Supporting Information

Gold-catalyzed [4+3] and [4+4]-Annulation Reactions of Propiolate Derivatives with Epoxides and Oxetanes to Construct 1,4-Dioxepane and 1,5-Dioxocane Cores

Rajkumar Lalji Sahani and Rai-Shung Liu\*

Department of Chemistry, National Tsing-Hua University, Hsinchu Taiwan, ROC E-mail: <u>rsliu@mx.nthu.edu.tw</u>

# **Contents:**

| (1) Representative synthetic procedures                                                                  | 2   |
|----------------------------------------------------------------------------------------------------------|-----|
| (2) References                                                                                           | 5   |
| (3) Spectral data for key compounds (1c, 1h, 1a', 2c-2d, 3a-3p, 5a-5m and 7)                             | 6   |
| (4) X-ray crystallographic structure and data for compound <b>3d</b> and <b>3o</b>                       | -20 |
| (5) <sup>1</sup> H and <sup>13</sup> C spectra of key compounds (1c, 1h, 1a', 2c-cd, 3a-3p, 5a-5m and 7) | -38 |

#### (1) Representative synthetic procedures:

#### (a) General procedure:

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa apparatus. Tetrahydrofuran and hexane were dried with sodium, benzophenone and distilled before use. Dichloromethane and DCE were dried over CaH<sub>2</sub> and distilled. Methanol and triethylamine (Et<sub>3</sub>N) were stored over 4Å molecular sieves prior to use. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Bruker 400, Varian 500 MHz and a Bruker 600 MHz spectrometers using chloroform-d (CDCl<sub>3</sub>) as the internal standard. Compounds **2a** (Aldrich), **2b** (Alfa Aesar), **2e** (Alfa Aesar) were bought commercially and used as it is. Digold complex [(IPrAu)<sub>2</sub>OH]SbF<sub>6</sub> is prepared according known literature procedure.<sup>[S8]</sup>



To a dichloromethane (DCM, 150 mL) solution of carbon tetrabromide (14.83 g, 44.71 mmol) was added a DCM solution (10 mL) of triphenylphosphine (14.66 g, 55.89 mmol) at 0 °C over 10 min; the cooling was then removed before the mixture was stirred at room temperature for 30 min before a DCM solution (10 mL) of 3-phenylpropanal (3.00 g, 22.35 mmol) was slowly added. The resulting mixture was stirred for 2 h at room temperature before treatment with  $H_2O$  (100 mL) to partition the organic layer. The resulting mixture was extracted with DCM (3 x 20 mL); the combined organic layer was washed with brine, dried over MgSO<sub>4</sub>, and concentrated under reduced pressure. To this residue was added 100 mL of diethyl ether, and the resulting suspension is filtered to remove triphenylphosphine oxide. The ethereal filtrate is concentrated in vacuo, and chromatographed through a silica gel column (ether/hexane = 1:10)to afford (4,4-dibromobut-3-en-1-yl)benzene (5.96 g, 20.6 mmol, 92 %).

To a dry THF solution (100 mL) of (4,4-dibromobut-3-en-1-yl)benzene (5.00 g, 17.24 mmol) was added n-BuLi (14.50 mL, 2.5 M in hexane, 36.21 mmol) slowly at -78 °C; the resulting solution was stirred for 30 min before a dry THF solution (10 mL) of ethyl chloroformate (2.06 g, 18.97 mmol) was added at -78 °C. The resulting mixture was stirred at -78 °C for 30 min, and warmed to room temperature before stirring for 2 h. To this solution was added a saturated aqueous

NH<sub>4</sub>Cl (100 mL), and the aqueous layer was separated and extracted with (3 x 20 mL) of ether. The organic layer is washed with brine (50 mL), dried over MgSO<sub>4</sub>, and concentrated under reduced pressure. The residue was eluted through a silica column (EA/Hexane = 1:20) to afford ethyl 5-phenylpent-2-ynoate (2.18 g, 10.8 mmol, 62 %) as colorless liquid.

To an ethanol solution (20 mL) of ethyl 5-phenylpent-2-ynoate (2.0 g, 9.89 mmol) was added slowly an aqueous NaOH solution (50 mL, 1 N). The mixture was stirred for 2.5 h before treatment with water (100 mL); the organic layer was extracted with DCM. The aqueous phase was acidified with 20% HCl solution until pH = 3.0 and the organic layer was extracted with dichloromethane. The combined extracts were dried over MgSO<sub>4</sub>, and concentrated under reduced pressure to give 5-phenylpent-2-ynoic acid (1.46 g, 8.4 mmol, 85 %).

To a DCM solution (75 mL) of 5-phenylpent-2-ynoic acid (1.46 g, 8.38 mmol) at 0 °C was added *tert*-butyl acetate (11.3 mL, 83.81 mmol) and TfOH (0.070 mL, 0.84 mmol) dropwise. The resulting solution was stirred for 20 min and carefully washed with a saturated NaHCO<sub>3</sub> solution. The aqueous layer was extracted with DCM (3x100 mL) and the combined extracts were washed with a saturated NaCl solution, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure to give crude product. The purification was conducted by a silica column using (EA/hexane = 1:20) as a mobile phase to give tert-butyl 5-phenylpent-2-ynoate (**1h**) (1.35 g, 5.7 mmol, 70 %) as colorless oil.

#### (c) Preparation of 2-(4-bromophenyl)oxirane (2c).<sup>[S4]</sup>



To an acetonitrile solution (50 mL) of 4-bromobenzaldehyde (2.0 g, 10.80 mmol) was added potassium hydroxide (1.21 g, 21.62 mmol) and water (0.05 mL, 2.7 mmol). To this solution was added trimethylsulfonium iodide (2.21 g, 10.80 mmol); the mixture was heated to reflux at 60 °C for 3 h. The reaction mixture was treated with water (100 mL), and extracted with diethyl ether. The extracts were washed with water, dried over MgSO<sub>4</sub>, and concentrated to give crude product. The purification was conducted on a silica column with (EA/hexane = 1: 10) to give 2-(4-bromophenyl)oxirane (**2c**) (1.72 g, 8.6 mmol, 80 %) as a colorless oil.

#### (d) Typical procedure for standard catalytic operations:

#### (i) Typical procedure for the synthesis of 3,7-diphenyl-2H-1,4-dioxepin-5(3H)-one (3a).



A two-neck flask was charged with **IPrAuCl** (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, 7.68 mg, 0.0124 mmol), silver hexafluoride (4.24 mg, 0.0124 mmol) and MS 4A; to this mixture was added dry DCE (1.0 mL). The resulting solution was stirred at room temperature for 10 min before it was added a dry DCE solution (2 mL) of tert-butyl 3-phenylpropiolate (1a) (100 mg, 0.495 mmol) and freshly prepared 2-phenyloxirane (2a) (178 mg, 1.48 mmol) slowly. After stirring at 35 °C for 6 h, the resulting solution was filtered over a short celite bed, concentrated, and eluted through a silica column (EA/hexane = 1 : 10) to give the desired 3,7-diphenyl-2H-1,4-dioxepin-5(3H)-one (3a) (95 mg, 0.356 mmol, 72 %) as colorless liquid.

# (ii) Typical procedure for the synthesis of (*Z*)-4,8-diphenyl-7,8-dihydro-1,5-dioxocin-2(6*H*)-one (5a).



A two-neck flask was charged with IPrAuCl (7.68 mg, 0.0124 mmol) and silver hexafluoride (4.24 mg, 0.0124 mmol), and to this mixture was added dry DCE (1.0 mL). The resulting mixture was stirred at room temperature for 10 min. To this mixture was added a dry DCE solution (2 mL) of tert-butyl 3-phenylpropiolate (**1a**) (100 mg, 0.495 mmol) and freshly prepared 2-phenyloxetane (**4a**) (199 mg, 1.48 mmol) dropwise. After stirring at 35 °C for 6 h, the reaction mixture was filtered over a short celite bed, concentrated, and eluted through a silica column (EA/hexane = 1.5 : 10) to give the desired (*Z*)-4,8-diphenyl-7,8-dihydro-1,5-dioxocin-2(6*H*)-one (**5a**) (93 mg, 0.331 mmol, 67%) as white solid.

# (iii) Typical Procedure for the synthesis of(Z)-4-phenyl-9-((tetrahydrofuran-2-yl)oxy)-6,7,8,9-tetrahydro-2H-1,5-dioxonin-2-one (7).



A two-neck flask was charged with P(t-Bu)<sub>2</sub>(o-biphenyl)AuCl (13.1 mg, 0.0248 mmol) and silver hexafluoride (8.5 mg, 0.0247 mmol), and to this mixture was added dry DCE (1.0 mL). The resulting mixture was stirred at room temperature for 10 min. To this mixture was added a dry DCE solution (2 mL) of *tert*-butyl 3-phenylpropiolate (**1a**) (100 mg, 0.495 mmol) and freshly prepared tetrahydrofuran-2-ol (131 mg, 1.48 mmol) slowly. After stirring at 40 °C for 8 h, the reaction mixture was filtered over a short celite bed, concentrated, and eluted through a silica column (EA/hexane = 1.5 : 10) to give the desired (Z)-4-phenyl-9-((tetrahydrofuran-2-yl)oxy)-6,7,8,9 -tetrahydro-2*H*-1,5-dioxonin-2-one (**7**) (113 mg, 0.372 mmol, 75 %) as colorless oil.

