Electronic Supplementary Information (ESI)

Exceptionally water stable heterometallic gyroidal MOFs: Tuning porosity and hydrophobicity by doping metal ions

Xiao-Wei Zhu, Xiao-Ping Zhou*, and Dan Li*

Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P.R. China.

E-mail: zhouxp@stu.edu.cn, dli@stu.edu.cn

Contents

Section S1. General Procedure1
Section S2. Syntheses of metal doped STU-1s
S2A. Ligand synthesis1
S2B. Syntheses of metal doped STU-1s1
Section S3. Characterization of Cu _{0.10} -STU-1
S3A. Crystallographic studies
S3B. Characterizations of ICP-AES, EDS, and TGA
Section S4. Chemical Stabilities of metal doped STU-1s and STU-19
S4A. Water stability of STU-1
S4B. Chemical stability of metal doped STU-1s10
Section S5. Gas sorption studies
S5A. Gas-Sorption Measurements
S5B. Gas adsorption isotherms of the boiling water treated samples
Section S6. Scanning electron microscopy studies
S6A. Experimental detail
S6B. Scanning Electron Microscopy Imaging (SEM)
Section S7. Water stability of other MOFs15
Section S8. Water stability of STU-3 and types of water sorption isotherms
Section S9. Characterization of Fe ²⁺ doped STU-1
References

Section S1. General Procedure

Starting materials, reagents, and solvents were purchased from commercial sources and used without further purification. Powder X-ray diffraction patterns (PXRD) of the samples were measured on a Bruker D8 Advance diffractometer (Cu K α , $\lambda = 1.5418$ Å) at room temperature. Thermal analysis (TGA) was carried out in a nitrogen stream using a Seiko Extar 6000 TG/DTA equipment with heating rate of 5 °C·min⁻¹. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) measurements were conducted on a Shimadzu ICPE-9000. Low-pressure (up to 1 bar) gas adsorption isotherms (N₂ and CO₂) were measured on a Micrometrics ASAP 2020 Surface Area and Porosity Analyzer. The water adsorption isotherms were measured on an Intelligent Gravimetric Sorption Analyzer (IGA100B).

Section S2. Syntheses of metal doped STU-1s

S2A. Ligand synthesis.

The ligand 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine (BIm) was prepared by the reported method.^{S1} A methanol solution (10.0 mL) of hydrazine monohydrate (1.001 g, 10.0 mmol) was added to a methanol solution (25.0 mL) of 4-formylimidazole (3.832 g, 20.0 mmol). The mixture was stirred overnight at 50 °C. A light-yellow precipitate was collected by filtration (3.275 g, yield, 87.0 %). The solubility of BIm in DMSO, DMF, ethanol, and methanol is very poor. The NMR characterization is not performed on the BIm. IR (KBr disk): 3133w, 3064w, 2995w, 2962w, 2902w, 2774m, 2667m, 2594m, 1637s, 1543w, 1512m, 1445s, 1311w, 1278m, 1254w, 1218w, 1170w, 1118w, 1092m, 993s, 908w, 923w, 908w, 874m, 859m, 819m, 786m, 777m, 692w, 627s.

S2B. Syntheses of metal doped STU-1s.

Synthesis of Cu_{0.10}-STU-1.

Method 1 (Direct heating): The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (803.17 mg, 2.70 mmol), $Cu(NO_3)_2$ (72.48 mg, 0.30 mmol) and BIm (564.60 mg, 3.0 mmol) were dissolved into DMF/ethanol mixed solvent (200 mL, 4:1, v/v), which were sealed in a flask and

heated at 100 °C for 3 days. The mixture was cooled to room temperature, and the resulting powder was collected by filtration and washed with DMF (3×20 mL) and methanol (3×20 mL) and then dried under vacuum to afford the product as a light green crystalline powder (Yield: 637.4 mg).

Method 2 (Solvothermal): $Zn(NO_3)_2 \cdot 6H_2O$ (10.71 mg, 0.036 mmol), $Cu(NO_3)_2$ (0.9664 mg, 0.004 mmol) and BIm (7.45 mg, 0.04 mmol) were dissolved into a mixture solvent (1.6 mL DMF and 0.4 mL EtOH). The solution was sealed in a Pyrex glass tube and heated in an oven at 100 °C for 72 hours, and then cooled to room temperature at a rate of 5 °C/h. Light green polyhedral crystals were collected and washed with DMF (3×2 mL) and methanol (3×2 mL) (Yield: 5.1 mg).

