and G. F. Zheng, *Adv. Energy Mater.*, 2014, **4**.
- 16. S. Q. Chen, Y. F. Zhao, B. Sun, Z. M. Ao, X. Q. Xie, Y. Y. Wei and G. X. Wang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 3306-3313.
- 17. L. L. Li, T. Tian, J. Jiang and L. H. Ai, J. Power Sources, 2015, 294, 103-111.
- 18. X. M. Zhou, Z. M. Xia, Z. M. Tian, Y. Y. Ma and Y. Q. Qu, *J. Mater. Chem. A*, 2015, **3**, 8107-8114.
- 19. Y. Y. Fang, X. Z. Li, Y. P. Hu, F. Li, X. Q. Lin, M. Tian, X. C. An, Y. Fu, J. Jin and J. T. Ma, *J. Power Sources*, 2015, **300**, 285-293.
- 20. Y. Hou, J. Y. Li, Z. H. Wen, S. M. Cui, C. Yuan and J. H. Chen, *Nano Energy*, 2015, **12**, 1-8.
- 21. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- 22. C. L. Xiao, X. Y. Lu and C. Zhao, Chem. Commun., 2014, 50, 10122-10125.
- 23. X. Y. Lu and C. Zhao, J. Mater. Chem. A, 2013, 1, 12053-12059.
- 24. X. M. Zhou, X. T. Shen, Z. M. Xia, Z. Y. Zhang, J. Li, Y. Y. Ma and Y. Q. Qu, *ACS Appl. Mater. Interfaces*, 2015, 7, 20322-20331.
- 25. J. Zhao, Y. C. Zou, X. X. Zou, T. Y. Bai, Y. P. Liu, R. Q. Gao, D. J. Wang and G. D. Li, *Nanoscale*, 2014, **6**, 7255-7262.
- 26. X. H. Deng, W. N. Schmidt and H. Tuysuz, Chem. Mater., 2014, 26, 6127-6134.
- 27. D. D. Wang, X. Chen, D. G. Evans and W. S. Yang, *Nanoscale*, 2013, 5, 5312-5315.
- 28. H. Hu, B. Y. Guan, B. Y. Xia and X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
- 29. M. Prabu, K. Ketpang and S. Shanmugam, *Nanoscale*, 2014, **6**, 3173-3181.