#### (2) References:

- S1. a) R. B. Dateer, K. Pati, R.-S. Liu, *Chem. Comm.* 2012, 48, 7200-7202; b) Ohashi, Masao et al, *European Journal of Medicinal Chemistry* 2015, 90, 53-67; c) S. Vercruysse, L. Cornelissen, F. Nahra, L. Collard and O. Riant, *Chem. Eur. J.*, 2014, 20, 1834-1838.
- S2. Compound **1a-1b**, **1d-1g**, **1i-1j**: Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu\*, *Chem. Commun.*, 2015, **51**, 13004-13007.
- S3. Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu Chem. Sci., 2015, 6, 5964-5968.
- S4. E. Borredon, F. Clavellinas, M. Delmas, A. Gaset, J. V. Sinisterra J. Org. Chem., 1990, 55, 501–504.
- S5. Compound 6: K. Kojima, M. Kimura, S. Uedab, Y. Tamarub Tetrahedron 2006, 62, 7512–7520.
- S6. a) Compound 2f: Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. *Tetrahedron Lett.*, 1989, 30, 1427-1428. b) Compound racemic 2g: i) Stradi, R.; Pocar, D.; Cassio, C. J. Chem. Soc., Perkin *Trans. 1*, 1974, 2671-2672. ii) Singaram, B.; Goralski, C.; Rangaishenvi, M.; Brown, H. J. Am. *Chem. Soc.*, 1989, 111, 384-386. iii) Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. *Tetrahedron: asymmetry*, 2006, 17, 372-376; c) Compound 2h was prepared form commercially available transbeta-methylstyrene (available from Aldrich) by using the procedure by Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. *Tetrahedron: asymmetry*, 2006, 17, 372-376.
- S7. a) Compound 4a-4e: F. Bertolini, S. Crotti, V. D. Bussolo, M. Pienschi, J. Org. Chem. 2008, 73, 8998-9007; K. Okuma, Y. Tanaka, H. Ohta, J. Org. Chem. 1983, 48, 5133-5134.
- S8. Ruben S. Ramon,<sup>[a]</sup> Sylvain Gaillard,<sup>[a]</sup> Albert Poater,<sup>[b, c]</sup> Luigi Cavallo,<sup>[b]</sup>Alexandra M. Z. Slawin,<sup>[a]</sup> and Steven P. Nolan<sup>\*[a]</sup> Chem. Eur. J. 2011, **17**, 1238 1246.

(3) Spectral data: Spectral data for *tert*-butyl 5-phenylpent-2-ynoate (1h).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.30 ~ 7.28 (m, 2H), 7.23 ~ 7.19 (m, 3H), 2.87 (t, *J* = 7.7 Hz, 2H), 2.57 (t, *J* = 7.4 Hz, 2H), 1.48 (s, 9H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  152.7, 139.7, 128.5, 128.3, 126.5, 85.8, 82.9, 74.9, 33.9, 27.9, 20.8; ESI-MS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>2</sub>: 230.1307; found 230.1309.

# Spectral data for *tert*-butyl 3-(4-bromophenyl)propiolate (1c).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 1.51 (s, 9H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  152.8, 134.1, 131.9, 124.9, 118.9, 83.7, 82.9, 82.5, 28.0; ESI-MS calcd for C<sub>13</sub>H<sub>13</sub>BrO<sub>2</sub>: 280.0099; found 280.0098.

## Spectral data for 2-(4-bromophenyl)oxirane (2c).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 3.80 (dd, *J* = 4.2, 2.4 Hz, 1H), 3.12 (dd, *J* = 5.4, 3.6 Hz, 1H), 2.72 (dd, *J* = 5.4, 2.4 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  136.7, 131.6, 127.1, 121.9, 51.8, 51.2; ESI-MS calcd for C<sub>8</sub>H<sub>7</sub>BrO: 197.9680; found 197.9679.

Spectral data for 2-(p-tolyl)oxirane (2d).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): 7.17 ~ 7.13 (m, 4H), 3.82 (dd, J = 4.0, 2.7 Hz, 1H), 3.11 (dd, J = 5.5, 4.1 Hz, 1H), 2.78 (dd, J = 5.5, 2.6 Hz, 1H), 2.33 (s, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  137.9, 134.5, 129.2, 125.5, 52.3, 51.0, 21.1; ESI-MS calcd for C<sub>9</sub>H<sub>10</sub>O: 134.0732; found 134.0733.

Spectral data for 3,7-diphenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3a).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 (t, *J* = 7.8 Hz, 2H), 7.47 ~ 7.34 (m, 8H), 5.89 (s, 1H), 5.59 (d, *J* = 6.0 Hz, 1H), 4.76 (d, *J* = 13.2 Hz, 1H), 4.69 (dd, *J* = 13.2, 5.4 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  166.1, 162.8, 135.7, 134.2, 131.1, 128.9, 128.8, 128.6, 126.8, 125.9, 94.0, 78.3, 77.2; ESI-MS calcd for C<sub>17</sub>H<sub>14</sub>O<sub>3</sub>: 266.0943; found 266.0943.

Spectral data for 3-phenylpropiolic acid (1a').



White Solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  10.95 (s, 1H), 7.61 ~ 7.59 (m, 2H), 7.48 ~ 7.45 (m, 1H), 7.39 ~ 7.37 (m, 2H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  158.8, 133.3, 131.2, 128.6, 119.0, 89.2, 80.0; ESI-MS calcd for C<sub>9</sub>H<sub>6</sub>O<sub>2</sub>: 146.0368; found 146.0372.

Spectraldatafor2-hydroxy-2-phenylethyl3-phenylpropiolate(3a')and2-hydroxy-1-phenylethyl3-phenylpropiolate(3a'')



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 ~ 7.57 (m, 3H), 7.46 ~ 7.43 (m, 1H), 7.42 ~ 7.40 (m, 2H), 7.39 ~ 7.35 (m, 7H), 7.34 ~ 7.31 (m, 2H), 5.95 (dd, *J* = 7.9, 3.9 Hz, 1H), 5.04 (dd, *J* = 8.8, 3.1 Hz, 1H), 4.41 (dd, *J* = 11.6, 3.1 Hz, 1H), 4.29 (dd, *J* = 11.5, 8.8 Hz, 1H), 3.97 (dd, *J* = 12.3, 7.9 Hz, 1H), 3.86 (dd, *J* = 12.3, 3.9 Hz, 1H), 2.6 (s, 1H), 1.7 (s, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  153.9, 153.4, 139.2, 136.2, 133.03, 133.01, 130.8, 130.7, 128.8, 128.7, 128.6, 128.5, 128.47, 128.42, 126.7, 126.1, 119.4, 87.3, 87.2, 80.4, 80.2, 78.6, 72.1, 70.5, 65.6; ESI-MS calcd for C<sub>17</sub>H<sub>14</sub>O<sub>3</sub>: 266.0943; found 266.0944.

#### Spectral data for 7-(4-chlorophenyl)-3-phenyl-2H-1,4-dioxepin-5(3H)-one (3b).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (d, *J* = 8.8 Hz, 2H), 7.44 ~ 7.37 (m, 7H), 5.86 (s, 1H),  $\delta$  5.59 (d, *J* = 5.9 Hz, 1H), 4.75 (dd, *J* = 13.5, 0.7 Hz, 1H), 4.69 (dd, *J* = 13.4, 6.0 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  165.9, 161.6, 137.4, 135.6, 132.6, 129.0 128.9, 128.1, 125.9, 94.3, 78.3, 77.3 (one CH merging); ESI-MS calcd for C<sub>17</sub>H<sub>13</sub>ClO<sub>3</sub>: 300.0553; found 300.0552.

#### Spectral data 7-(4-bromophenyl)-3-phenyl-2H-1,4-dioxepin-5(3H)-one (3c).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, J = 4.7 Hz, 4H), 7.44 ~ 7.39 (m, 4H), 7.36 (d, J = 7.1 Hz, 1H), 5.86 (s, 1H), 5.58 (d, J = 5.9 Hz, 1H), 4.75 (d, J = 13.5 Hz, 1H), 4.69 (dd, J = 13.4,

6.0 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>): δ 165.9, 161.6, 135.6, 133.1, 131.9, 129.0, 128.9, 128.3, 125.9, 125.7, 94.3, 78.3, 77.3; ESI-MS calcd for C<sub>17</sub>H<sub>13</sub>BrO<sub>3</sub>: 344.0048; found 344.0049.

## Spectral data for 7-(4-methoxyphenyl)-3-phenyl-2H-1,4-dioxepin-5(3H)-one (3d).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 ~ 7.62 (m, 2H), 7.43 (d, *J* = 7.3 Hz, 2H), 7.40 ~ 7.38 (m, 2H), 7.35 (d, *J* = 7.1 Hz, 1H), 6.91 ~ 6.89 (m, 2H), 5.82 (s, 1H), 5.55 (d, *J* = 5.9 Hz, 1H), 4.73 (d, *J* = 13.4 Hz, 1H), 4.66 (dd, *J* = 13.4, 6.0 Hz, 1H), 3.83 (s, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  166.3, 162.8, 162.0, 135.9, 128.9, 128.7, 128.5, 126.3, 125.9, 113.9, 92.4, 78.3, 77.1, 55.4; ESI-MS calcd for C<sub>18</sub>H<sub>16</sub>O<sub>4</sub>: 296.1049; found 296.1050.

## Spectral data for 3-phenyl-7-(thiophen-3-yl)-2*H*-1,4-dioxepin-5(3*H*)-one (3e).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.73 (dd, J = 3.1, 1.3 Hz, 1H), 7.44 ~ 7.38 (m, 4H), 7.37 ~ 7.33 (m, 2H), 7.29 (dd, *J* = 5.2, 1.3 Hz, 1H), 5.86 (s, 1H), 5.57 (d, *J* = 5.9 Hz, 1H), 4.71 (dd, *J* = 13.4, 0.6 Hz, 1H), 4.65 (dd, *J* = 13.4, 5.9 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  166.4, 158.3, 136.2, 135.7, 128.9, 128.8, 126.9, 126.7, 125.9, 125.6, 93.4, 78.3, 77.1; ESI-MS calcd for C<sub>15</sub>H<sub>12</sub>O<sub>3</sub>S: 272.0507; found 272.0506.