Method 3 (Microwave): A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (72.29 mg, 0.243 mmol), $Cu(NO_3)_2$ (6.52 mg, 0.027 mmol), and BIm (50.00 mg, 0.27 mmol) and trimethylamine (1.5 mL) were dissolved in 15 mL of DMF. The solution was then sealed with a Pyrex sample vial and heated at 200 W for a reaction time of 10 minutes. The obtained light green crystalline powder was filtered and washed with DMF (3 × 5 mL) (Yield: 56.5 mg).

Method 4 (Diffusion): The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (141.89 mg, 0.477 mmol), $Cu(NO_3)_2$ (13.04 mg, 0.053 mmol), and BIm (100 mg, 0.53 mmol) were dissolved into DMF (25 mL) under stirring with a magnetic bar. The mixture solution was separated into 5 small vials. Then the small vials were placed into a large bottle with an atmosphere of triethylamine (1 mL) in hexane (25 mL), and were allowed to sit at room temperature for 3 days. The obtained light green crystalline powder was filtered and washed with DMF (3×5 mL) and methanol (3×5mL) to afford the product (Yield: 103.2 mg).

Method 5 (Mechanical synthesis): A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (141.89 mg, 0.477 mmol), $Cu(NO_3)_2$ (13.04 mg, 0.053 mmol), and BIm (100 mg, 0.53 mmol) were grinded for 1 hour until it turned to be green. 3×2 mL triethylamine was dropwise added with grinding until it was dried. The light green crystalline powder was washed with

DMF (3×10 mL) and methanol (3×10 mL) to afford the product (Yield: 36.4 mg).

Syntheses of Cu_{0.01}-STU-1

The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (883.49 mg, 2.97 mmol), $Cu(NO_3)_2$ (7.25 mg, 0.03 mmol) and BIm (564.60 mg, 3 mmol) were dissolved into DMF/ethanol mixed solvent (200 mL, 4:1, v/v), sealed in a flask and heated at 100 °C for 3 days. The mixture was cooled to room temperature. The resulting powder was collected by filtration and washed with DMF (3×20 mL) and methanol (3×20 mL) and then dried under vacuum to afford the yellow-green crystalline powder product (Yield: 509.2 mg).

Syntheses of Cu_{0.05}-STU-1

The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (847.79 mg, 2.85 mmol), $Cu(NO_3)_2$ (36.24 mg, 0.15 mmol) and BIm (564.60 mg, 3 mmol) were dissolved into DMF/ethanol mixed solvent (200 mL, 4:1, v/v), sealed in a flask and heated at 100 ° C for 3 days. After the mixture was cooled to room temperature, the resulting precipitate was collected by filtration and washed with DMF (3×20 mL) and methanol (3×20 mL) and then dried under vacuum to afford a yellow-green crystalline powder product (Yield: 424.8 mg).

Syntheses of Cu_{0.167}-STU-1

The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (743.38 mg, 2.50 mmol), $Cu(NO_3)_2$ (121.04 mg, 0.50 mmol) and BIm (564.60 mg, 3 mmol) were dissolved into a DMF/ethanol mixed solvent (200 mL, 4:1, v/v), sealed in a flask and heated at 100 °C for 3 days. After the mixture was cooled to room temperature, the resulting precipitate was collected by filtration and washed with DMF (3 ×20 mL) and methanol (3×20 mL) and then dried under vacuum to afford the light green crystalline powder product (Yield: 657.1 mg).

Syntheses of Cd_{0.6}-STU-1

The mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (356.96 mg, 1.20 mmol), $Cd(NO_3)_2 \cdot 4H_2O$ (554.40 mg, 1.80 mmol) and BIm (564.60 mg, 3 mmol) were dissolved into DMF/ethanol mixed solvent (200 mL, 4:1, v/v), sealed in a flask and heated at 100 °C for 3 days. After the mixture was cooled to room temperature, the resulting precipitate was collected by

filtration and washed with DMF ($3 \times 20 \text{ mL}$) and methanol ($3 \times 20 \text{ mL}$) and then dried under vacuum to afford a yellow crystalline powder product (Yield: 318.4 mg).

Syntheses of Fe_{0.10}-STU-1

The mixture of Zn(NO₃)₂·6H₂O (803.17 mg, 2.70 mmol), Fe(NO₃)₃·9H₂O (121.21 mg, 0.30 mmol) and BIm (564.60 mg, 3 mmol) were dissolved into DMF/ethanol mixed solvent (200 mL, 4:1, v/v) , sealed in a flask and heated at 100 °C for 3 days. After the mixture was cooled to room temperature, the resulting powder was collected by filtration and washed with DMF (3×20 mL) and methanol (3×20 mL) and then dried under vacuum to afford the brown crystalline powder (Yield: 202.5 mg).