Spectral data for 7-cyclopropyl-3-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3f).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 ~ 7.31 (m, 5H), 5.40 (d, *J* = 5.8 Hz, 1H), 5.30 (s, 1H), 4.48 (dd, *J* = 13.4, 0.6 Hz, 1H), 4.42 (dd, *J* = 13.4, 5.9 Hz, 1H), 1.56 ~ 1.51 (m, 1H), 0.95 ~ 0.93 (m, 1H), 0.83 ~ 0.78 (m, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.5, 165.6, 135.8, 128.8, 128.7, 125.9, 92.4, 77.9, 76.6, 16.1, 7.9, 7.1; ESI-MS calcd for C<sub>14</sub>H<sub>14</sub>O<sub>3</sub>: 230.0943; found 230.0944.

#### Spectral data for 2-benzyl-6-cyclopropyl-4H-1,3-dioxin-4-one (3f').



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 ~ 7.29 (m, 2H), 7.27 ~ 7.23 (m, 3H), 5.48 (t, *J* = 5.4 Hz, 1H), 5.32 (s, 1H), 3.19 (d, *J* = 5.4 Hz, 2H), 1.57 ~ 1.53 (m, 1H), 1.08 ~ 1.04 (m, 1H), 0.92 ~ 0.87 (m, 2H), 0.71 ~ 0.67 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  175.9, 162.3, 133.6, 129.9, 128.5, 127.3, 100.7, 93.3, 39.6, 13.4, 9.0, 6.8; ESI-MS calcd for C<sub>14</sub>H<sub>14</sub>O<sub>3</sub>: 230.0943; found 230.0943.

Spectral data for 7-butyl-3-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3g).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 ~ 7.33 (m, 5H), 5.43 (d, *J* = 5.8 Hz, 1H), 5.21 (s, 1H), 4.53 (d, *J* = 13.5 Hz, 1H), 4.48 (dd, *J* = 13.5, 5.8 Hz, 1H) 2.23 ~ 2.19 (m, 2H), 1.54 ~ 1.48 (m, 2H), 1.33 ~ 1.24 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.5, 166.2, 135.8, 128.8, 128.7, 125.9, 94.4, 78.0, 76.6, 36.0, 29.4, 21.9, 13.7; ESI-MS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>: 246.1256; found 246.1256.

Spectral data for 2-benzyl-6-butyl-4H-1,3-dioxin-4-one (3g').



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 ~ 7.24 (m, 5H), 5.56 (t, *J* = 5.2 Hz, 1H), 5.25 (s, 1H), 3.23 (d, *J* = 5.1 Hz, 2H), 2.26 ~ 2.21 (m, 2H), 1.50 ~ 1.42 (m, 2H), 1.32 ~ 1.26 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  175.5, 162.5, 133.6, 129.9, 128.5, 127.2, 100.8, 95.3, 39.7, 32.7, 27.8, 21.9, 13.6; ESI-MS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>: 246.1256; found 246.1258.

Spectral data for 3-(4-fluorophenyl)-7-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3h).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 ~ 7.66 (m, 2H), 7.48 ~ 7.44 (m, 1H), 7.43 ~ 7.39 (m, 4H), 7.11 ~ 7.08 (m, 2H), 5.89 (s, 1H), 5.58 (d, *J* = 6.0 Hz, 1H), 4.73 (dd, *J* = 13.2, 0.6 Hz, 1H), 4.68 (dd, *J* = 13.2, 6.0 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  165.9, 163.7, 162.5 (d, *J*<sub>CF</sub> = 126.0 Hz), 134.1, 131.6, 131.2, 128.6, 127.9 (d, *J*<sub>CF</sub> = 7.5 Hz), 126.8, 116.0 (d, *J*<sub>CF</sub> = 21.0 Hz), 93.9, 77.7, 77.1; ESI-MS calcd for C<sub>17</sub>H<sub>13</sub>FO<sub>3</sub>: 284.0849; found 284.0848.

Spectral data for 3-(4-bromophenyl)-7-phenyl-2H-1,4-dioxepin-5(3H)-one (3i).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 ~ 7.65 (m, 2H), 7.54 ~ 7.52 (m, 2H), 7.47 ~ 7.45 (m, 1H), 7.41 ~ 7.38 (m, 2H), 7.33 ~ 7.31 (m, 2H), 5.88 (s, 1H), 5.55 (d, *J* = 5.8 Hz, 1H), 4.71 (dd, *J* = 13.4, 0.6 Hz, 1H), 4.66 (dd, *J* = 13.5, 5.9 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  165.8, 162.9, 134.7, 133.9, 132.1, 131.2, 128.6, 127.7, 126.8, 122.9, 93.9, 77.6, 76.8; ESI-MS calcd for C<sub>17</sub>H<sub>13</sub>BrO<sub>3</sub>: 344.0048; found 344.0046.

Spactral data for 7-phenyl-3-(p-tolyl)-2H-1,4-dioxepin-5(3H)-one (3j).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 ~ 7.67 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 6.4 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 5.89 (s, 1H), 5.55 (d, *J* = 5.9 Hz, 1H), 4.74 (dd, *J* = 13.4, 0.7 Hz, 1H), 4.68 (dd, *J* = 13.4, 6.0 Hz, 1H), 2.35 (s, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  166.3, 162.8, 138.7, 134.2, 132.8, 131.1, 129.6, 128.6, 126.8, 125.9, 94.0, 78.3, 77.3, 21.1; ESI-MS calcd for C<sub>18</sub>H<sub>16</sub>O<sub>3</sub>: 280.1099; found 280.1098.

Spectral data for 3,3-dimethyl-7-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3k).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.67 ~ 7.66 (m, 2H), 7.46 ~ 7.43 (m, 1H), 7.40 ~ 7.37 (m, 2H), 5.84 (s, 1H), 4.39 (s, 2H), 1.46 (s, 6H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  165.7, 163.2, 133.9, 131.0, 128.6, 126.8, 95.2, 78.2, 78.1(CH<sub>2</sub>), 23.9; ESI-MS calcd for C<sub>13</sub>H<sub>14</sub>O<sub>3</sub>: 218.0943; found

218.0942.

## Spectral data for 7-butyl-3,3-dimethyl-2H-1,4-dioxepin-5(3H)-one (3l).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  5.17 (s, 1H), 4.15 (s, 2H), 2.18 (t, *J* = 7.4 Hz, 2H), 1.54 ~ 1.51 (m, 2H), 1.39 (s, 6H), 1.35 ~ 1.31 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.9, 165.7, 95.8, 77.8, 77.7, 35.7, 29.3, 23.8, 22.1, 13.7; ESI-MS calcd for C<sub>11</sub>H<sub>18</sub>O<sub>3</sub>: 198.1256; found 198.1257.

Spectral data for 10-phenyl-7,11-dioxaspiro[5.6]dodec-9-en-8-one (3m).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 ~ 7.65 (m, 2H), 7.43 (t, *J* = 6.2 Hz, 1H), 7.40 ~ 7.37 (m, 2H), 5.82 (s, 1H), 4.43 (s, 2H), 1.91 ~ 1.87 (m, 2H), 1.79 ~ 1.74 (m, 2H), 1.62 ~ 1.57 (m, 3H), 1.54 ~ 1.50 (m, 2H), 1.42 ~ 1.40 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  165.8, 163.3, 134.1, 130.9, 128.6, 126.8, 95.2, 79.3, 77.2, 32.1, 25.2, 21.6; ESI-MS calcd for C<sub>16</sub>H<sub>18</sub>O<sub>3</sub>: 258.1256; found 258.1255.

Spectral data for (2R,3S)-2-methyl-3,7-diphenyl-2H-1,4-dioxepin-5(3H)-one (3n).



Colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 ~ 7.67 (m, 2H), 7.47 ~ 7.44 (m, 3H), 7.42 ~ 7.31 (m, 5H), 5.84 (s, 1H), 5.72 (s, 1H), 4.93 (q, *J* = 6.8 Hz, 1H), 1.43 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>):  $\delta$  166.6, 160.7, 135.9, 135.0, 130.9, 128.7, 128.6, 128.5, 126.8, 126.1, 93.3, 82.4,

79.2, 10.7; EI-MS calcd for C<sub>18</sub>H<sub>16</sub>O<sub>3</sub>: 280.1099; found 280.1099.

Spectral data for (2*R*,3*S*)-7-(4-methoxyphenyl)-2-methyl-3-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (30).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.65 ~ 7.62 (m, 2H), 7.46 ~ 7.45 (m, 2H), 7.39 ~ 7.37 (m, 2H), 7.34 ~ 7.31 (m, 1H), 6.91 ~ 6.89 (m, 2H), 5.78 (s, 1H), 5.68 (s, 1H), 4.91 (q, *J* = 7.2 Hz, 1H), 3.83 (s, 3H), 1.42 (d, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  166.8, 161.9, 160.6, 136.0, 128.7, 128.5, 128.4, 127.1, 126.1, 113.9, 91.8, 82.2, 79.2, 55.4, 10.7; EI-MS calcd for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>: 310.1205; found 310.1195.

Spectral data for (2*S*,3*S*)-7-(4-methoxyphenyl)-2-methyl-3-phenyl-2*H*-1,4-dioxepin-5(3*H*)-one (3p).



Colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (d, *J* = 8.9 Hz, 2H), 7.40 ~ 7.30 (m, 5H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.80 (s, 1H), 5.28 (d, *J* = 4.8 Hz, 1H), 4.81 ~ 4.75 (m, 1H), 3.84 (s, 3H), 1.13 (d, *J* = 6.7 Hz, 3H); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>):  $\delta$  166.9, 162.2, 161.9, 136.4, 128.9, 128.7, 128.5, 127.2, 126.7, 113.9, 91.8, 82.9, 82.5, 55.4, 19.1; EI-MS calcd for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>: 310.1205; found 310.1211.

Spectral data for (Z)-4,8-diphenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5a).<sup>[S3]</sup>



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 ~ 7.67 (m, 2H), 7.44 ~ 7.32 (m, 8H), 5.67 (dd, J = 10.5, 2.7 Hz, 1H), 5.56 (s, 1H), 4.61 ~ 4.58 (m, 1H), 4.48 (td, J = 12.6, 2.4 Hz, 1H), 2.48 ~ 2.43 (m, 1H), 2.22 ~ 2.17 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  167.8, 163.7, 138.6, 135.0, 130.6, 128.6, 128.5, 128.3, 126.7, 125.9, 89.7, 76.7, 67.3, 37.9; ESI-MS calcd for C<sub>18</sub>H<sub>16</sub>O<sub>3</sub>: 280.1099; found 280.1100.

Spectral data for (Z)-4-(4-chlorophenyl)-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5b).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.60 (d, *J* = 8.6 Hz, 2H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.38 ~ 7.35 (m, 4H), 7.32 (t, *J* = 7.2 Hz, 1H), 5.64 (dd, *J* = 12.2, 2.4 Hz, 1H), 5.53 (s, 1H), 4.59 (dd, *J* = 12.6, 5.1 Hz, 1H), 4.47 (td, *J* = 12.6, 2.0 Hz, 1H), 2.48 ~ 2.43 (m, 1H), 2.19 (t, *J* = 12.8 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  167.5, 162.4, 138.6, 136.8, 133.5, 128.8, 128.7, 128.4, 128.0, 125.9, 90.1, 76.8, 67.4, 37.9; ESI-MS calcd for C<sub>18</sub>H<sub>15</sub>ClO<sub>3</sub>: 314.0710; found 314.0707.

Spectral data for (Z)-4-(4-bromophenyl)-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5c).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 ~ 7.52 (m, 4H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.33 ~ 7.31 (m, 1H), 5.63 (dd, *J* = 12.2, 2.5 Hz, 1H), 5.53 (s, 1H), 4.59 (dd, *J* = 12.7, 5.4 Hz, 1H), 4.47 (td, *J* = 12.6, 2.1 Hz, 1H), 2.46 ~ 2.43 (m, 1H), 2.19 (t, *J* = 12.5 Hz, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  167.4, 162.4, 138.5, 133.9, 131.7, 128.7, 128.4, 128.2, 125.9, 125.1,

90.1, 76.8, 67.4, 37.9; ESI-MS calcd for C<sub>18</sub>H<sub>15</sub>BrO<sub>3</sub>: 358.0205; found 358.0202.

### Spectral data for (Z)-4-(4-methoxyphenyl)-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5d).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 ~ 7.62 (m, 2H), 7.42 (t, *J* = 8.9 Hz, 2H), 7.37 ~ 7.35 (m, 2H), 7.32 ~ 7.31 (m, 1H), 6.92 ~ 6.89 (m, 2H), 5.64 (dd, *J* = 12.2, 2.6 Hz, 1H), 5.48 (s, 1H), 4.56 (dd, *J* = 12.6, 4.7 Hz, 1H), 4.47 (td, *J* = 12.3, 2.3 Hz, 1H), 3.84 (s, 3H), 2.45 ~ 2.42 (m, 1H), 2.20 ~ 2.15 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.0, 163.9, 161.7, 138.9, 128.7, 128.4 128.3, 127.4, 126.0, 113.9, 88.3, 76.6, 67.3, 55.4, 37.9; ESI-MS calcd for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>: 310.1205; found 310.1204.

Spectral data for (Z)-8-phenyl-4-(thiophen-3-yl)-7,8-dihydro-1,5-dioxocin-2(6H)-one (5e).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, *J* = 3.1 Hz, 1H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.37 ~ 7.35 (m, 2H), 7.32 ~ 7.31 (m, 2H), 7.27 ~ 7.26 (m, 1H), 5.64 (dd, *J* = 12.3, 2.6 Hz, 1H), 5.55 (s, 1H), 4.55 (dd, *J* = 12.7, 5.3 Hz, 1H), 4.45 (td, *J* = 12.6, 2.3 Hz, 1H), 2.45 ~ 2.42 (m, 1H), 2.20 ~ 2.15 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  167.8, 159.2, 138.8, 137.2, 128.7, 128.4, 126.5, 126.0, 125.9, 125.6, 89.3, 76.8, 67.1, 37.9; ESI-MS calcd for C<sub>16</sub>H<sub>14</sub>O<sub>3</sub>S: 286.0664; found 286.0665.

#### Spectral data for (Z)-4-phenethyl-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5f).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.35 ~ 7.29 (m, 7H), 7.21 (t, *J* = 8.0 Hz, 3H), 5.33 (dd, *J* = 12.3, 2.8 Hz, 1H), 4.86 (s, 1H), 4.36 ~ 4.33 (m, 1H), 4.22 (td, *J* = 12.6, 2.2 Hz, 1H), 2.93 ~ 2.87 (m, 2H), 2.56 ~ 2.52 (m, 2H), 2.29 ~ 2.27 (m, 1H), 2.08 ~ 2.04 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  167.8, 166.7, 140.3, 138.8, 128.6, 128.4, 128.3, 126.4, 126.0 90.4, 76.7, 66.6, 38.4, 37.8, 33.4; ESI-MS calcd for C<sub>20</sub>H<sub>20</sub>O<sub>3</sub>: 308.1412; found 308.1414.

Spectral data for (Z)-4-cyclopropyl-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5g).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 ~ 7.39 (m, 2H), 7.37 ~ 7.34 (m, 2H), 7.31 (t, *J* = 7.1 Hz, 3H), 5.51 (dd, *J* = 12.3, 2.7 Hz, 1H), 4.99 (s, 1H), 4.28 (dd, *J* = 5.6, 1.0 Hz, 1H), 4.23 (td, *J* = 12.4, 2.2 Hz, 1H), 2.31 ~ 2.28 (m, 1H), 2.10 ~ 2.05 (m, 1H), 1.56 ~ 1.49 (m, 1H), 0.96 ~ 0.93 (m, 1H) 0.80 ~ 0.77 (m, 1H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.7, 167.6, 138.9, 128.6, 128.3, 126.0, 87.9, 76.5, 66.9, 37.7, 16.5, 7.4, 6.5; ESI-MS calcd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>: 244.1099; found 244.1101.

Spectral data for (Z)-4-cyclohexyl-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5h).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 ~ 7.29 (m, 5H), 5.50 (dd, J = 12.3, 2.7 Hz, 1H), 4.86 (s, 1H), 4.33 (dd, J = 5.4, 1.1 Hz, 1H), 4.22 (td, J = 12.6, 2.2 Hz, 1H), 2.33 ~ 2.30 (m, 1H), 2.10 ~ 2.05 (m, 2H), 1.86 ~ 1.77 (m, 4H), 1.69 ~ 1.67 (m, 1H) 1.35 ~ 1.18 (m, 5H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  172.7, 168.6, 138.9, 128.6, 128.3, 125.9, 87.6, 76.7, 66.5, 45.5, 37.9, 31.4, 31.0, 26.2, 25.9, 25.8; ESI-MS calcd for C<sub>18</sub>H<sub>22</sub>O<sub>3</sub>: 286.1569; found 286.1568.

Spectral data for (Z)-4-isopropyl-8-phenyl-7,8-dihydro-1,5-dioxocin-2(6H)-one (5i).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 ~ 7.38 (m, 2H), 7.37 ~ 7.34 (m, 2H), 7.32 ~ 7.29 (m, 1H), 5.51 (dd, J = 12.3, 2.7 Hz, 1H), 4.89 (s, 1H), 4.38 ~ 4.35 (m, 1H), 4.23 (td, J = 12.6, 2.3 Hz, 1H), 2.44 ~ 2.40 (m, 1H), 2.35 ~ 2.32 (m, 1H), 2.11 ~ 2.06 (m, 1H), 1.16 (d, J = 6.9 Hz, 3H) 1.13 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  173.3, 168.5, 138.8, 128.6, 128.3, 125.9, 87.4, 76.7, 66.6, 37.9, 35.6, 20.9, 20.6; ESI-MS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>: 246.1256; found 246.1257.

Spectral data for (Z)-4-cyclopropyl-8-(p-tolyl)-7,8-dihydro-1,5-dioxocin-2(6H)-one (5j).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, J = 8.1 Hz, 2H), 7.33 ((d, J = 8.1 Hz, 2H), 5.65 (dd, J = 12.3, 2.6 Hz, 1H), 5.16 (s, 1H), 4.45 (dd, J = 12.6, 5.4 Hz, 1H), 4.38 (td, J = 12.5, 2.3 Hz, 1H), 2.49 (s, 3H) 2.47 ~ 2.41 (m, 1H), 2.25 ~ 2.21 (m, 1H), 1.69 ~ 1.65 (m, 1H), 1.13 ~ 1.09 (m, 1H) 0.96 ~ 0.94 (m, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.5, 167.7, 138.0, 135.9, 129.2, 125.9, 87.9, 76.5, 66.9, 37.7, 21.1, 16.4, 7.3, 6.4; ESI-MS calcd for C<sub>16</sub>H<sub>18</sub>O<sub>3</sub>: 258.1256; found 258.1256.