Section S3. Characterization of Cu_{0.10}-STU-1

S3A. Crystallographic studies

Single crystal structures of Cu_{0.10}-STU-1S was measured by X-ray diffraction. Data collection were performed on an Agilent Technologies Gemini A System (Cu K α , λ = 1.54178 Å) at 293K. The data were processed using CrysAlis^{Pro.1}. The structures were solved by direct methods and refined by full-matrix least-squares refinements based on F^2 . Anisotropic thermal parameters were applied to all non-hydrogen atoms. The hydrogen atoms were generated geometrically. The crystallographic calculations were conducted using SHELXL-97 programs. ^{S2} The treatment for the guest molecules in the giant cavities involves the use of the SQUEEZE program of PLATON. ^{S3} A summary of crystal data and structure refinement parameters is listed in Table S1.

Parameter	Cu0.10-STU-1S
Chemical formula	$C_{384}H_{288}Cu_{4.8}N_{288}Zn_{43.2}$
Formula weight	12066.00
Crystal system	Cubic
Space group	$Ia\overline{3}d$
<i>a</i> (Å)	34.4885(2)
<i>b</i> (Å)	34.4885(2)
<i>c</i> (Å)	34.4885(2)
α (deg)	90.00
β (deg)	90.00
$\gamma(\text{deg})$	90.00
$V(\text{\AA}^3)$	41022.6(4)
Ζ	2
$D_{calcd}(g \ cm^{-3})$	0.977
$\mu (\mathrm{mm}^{-1})$	1.865
Reflections collected	18071
Unique reflections	3440
$R_{ m int}$	0.0655
Goodness-of-fit on F^2	0.928
R_1^a [I > 2 σ (I)]	0.0602
wR_2^b [I > 2 σ (I)]	0.1592
R_1^a [all refl.]	0.1111
wR_2^b [all refl.]	0.1865

 Table S1 Summary of Crystal Data and Structure Refinement Parameters for Cu_{0.10}-STU-1S

^a $R_1 = \sum (||F_0| - |F_c||) / \sum |F_0|;$ ^b $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$

Fig. S1 Photograph of Cu_{0.10}-STU-1S crystals.

Fig. S2 The coordination mode of BIm and Zn^{2+}/Cu^{2+} ions (a), and the overview of the 3D topologic framework of Cu_{0.10}-STU-1s: view along the *a*-axis (b) and 111 direction (c). Color code: Zn = Blue, Cu = Yellow, Ligand = Gray. The yellow tetrahedrons are randomly chosen to highlight the doping framework.

S3B. Characterizations of ICP-AES, EDS, and TGA

Fig. S4 X-ray Energy Dispersive Spectroscopy (EDS) of Cu_{0.01}-STU-1.

Fig. S5 X-ray Energy Dispersive Spectroscopy (EDS) of Cu_{0.05}-STU-1.

Fig. S6 X-ray Energy Dispersive Spectroscopy (EDS) of Cu_{0.10}-STU-1.

Fig. S7 X-ray Energy Dispersive Spectroscopy (EDS) of Cu_{0.167}-STU-1.

Fig. S8 X-ray Energy Dispersive Spectroscopy (EDS) of Cd_{0.6}-STU-1.

Fig. S9 The TGA plot of metal doped STU-1s.

Section S4. Chemical Stabilities of metal doped STU-1s and STU-1

S4A. Water stability of STU-1

Fig. S10 PXRD patterns of as-synthesized STU-1 samples and that soaked in boiling water for 24 h.

S4B. Chemical stability of metal doped STU-1s

Fig. S11 PXRD patterns for Cu_{0.01}-STU-1 measured for chemical stability tests: (a) as-synthesized sample and that soaked in boiling water 7 days, (b) as-synthesized sample and that soaked in an aqueous HCl solution (pH = 3.0) at 100 °C for up to 24 h, and (c) as-synthesized sample and that soaked in an aqueous NaOH solution (pH = 13.0) at 100 °C for up to 24 h.

Fig. S12 PXRD patterns for Cu_{0.05}-STU-1 measured for chemical stability tests: (a) as-synthesized sample and that soaked in boiling water for 1, 3, 5 and 7 days, respectively. (b) as-synthesized sample and that soaked in an aqueous HCl solution (pH = 3.0) at 100 °C for up to 24h, and (c) as-synthesized sample and that soaked in an aqueous NaOH solution (pH = 13.0) at 100 °C for up to 24h.

Fig. S13 PXRD patterns for Cu_{0.10}-STU-1 measured for chemical stability tests: (a) as-synthesized sample and that soaked in an aqueous HCl solution (pH = 3.0) at 100 °C for up to 24 h, and (b) as-synthesized sample and that soaked in an aqueous NaOH solution (pH = 13.0) at 100 °C for up to 24 h.

Fig. S14 PXRD patterns for Cd_{0.6}-STU-1 measured for chemical stability tests: (a) as-synthesized sample and that soaked in boiling water 7 days. (b) as-synthesized sample and that soaked in an aqueous NaOH solution (pH = 13.0) at 100 °C for up to 24 h.

Section S5. Gas sorption studies

S5A. Gas-Sorption Measurements.

Gas sorption experiments were carried out on a Micromeritics ASAP 2010 surface area and pore size analyzer. Prior to the measurement, the samples were exchanged with methanol (3×10 mL) over a three-day period at room temperature, and then dried under dynamic vacuum ($<10^{-3}$ torr) at room temperature overnight. Then, the samples were heated and evacuated by using the "outgas" function of the surface area analyzer for 10 hours at 120°C. Finally, the treated samples of metal doped STU-1s were used for N₂ sorption measurement at 77 K with liquid nitrogen, and CO₂ sorption measurement at 273.15 K (ice-water bath).

S5B. Gas adsorption isotherms of the boiling water treated samples

Fig. S15 Experimental N_2 adsorption isotherms for metal doped STU-1s and that soaked in boiling water for 7 days at 77 K.

Fig. S16 Experimental CO₂ adsorption isotherms for as synthesized sample of metal doped STU-1s and that soaked in boiling water for 7 days at 273 K.

Section S6. Scanning electron microscopy studies

S6A. Experimental detail

Scanning electron microscopy (SEM) analyses were carried out on a JSM-6360LA microscope (JEOL) at an accelerating voltage of 10.0 kV. The SEM specimens were prepared by placing a xerogel on a conductive carbon adhesive, followed by gold coating in a sputter coater (Desk-II; Den-ton Vacuum).

S6B. Scanning Electron Microscopy Imaging (SEM)

Fig. S17 SEM image of Cu_{0.01}-STU-1 (left: as-synthesized samples, right: sample soaked in boiling water for up to 7 days).

Fig. S18 SEM image of Cu_{0.05}-STU-1 (left: as-synthesized samples, right: sample soaked in boiling water for up to 7 days).

Fig. S19 SEM image of Cu_{0.167}-STU-1 (left: as-synthesized samples, right: samples in boiling water for up to 7 days.

Fig. S20 SEM image of Cd_{0.6}-STU-1 (left: as-synthesized samples, right: sample soaked in boiling water for up to 7 days).

Section S7. Water stability of other MOFs

Fig. S21 PXRD patterns monitoring the hydro-stability of (a) MIL-101 and (b) UiO-66.

Fig. S22 Experimental N_2 adsorption isotherms for MIL-101and UiO-66 and that soaked in boiling water for 7 days at 77 K.

Fig. S23 PXRD patterns ZIF-8: calculated, as-synthesized sample, and that soaked in boiling water for 7 days at 77 K.

Fig. S24 Experimental N₂ adsorption isotherms for ZIF-8: as synthesized sample and that soaked in boiling water for 7 days at 77 K.

Section S8. Water stability of STU-3 and types of water sorption isotherms

Fig. S25 PXRD patterns of as-synthesized STU-3 sample and that soaked in boiling water for 24 h.

Fig. S26 Seven types of water sorption isotherms according to IUPAC.^{S4}

Section S9. Characterization of Fe²⁺ doped STU-1

Fig. S27 Metal ratio of Fe_{0.10}-STU-1 measured by ICP-AES. Column colors: Zn = Yellow, Fe = Red.

Fig. S28 PXRD patterns of Fe0.10-STU-1: as-synthesized sample and that soaked in boiling water for 24 h.

Fig. S29 SEM image of Fe_{0.10}-STU-1 (left: as-synthesized samples, right: sample was soaked in boiling water for up to 7 days).

References

S1. Fujita, K.; Kawamoto, R.; Tsubouchi, R.; Sunatsuki, Y.; Kojima, M.; Iijima, S.; Matsumoto, N. *Chem. Lett.* 2007, **36**,1284-1285.

S2. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

S3. Spek, A. J. Appl. Crystallogr. 2003, 36, 7-13.

S4. E.-P. Ng and S. Mintova, Micropor. Mesopor. Mater. 2008, 114, 1-26.