Spectral data for (*Z*)-8-(4-chlorophenyl)-4-cyclopropyl-7,8-dihydro-1,5-dioxocin-2(6*H*)-one (5k).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.34 ~ 7.31 (m, 4H), 5.48 (dd, *J* = 12.3, 2.6 Hz, 1H), 4.99 (s, 1H), 4.29 (dd, *J* = 12.7, 5.4 Hz, 1H), 4.21 (td, *J* = 12.5, 1.8 Hz, 1H), 2.29 ~ 2.25 (m, 1H), 2.01 (t, *J* = 13.2 Hz, 1H), 1.51 ~ 1.49 (m, 1H), 0.95 ~ 0.93 (m, 1H) 0.79 ~ 0.76 (m, 3H); <sup>13</sup>C NMR

18

 $(150MHz, CDCl_3)$ :  $\delta$  168.8, 167.3, 137.5, 134.1, 128.8, 127.4, 87.8, 75.8, 66.8, 37.7, 16.5, 7.4, 6.5; ESI-MS calcd for  $C_{15}H_{15}ClO_3$ : 278.0710; found 278.0710.

Spectral data for (Z)-8-(4-bromophenyl)-4-cyclopropyl-7,8-dihydro-1,5-dioxocin-2(6*H*)-one (5l).



White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.48 (d, *J* = 6.6 Hz, 2H), 7.28 ~ 7.27 (m, 2H), 5.47 (dd, *J* = 12.3, 2.7 Hz, 1H), 4.99 (s, 1H), 4.29 ~ 4.27 (m, 1H), 4.21 (td, *J* = 12.5, 2.3 Hz, 1H), 2.28 ~ 2.25 (m, 1H), 2.03 ~ 1.98 (m, 1H), 1.51 ~ 1.49 (m, 1H), 0.95 ~ 0.93 (m, 1H) 0.79 ~ 0.76 (m, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.8, 167.2, 138.0, 131.8, 127.7, 122.2, 87.8, 75.8, 66.8, 37.7, 16.5, 7.4, 6.5; ESI-MS calcd for C<sub>15</sub>H<sub>15</sub>BrO<sub>3</sub>: 322.0205; found 322.0202.

Spectral data for (*Z*)-4-cyclopropyl-8-(4-fluorophenyl)-7,8-dihydro-1,5-dioxocin-2(6*H*)-one (5m).



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 ~ 7.35 (m, 2H), 7.03 ~ 7.00 (m, 2H), 5.48 (dd, *J* = 12.3, 2.6 Hz, 1H), 4.99 (s, 1H), 4.29 ~ 4.26 (m, 1H), 4.20 (td, *J* = 12.5, 2.3 Hz, 1H), 2.27 ~ 2.23 (m, 1H), 2.05 ~ 2.00 (m, 1H), 1.52 ~ 1.47 (m, 1H), 0.95 ~ 0.92 (m, 1H) 0.79 ~ 0.75 (m, 3H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.8, 167.3, 162.5 (d, *J*<sub>CF</sub> = 246.0 Hz), 134.8, 127.9 (d, *J*<sub>CF</sub> = 8.1 Hz), 115.5 (d, *J*<sub>CF</sub> = 21.5 Hz), 87.8, 75.9, 66.8, 37.7, 16.4, 7.4, 6.5; ESI-MS calcd for C<sub>15</sub>H<sub>15</sub>FO<sub>3</sub>: 262.1005; found 262.1005.

Spectraldatafor(Z)-4-phenyl-9-((tetrahydrofuran-2-yl)oxy)-6,7,8,9-tetrahydro-2H-1,5-dioxonin-2-one (7)



Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.69 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 2H), 5.92 (s, 1H), 4.68 ~ 4.66 (m, 1H), 5.11 (dd, *J* = 3.3, 1.8 Hz, 1H), 3.88 ~ 3.84 (m, 2H), 3.76 ~ 3.73 (m, 1H), 3.49 ~ 3.47 (m, 1H), 2.16 ~ 2.13 (m, 2H), 1.93 ~ 1.83 (m, 6H); <sup>13</sup>C NMR (150MHz, CDCl<sub>3</sub>):  $\delta$  168.3, 163.4, 132.4, 130.3, 128.9, 126.5, 103.8, 101.2, 92.9, 66.9, 66.2, 32.4, 30.3, 30.2, 23.5; ESI-MS calcd for C<sub>17</sub>H<sub>20</sub>NaO<sub>5</sub><sup>+</sup>: 327.1203; found 327.1309.

(4) (a) X-ray Crystallographic structure and data of compound (3d).



| Table 1. Crystal data and structure refinement for | 151129_0M.                                  |                               |  |  |
|----------------------------------------------------|---------------------------------------------|-------------------------------|--|--|
| Identification code                                | 151129_0m                                   |                               |  |  |
| Empirical formula                                  | C36 H32 O8                                  |                               |  |  |
| Formula weight                                     | 592.61                                      |                               |  |  |
| Temperature                                        | 296(2) K                                    |                               |  |  |
| Wavelength                                         | 0.71073 Å                                   |                               |  |  |
| Crystal system                                     | Monoclinic                                  |                               |  |  |
| Space group                                        | P 21/c                                      |                               |  |  |
| Unit cell dimensions                               | a = 11.8910(9) Å                            | α= 90°.                       |  |  |
|                                                    | b = 16.2219(12) Å                           | $\beta = 93.262(4)^{\circ}$ . |  |  |
|                                                    | c = 15.2941(11) Å                           | $\gamma = 90^{\circ}$ .       |  |  |
| Volume                                             | 2945.4(4) Å <sup>3</sup>                    |                               |  |  |
| Z                                                  | 4                                           |                               |  |  |
| Density (calculated)                               | 1.336 Mg/m <sup>3</sup>                     |                               |  |  |
| Absorption coefficient                             | 0.094 mm <sup>-1</sup>                      |                               |  |  |
| F(000)                                             | 1248                                        |                               |  |  |
| Crystal size                                       | 0.20 x 0.15 x 0.15 mm <sup>3</sup>          |                               |  |  |
| Theta range for data collection                    | 1.715 to 26.387°.                           |                               |  |  |
| Index ranges                                       | -14<=h<=14, -20<=k<=20, -19                 | 9<=l<=15                      |  |  |
| Reflections collected                              | 25025                                       |                               |  |  |
| Independent reflections                            | 6020 [R(int) = 0.0534]                      |                               |  |  |
| Completeness to theta = $25.242^{\circ}$           | 99.9 %                                      |                               |  |  |
| Absorption correction                              | Semi-empirical from equivalents             |                               |  |  |
| Max. and min. transmission                         | 0.9485 and 0.8722                           |                               |  |  |
| Refinement method                                  | Full-matrix least-squares on F <sup>2</sup> |                               |  |  |
| Data / restraints / parameters                     | 6020 / 0 / 399                              |                               |  |  |
| Goodness-of-fit on F <sup>2</sup>                  | 0.990                                       |                               |  |  |
| Final R indices [I>2sigma(I)]                      | R1 = 0.0489, wR2 = 0.1296                   |                               |  |  |
| R indices (all data)                               | R1 = 0.0986, $wR2 = 0.1720$                 |                               |  |  |
| Extinction coefficient                             | n/a                                         |                               |  |  |
| Largest diff. peak and hole                        | 0.177 and -0.202 e.Å <sup>-3</sup>          |                               |  |  |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å  $^2x \ 10^3$ ) for 151129\_0M. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|      | Х       | У       | Z       | U(eq) |  |
|------|---------|---------|---------|-------|--|
| O(1) | 7137(1) | 4049(1) | 8676(1) | 60(1) |  |

| O(2)  | 8799(1)  | 378(1)   | 9022(1) | 52(1) |
|-------|----------|----------|---------|-------|
| O(3)  | 7430(1)  | -1313(1) | 8692(1) | 57(1) |
| O(4)  | 5673(1)  | -1030(1) | 8869(1) | 74(1) |
| O(5)  | 3812(1)  | 1774(1)  | 3922(1) | 49(1) |
| O(6)  | 2145(1)  | 5443(1)  | 3522(1) | 65(1) |
| O(7)  | 2423(1)  | 86(1)    | 3733(1) | 57(1) |
| O(8)  | 693(1)   | 376(1)   | 3973(1) | 84(1) |
| C(1)  | 8014(2)  | 4608(1)  | 8943(2) | 67(1) |
| C(2)  | 7355(2)  | 3228(1)  | 8744(1) | 45(1) |
| C(3)  | 6536(2)  | 2713(1)  | 8353(1) | 50(1) |
| C(4)  | 6666(2)  | 1878(1)  | 8391(1) | 47(1) |
| C(5)  | 7610(2)  | 1516(1)  | 8826(1) | 41(1) |
| C(6)  | 7719(2)  | 616(1)   | 8888(1) | 41(1) |
| C(7)  | 9026(2)  | -469(1)  | 9233(1) | 48(1) |
| C(8)  | 8559(2)  | -1070(1) | 8552(1) | 43(1) |
| C(9)  | 9246(2)  | -1856(1) | 8556(1) | 41(1) |
| C(10) | 8942(2)  | -2545(1) | 9018(1) | 51(1) |
| C(11) | 9586(2)  | -3256(1) | 9007(2) | 57(1) |
| C(12) | 10535(2) | -3281(1) | 8539(2) | 57(1) |
| C(13) | 8302(2)  | 2890(1)  | 9163(1) | 50(1) |
| C(14) | 8419(2)  | 2044(1)  | 9203(1) | 50(1) |
| C(15) | 6611(2)  | -755(1)  | 8808(1) | 50(1) |
| C(16) | 6808(2)  | 123(1)   | 8829(1) | 48(1) |
| C(17) | 10852(2) | -2598(1) | 8086(2) | 56(1) |
| C(18) | 10210(2) | -1887(1) | 8091(1) | 49(1) |
| C(19) | 5492(2)  | -1924(2) | 3652(2) | 63(1) |
| C(20) | 4492(2)  | -1894(1) | 4046(2) | 60(1) |
| C(21) | 3852(2)  | -1182(1) | 4027(1) | 50(1) |
| C(22) | 4221(2)  | -487(1)  | 3602(1) | 40(1) |
| C(23) | 3559(2)  | 308(1)   | 3563(1) | 42(1) |
| C(24) | 4044(2)  | 944(1)   | 4195(1) | 46(1) |
| C(25) | 2729(2)  | 2016(1)  | 3838(1) | 40(1) |
| C(26) | 2622(2)  | 2919(1)  | 3740(1) | 40(1) |
| C(27) | 1652(2)  | 3270(1)  | 3341(1) | 48(1) |
| C(28) | 1525(2)  | 4105(1)  | 3272(1) | 50(1) |
| C(29) | 2374(2)  | 4626(1)  | 3600(1) | 46(1) |
| C(30) | 3016(2)  | 6018(1)  | 3752(2) | 64(1) |
| C(31) | 1621(2)  | 650(1)   | 3867(2) | 51(1) |

| C(32) | 1813(2) | 1526(1)  | 3854(1) | 46(1) |
|-------|---------|----------|---------|-------|
| C(33) | 3356(2) | 4296(1)  | 3976(1) | 46(1) |
| C(34) | 3474(2) | 3449(1)  | 4047(1) | 45(1) |
| C(35) | 5237(2) | -525(1)  | 3205(1) | 49(1) |
| C(36) | 5868(2) | -1237(2) | 3232(2) | 59(1) |
|       |         |          |         |       |

# Table 3. Bond lengths [Å ] and angles [°] for $151129\_0M$ .

| O(1)-C(2)  | 1.359(2) |
|------------|----------|
| O(1)-C(1)  | 1.424(2) |
| O(2)-C(6)  | 1.345(2) |
| O(2)-C(7)  | 1.433(2) |
| O(3)-C(15) | 1.349(2) |
| O(3)-C(8)  | 1.428(2) |
| O(4)-C(15) | 1.210(2) |
| O(5)-C(25) | 1.345(2) |
| O(5)-C(24) | 1.432(2) |
| O(6)-C(29) | 1.358(2) |
| O(6)-C(30) | 1.422(2) |
| O(7)-C(31) | 1.345(3) |
| O(7)-C(23) | 1.436(2) |
| O(8)-C(31) | 1.210(2) |
| C(1)-H(3)  | 0.9600   |
| C(1)-H(1)  | 0.9600   |
| C(1)-H(16) | 0.9600   |
| C(2)-C(13) | 1.377(3) |
| C(2)-C(3)  | 1.393(3) |
| C(3)-C(4)  | 1.363(3) |
| C(3)-H(12) | 0.9300   |
| C(4)-C(5)  | 1.401(3) |
| C(4)-H(13) | 0.9300   |
| C(5)-C(14) | 1.388(3) |
| C(5)-C(6)  | 1.469(3) |
| C(6)-C(16) | 1.346(3) |
| C(7)-C(8)  | 1.508(3) |
| C(7)-H(10) | 0.9700   |
| C(7)-H(11) | 0.9700   |

| C(8)-C(9)                  | 1.514(3) |
|----------------------------|----------|
| C(8)-H(9)                  | 0.9800   |
| C(9)-C(10)                 | 1.382(3) |
| C(9)-C(18)                 | 1.384(3) |
| C(10)-C(11)                | 1.386(3) |
| C(10)-H(8)                 | 0.9300   |
| C(11)-C(12)                | 1.370(3) |
| C(11)-H(7)                 | 0.9300   |
| C(12)-C(17)                | 1.372(3) |
| C(12)-H(2)                 | 0.9300   |
| C(13)-C(14)                | 1.381(3) |
| C(13)-H(15)                | 0.9300   |
| C(14)-H(14)                | 0.9300   |
| C(15)-C(16)                | 1.443(3) |
| C(16)-H(4)                 | 0.9300   |
| C(17)-C(18)                | 1.382(3) |
| C(17)-H(5)                 | 0.9300   |
| C(18)-H(6)                 | 0.9300   |
| C(19)-C(20)                | 1.365(3) |
| C(19)-C(36)                | 1.373(3) |
| C(19)-H(17)                | 0.9300   |
| C(20)-C(21)                | 1.383(3) |
| C(20)-H(32)                | 0.9300   |
| C(21)-C(22)                | 1.384(3) |
| C(21)-H(31)                | 0.9300   |
| C(22)-C(35)                | 1.385(3) |
| C(22)-C(23)                | 1.510(3) |
| C(23)-C(24)                | 1.506(3) |
| C(23)-H(28)                | 0.9800   |
| C(24)-H(20)                | 0.9700   |
| C(24)-H(19)                | 0.9700   |
| C(25)-C(32)                | 1.349(3) |
| C(25)-C(26)                | 1.478(3) |
| C(26)-C(34)                | 1.390(3) |
| C(26)-C(27)                | 1.395(3) |
| C(27)-C(28)                | 1.367(3) |
| C(27)-H(26)                | 0.9300   |
| C(28)-C(29)                | 1.388(3) |
| C(27)-H(26)<br>C(28)-C(29) | 0.9300   |
|                            |          |

| C(28)-H(25)      | 0.9300     |
|------------------|------------|
| C(29)-C(33)      | 1.379(3)   |
| C(30)-H(18)      | 0.9600     |
| C(30)-H(21)      | 0.9600     |
| C(30)-H(22)      | 0.9600     |
| C(31)-C(32)      | 1.441(3)   |
| C(32)-H(27)      | 0.9300     |
| C(33)-C(34)      | 1.386(3)   |
| C(33)-H(24)      | 0.9300     |
| C(34)-H(23)      | 0.9300     |
| C(35)-C(36)      | 1.376(3)   |
| C(35)-H(30)      | 0.9300     |
| C(36)-H(29)      | 0.9300     |
| C(2)-O(1)-C(1)   | 117.91(17) |
| C(6)-O(2)-C(7)   | 118.44(16) |
| C(15)-O(3)-C(8)  | 121.79(16) |
| C(25)-O(5)-C(24) | 117.99(16) |
| C(29)-O(6)-C(30) | 118.65(17) |
| C(31)-O(7)-C(23) | 122.70(16) |
| O(1)-C(1)-H(3)   | 109.5      |
| O(1)-C(1)-H(1)   | 109.5      |
| H(3)-C(1)-H(1)   | 109.5      |
| O(1)-C(1)-H(16)  | 109.5      |
| H(3)-C(1)-H(16)  | 109.5      |
| H(1)-C(1)-H(16)  | 109.5      |
| O(1)-C(2)-C(13)  | 124.98(19) |
| O(1)-C(2)-C(3)   | 115.44(18) |
| C(13)-C(2)-C(3)  | 119.59(19) |
| C(4)-C(3)-C(2)   | 120.24(19) |
| C(4)-C(3)-H(12)  | 119.9      |
| C(2)-C(3)-H(12)  | 119.9      |
| C(3)-C(4)-C(5)   | 121.46(19) |
| C(3)-C(4)-H(13)  | 119.3      |
| C(5)-C(4)-H(13)  | 119.3      |
| C(14)-C(5)-C(4)  | 117.16(18) |
| C(14)-C(5)-C(6)  | 121.97(18) |
| C(4)-C(5)-C(6)   | 120.87(17) |

| O(2)-C(6)-C(16)   | 126.61(19) |
|-------------------|------------|
| O(2)-C(6)-C(5)    | 112.11(17) |
| C(16)-C(6)-C(5)   | 121.26(18) |
| O(2)-C(7)-C(8)    | 114.01(16) |
| O(2)-C(7)-H(10)   | 108.7      |
| C(8)-C(7)-H(10)   | 108.7      |
| O(2)-C(7)-H(11)   | 108.7      |
| C(8)-C(7)-H(11)   | 108.7      |
| H(10)-C(7)-H(11)  | 107.6      |
| O(3)-C(8)-C(7)    | 112.78(18) |
| O(3)-C(8)-C(9)    | 106.15(16) |
| C(7)-C(8)-C(9)    | 111.36(16) |
| O(3)-C(8)-H(9)    | 108.8      |
| C(7)-C(8)-H(9)    | 108.8      |
| C(9)-C(8)-H(9)    | 108.8      |
| C(10)-C(9)-C(18)  | 118.7(2)   |
| C(10)-C(9)-C(8)   | 121.8(2)   |
| C(18)-C(9)-C(8)   | 119.44(19) |
| C(9)-C(10)-C(11)  | 120.5(2)   |
| C(9)-C(10)-H(8)   | 119.8      |
| C(11)-C(10)-H(8)  | 119.8      |
| C(12)-C(11)-C(10) | 120.2(2)   |
| C(12)-C(11)-H(7)  | 119.9      |
| C(10)-C(11)-H(7)  | 119.9      |
| C(11)-C(12)-C(17) | 119.9(2)   |
| C(11)-C(12)-H(2)  | 120.1      |
| C(17)-C(12)-H(2)  | 120.1      |
| C(2)-C(13)-C(14)  | 119.61(19) |
| C(2)-C(13)-H(15)  | 120.2      |
| C(14)-C(13)-H(15) | 120.2      |
| C(13)-C(14)-C(5)  | 121.93(19) |
| C(13)-C(14)-H(14) | 119.0      |
| C(5)-C(14)-H(14)  | 119.0      |
| O(4)-C(15)-O(3)   | 115.9(2)   |
| O(4)-C(15)-C(16)  | 120.8(2)   |
| O(3)-C(15)-C(16)  | 123.2(2)   |
| C(6)-C(16)-C(15)  | 135.8(2)   |
| C(6)-C(16)-H(4)   | 112.1      |

| C(15)-C(16)-H(4)  | 112.1      |
|-------------------|------------|
| C(12)-C(17)-C(18) | 120.2(2)   |
| C(12)-C(17)-H(5)  | 119.9      |
| C(18)-C(17)-H(5)  | 119.9      |
| C(17)-C(18)-C(9)  | 120.5(2)   |
| C(17)-C(18)-H(6)  | 119.7      |
| C(9)-C(18)-H(6)   | 119.7      |
| C(20)-C(19)-C(36) | 119.5(2)   |
| C(20)-C(19)-H(17) | 120.2      |
| C(36)-C(19)-H(17) | 120.2      |
| C(19)-C(20)-C(21) | 120.8(2)   |
| C(19)-C(20)-H(32) | 119.6      |
| C(21)-C(20)-H(32) | 119.6      |
| C(20)-C(21)-C(22) | 120.1(2)   |
| C(20)-C(21)-H(31) | 119.9      |
| C(22)-C(21)-H(31) | 119.9      |
| C(21)-C(22)-C(35) | 118.54(19) |
| C(21)-C(22)-C(23) | 122.4(2)   |
| C(35)-C(22)-C(23) | 119.05(19) |
| O(7)-C(23)-C(24)  | 112.66(18) |
| O(7)-C(23)-C(22)  | 105.82(16) |
| C(24)-C(23)-C(22) | 112.37(16) |
| O(7)-C(23)-H(28)  | 108.6      |
| C(24)-C(23)-H(28) | 108.6      |
| C(22)-C(23)-H(28) | 108.6      |
| O(5)-C(24)-C(23)  | 113.43(16) |
| O(5)-C(24)-H(20)  | 108.9      |
| C(23)-C(24)-H(20) | 108.9      |
| O(5)-C(24)-H(19)  | 108.9      |
| C(23)-C(24)-H(19) | 108.9      |
| H(20)-C(24)-H(19) | 107.7      |
| O(5)-C(25)-C(32)  | 126.64(18) |
| O(5)-C(25)-C(26)  | 112.03(17) |
| C(32)-C(25)-C(26) | 121.32(18) |
| C(34)-C(26)-C(27) | 117.64(18) |
| C(34)-C(26)-C(25) | 121.44(17) |
| C(27)-C(26)-C(25) | 120.92(17) |
| C(28)-C(27)-C(26) | 121.55(19) |

| C(28)-C(27)-H(26) | 119.2      |
|-------------------|------------|
| C(26)-C(27)-H(26) | 119.2      |
| C(27)-C(28)-C(29) | 120.03(19) |
| C(27)-C(28)-H(25) | 120.0      |
| C(29)-C(28)-H(25) | 120.0      |
| O(6)-C(29)-C(33)  | 125.12(19) |
| O(6)-C(29)-C(28)  | 115.13(18) |
| C(33)-C(29)-C(28) | 119.75(18) |
| O(6)-C(30)-H(18)  | 109.5      |
| O(6)-C(30)-H(21)  | 109.5      |
| H(18)-C(30)-H(21) | 109.5      |
| O(6)-C(30)-H(22)  | 109.5      |
| H(18)-C(30)-H(22) | 109.5      |
| H(21)-C(30)-H(22) | 109.5      |
| O(8)-C(31)-O(7)   | 115.5(2)   |
| O(8)-C(31)-C(32)  | 120.7(2)   |
| O(7)-C(31)-C(32)  | 123.7(2)   |
| C(25)-C(32)-C(31) | 135.2(2)   |
| C(25)-C(32)-H(27) | 112.4      |
| C(31)-C(32)-H(27) | 112.4      |
| C(29)-C(33)-C(34) | 119.78(19) |
| C(29)-C(33)-H(24) | 120.1      |
| C(34)-C(33)-H(24) | 120.1      |
| C(33)-C(34)-C(26) | 121.21(19) |
| C(33)-C(34)-H(23) | 119.4      |
| C(26)-C(34)-H(23) | 119.4      |
| C(36)-C(35)-C(22) | 120.7(2)   |
| C(36)-C(35)-H(30) | 119.6      |
| C(22)-C(35)-H(30) | 119.6      |
| C(19)-C(36)-C(35) | 120.3(2)   |
| C(19)-C(36)-H(29) | 119.9      |
| C(35)-C(36)-H(29) | 119.9      |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å ^2x 10^3)$  for 151129\_0M. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [  $h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$ ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O(1)  | 46(1)           | 39(1)           | 93(1)           | -7(1)           | -6(1)           | 1(1)            |
| O(2)  | 38(1)           | 38(1)           | 78(1)           | -6(1)           | -9(1)           | -2(1)           |
| O(3)  | 38(1)           | 43(1)           | 88(1)           | -6(1)           | -4(1)           | -4(1)           |
| O(4)  | 37(1)           | 54(1)           | 131(2)          | 7(1)            | -5(1)           | -9(1)           |
| O(5)  | 36(1)           | 35(1)           | 74(1)           | -1(1)           | -7(1)           | 0(1)            |
| O(6)  | 46(1)           | 37(1)           | 110(1)          | -1(1)           | -9(1)           | 4(1)            |
| O(7)  | 39(1)           | 39(1)           | 94(1)           | -8(1)           | -1(1)           | -1(1)           |
| O(8)  | 39(1)           | 56(1)           | 159(2)          | 9(1)            | 14(1)           | -9(1)           |
| C(1)  | 57(2)           | 43(1)           | 101(2)          | -9(1)           | 0(1)            | -10(1)          |
| C(2)  | 41(1)           | 41(1)           | 53(1)           | -6(1)           | 4(1)            | 3(1)            |
| C(3)  | 39(1)           | 45(1)           | 65(2)           | 0(1)            | -6(1)           | 4(1)            |
| C(4)  | 39(1)           | 45(1)           | 55(1)           | -4(1)           | -6(1)           | -4(1)           |
| C(5)  | 37(1)           | 42(1)           | 43(1)           | -2(1)           | 0(1)            | -1(1)           |
| C(6)  | 36(1)           | 45(1)           | 42(1)           | -2(1)           | -3(1)           | 2(1)            |
| C(7)  | 45(1)           | 40(1)           | 57(1)           | -3(1)           | -10(1)          | 2(1)            |
| C(8)  | 41(1)           | 41(1)           | 47(1)           | -1(1)           | -1(1)           | -4(1)           |
| C(9)  | 40(1)           | 39(1)           | 44(1)           | -6(1)           | -3(1)           | -3(1)           |
| C(10) | 51(2)           | 50(1)           | 53(1)           | 7(1)            | 6(1)            | -2(1)           |
| C(11) | 60(2)           | 43(1)           | 67(2)           | 10(1)           | -6(1)           | -3(1)           |
| C(12) | 55(2)           | 44(1)           | 70(2)           | -9(1)           | -11(1)          | 6(1)            |
| C(13) | 44(1)           | 45(1)           | 60(2)           | -9(1)           | -8(1)           | -2(1)           |
| C(14) | 42(1)           | 47(1)           | 58(1)           | -3(1)           | -9(1)           | 2(1)            |
| C(15) | 38(1)           | 46(1)           | 65(2)           | 3(1)            | -8(1)           | -4(1)           |
| C(16) | 39(1)           | 44(1)           | 60(2)           | 3(1)            | -1(1)           | 0(1)            |
| C(17) | 41(1)           | 58(2)           | 69(2)           | -15(1)          | 4(1)            | 1(1)            |
| C(18) | 49(1)           | 44(1)           | 55(1)           | 1(1)            | 6(1)            | -8(1)           |
| C(19) | 62(2)           | 42(1)           | 82(2)           | -17(1)          | -14(1)          | 12(1)           |
| C(20) | 67(2)           | 37(1)           | 75(2)           | 5(1)            | -13(1)          | -7(1)           |
| C(21) | 45(1)           | 46(1)           | 58(2)           | 2(1)            | -1(1)           | -4(1)           |
| C(22) | 38(1)           | 37(1)           | 43(1)           | -4(1)           | -2(1)           | 0(1)            |
| C(23) | 36(1)           | 39(1)           | 49(1)           | -1(1)           | -2(1)           | 0(1)            |
| C(24) | 44(1)           | 36(1)           | 57(1)           | -2(1)           | -9(1)           | 3(1)            |
| C(25) | 39(1)           | 40(1)           | 40(1)           | -1(1)           | 0(1)            | 3(1)            |
| C(26) | 41(1)           | 38(1)           | 42(1)           | -1(1)           | 3(1)            | -1(1)           |
| C(27) | 41(1)           | 42(1)           | 59(1)           | -4(1)           | -7(1)           | -2(1)           |
| C(28) | 39(1)           | 45(1)           | 66(2)           | 1(1)            | -5(1)           | 6(1)            |

| C(29) | 40(1) | 36(1) | 62(1) | 0(1)   | 3(1)  | 4(1)  |
|-------|-------|-------|-------|--------|-------|-------|
| C(30) | 58(2) | 40(1) | 92(2) | 3(1)   | -6(1) | -5(1) |
| C(31) | 41(1) | 45(1) | 67(2) | 4(1)   | 2(1)  | 0(1)  |
| C(32) | 38(1) | 42(1) | 57(1) | 2(1)   | 6(1)  | 1(1)  |
| C(33) | 38(1) | 42(1) | 56(1) | -6(1)  | 1(1)  | -4(1) |
| C(34) | 38(1) | 43(1) | 54(1) | 0(1)   | -2(1) | 3(1)  |
| C(35) | 49(1) | 45(1) | 54(1) | -4(1)  | 8(1)  | -2(1) |
| C(36) | 51(2) | 59(2) | 68(2) | -16(1) | 6(1)  | 9(1)  |
|       |       |       |       |        |       |       |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å  $^2x \ 10^3$ ) for 151129\_0M.

|       | Х     | у     | Z    | U(eq) |
|-------|-------|-------|------|-------|
|       |       |       |      |       |
| H(3)  | 8216  | 4530  | 9554 | 101   |
| H(1)  | 7758  | 5164  | 8847 | 101   |
| H(16) | 8659  | 4508  | 8608 | 101   |
| H(12) | 5899  | 2938  | 8065 | 60    |
| H(13) | 6115  | 1542  | 8122 | 56    |
| H(10) | 8709  | -595  | 9787 | 57    |
| H(11) | 9835  | -545  | 9307 | 57    |
| H(9)  | 8578  | -812  | 7973 | 52    |
| H(8)  | 8300  | -2532 | 9338 | 62    |
| H(7)  | 9374  | -3718 | 9318 | 69    |
| H(2)  | 10963 | -3761 | 8529 | 68    |
| H(15) | 8859  | 3230  | 9417 | 60    |
| H(14) | 9058  | 1821  | 9491 | 59    |
| H(4)  | 6140  | 422   | 8792 | 57    |
| H(5)  | 11501 | -2612 | 7774 | 67    |
| H(6)  | 10428 | -1427 | 7780 | 59    |
| H(17) | 5917  | -2405 | 3667 | 75    |
| H(32) | 4238  | -2359 | 4331 | 72    |
| H(31) | 3173  | -1170 | 4299 | 60    |
| H(28) | 3567  | 530   | 2968 | 50    |
| H(20) | 3739  | 856   | 4762 | 55    |
| H(19) | 4853  | 869   | 4263 | 55    |

| H(26) | 1078 | 2928  | 3117 | 57 |
|-------|------|-------|------|----|
| H(25) | 869  | 4325  | 3006 | 60 |
| H(18) | 3255 | 5949  | 4357 | 96 |
| H(21) | 2738 | 6568  | 3658 | 96 |
| H(22) | 3642 | 5924  | 3395 | 96 |
| H(27) | 1147 | 1827  | 3859 | 55 |
| H(24) | 3936 | 4642  | 4182 | 55 |
| H(23) | 4136 | 3230  | 4304 | 54 |
| H(30) | 5496 | -64   | 2916 | 59 |
| H(29) | 6551 | -1252 | 2966 | 71 |

# (b) X-ray Crystallographic structure and data of compound (30).



| Tabla 7  | Crystal data | and structure | rafinament | for MO  | 160210   | 01/ |
|----------|--------------|---------------|------------|---------|----------|-----|
| Table 7. | Crystal data | and structure | rennement  | IOF MO_ | _100219_ |     |

| Identification code  | mo_160219_0m             |                         |
|----------------------|--------------------------|-------------------------|
| Empirical formula    | C19 H18 O4               |                         |
| Formula weight       | 310.33                   |                         |
| Temperature          | 302(2) K                 |                         |
| Wavelength           | 0.71073 Å                |                         |
| Crystal system       | Monoclinic               |                         |
| Space group          | P 21/n                   |                         |
| Unit cell dimensions | a = 5.7294(5) Å          | α= 90°.                 |
|                      | b = 16.4971(16) Å        | β=96.391(2)°.           |
|                      | c = 16.9275(16) Å        | $\gamma = 90^{\circ}$ . |
| Volume               | 1590.0(3) Å <sup>3</sup> |                         |

| Z                                        | 4                                           |
|------------------------------------------|---------------------------------------------|
| Density (calculated)                     | 1.296 Mg/m <sup>3</sup>                     |
| Absorption coefficient                   | 0.090 mm <sup>-1</sup>                      |
| F(000)                                   | 656                                         |
| Crystal size                             | 0.15 x 0.12 x 0.10 mm <sup>3</sup>          |
| Theta range for data collection          | 1.729 to 26.406°.                           |
| Index ranges                             | -7<=h<=4, -20<=k<=20, -21<=l<=20            |
| Reflections collected                    | 13264                                       |
| Independent reflections                  | 3257 [R(int) = 0.0492]                      |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                                     |
| Absorption correction                    | Semi-empirical from equivalents             |
| Max. and min. transmission               | 0.9485 and 0.8614                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters           | 3257 / 0 / 210                              |
| Goodness-of-fit on F <sup>2</sup>        | 1.009                                       |
| Final R indices [I>2sigma(I)]            | R1 = 0.0471, wR2 = 0.1007                   |
| R indices (all data)                     | R1 = 0.0982, wR2 = 0.1197                   |
| Extinction coefficient                   | n/a                                         |
| Largest diff. peak and hole              | 0.119 and -0.157 e.Å $^{\text{-3}}$         |

Table 8. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters (Å  $^2x \ 10^3$ ) for MO\_160219\_0M. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|      | Х       | у        | Z       | U(eq) |
|------|---------|----------|---------|-------|
| O(1) | 4797(2) | 747(1)   | 3092(1) | 52(1) |
| O(2) | 8925(3) | -2701(1) | 3702(1) | 73(1) |
| O(3) | 1514(2) | 1881(1)  | 4012(1) | 46(1) |
| O(4) | -955(2) | 1086(1)  | 4520(1) | 59(1) |
| C(1) | 5062(5) | 4545(2)  | 3741(2) | 76(1) |
| C(2) | 2929(4) | 4251(1)  | 3426(2) | 66(1) |
| C(3) | 2508(4) | 3430(1)  | 3427(1) | 54(1) |
| C(4) | 4224(3) | 2892(1)  | 3743(1) | 44(1) |
| C(5) | 3821(3) | 1992(1)  | 3767(1) | 41(1) |
| C(6) | 4030(4) | 1574(1)  | 2978(1) | 47(1) |
| C(7) | 3994(3) | 265(1)   | 3646(1) | 39(1) |
| C(8) | 5205(3) | -532(1)  | 3654(1) | 38(1) |
| C(9) | 4475(3) | -1192(1) | 4073(1) | 46(1) |
|      |         |          |         |       |

| C(10) | 5657(4) | -1919(1) | 4101(1) | 48(1) |
|-------|---------|----------|---------|-------|
| C(11) | 7614(4) | -2007(1) | 3704(1) | 49(1) |
| C(12) | 8475(5) | -3322(2) | 4234(2) | 84(1) |
| C(13) | 882(3)  | 1130(1)  | 4230(1) | 42(1) |
| C(14) | 2355(3) | 432(1)   | 4132(1) | 42(1) |
| C(15) | 1870(4) | 1599(2)  | 2385(1) | 69(1) |
| C(16) | 8341(4) | -1368(1) | 3271(1) | 57(1) |
| C(17) | 7160(3) | -644(1)  | 3247(1) | 50(1) |
| C(18) | 6377(4) | 3200(1)  | 4052(1) | 61(1) |
| C(19) | 6782(4) | 4022(2)  | 4053(2) | 79(1) |
|       |         |          |         |       |

\_\_\_\_\_

Table 9. Bond lengths [Å] and angles  $[\circ]$  for MO\_160219\_0M.

| O(1)-C(7)  | 1.348(2) |
|------------|----------|
| O(1)-C(6)  | 1.439(2) |
| O(2)-C(11) | 1.371(2) |
| O(2)-C(12) | 1.407(3) |
| O(3)-C(13) | 1.354(2) |
| O(3)-C(5)  | 1.441(2) |
| O(4)-C(13) | 1.212(2) |
| C(1)-C(2)  | 1.367(3) |
| C(1)-C(19) | 1.370(3) |
| C(1)-H(1)  | 0.9300   |
| C(2)-C(3)  | 1.375(3) |
| C(2)-H(18) | 0.9300   |
| C(3)-C(4)  | 1.387(3) |
| C(3)-H(17) | 0.9300   |
| C(4)-C(18) | 1.381(3) |
| C(4)-C(5)  | 1.505(3) |
| C(5)-C(6)  | 1.518(3) |
| C(5)-H(14) | 0.9800   |
| C(6)-C(15) | 1.505(3) |
| C(6)-H(3)  | 0.9800   |
| C(7)-C(14) | 1.344(2) |
| C(7)-C(8)  | 1.486(3) |
| C(8)-C(9)  | 1.388(3) |
| C(8)-C(17) | 1.391(3) |

| C(9)-C(10)       | 1.377(3)   |
|------------------|------------|
| C(9)-H(12)       | 0.9300     |
| C(10)-C(11)      | 1.377(3)   |
| C(10)-H(11)      | 0.9300     |
| C(11)-C(16)      | 1.374(3)   |
| C(12)-H(7)       | 0.9600     |
| C(12)-H(8)       | 0.9600     |
| C(12)-H(2)       | 0.9600     |
| C(13)-C(14)      | 1.448(3)   |
| C(14)-H(13)      | 0.9300     |
| C(15)-H(5)       | 0.9600     |
| C(15)-H(4)       | 0.9600     |
| C(15)-H(6)       | 0.9600     |
| C(16)-C(17)      | 1.372(3)   |
| C(16)-H(10)      | 0.9300     |
| C(17)-H(9)       | 0.9300     |
| C(18)-C(19)      | 1.377(3)   |
| C(18)-H(16)      | 0.9300     |
| C(19)-H(15)      | 0.9300     |
|                  |            |
| C(7)-O(1)-C(6)   | 121.97(15) |
| C(11)-O(2)-C(12) | 117.86(19) |
| C(13)-O(3)-C(5)  | 118.42(14) |
| C(2)-C(1)-C(19)  | 120.0(2)   |
| C(2)-C(1)-H(1)   | 120.0      |
| C(19)-C(1)-H(1)  | 120.0      |
| C(1)-C(2)-C(3)   | 119.9(2)   |
| C(1)-C(2)-H(18)  | 120.0      |
| C(3)-C(2)-H(18)  | 120.0      |
| C(2)-C(3)-C(4)   | 120.9(2)   |
| C(2)-C(3)-H(17)  | 119.5      |
| C(4)-C(3)-H(17)  | 119.5      |
| C(18)-C(4)-C(3)  | 118.4(2)   |
| C(18)-C(4)-C(5)  | 119.01(18) |
| C(3)-C(4)-C(5)   | 122.56(18) |
| O(3)-C(5)-C(4)   | 106.29(14) |
| O(3)-C(5)-C(6)   | 111.17(15) |
| C(4)-C(5)-C(6)   | 113.39(16) |

| O(3)-C(5)-H(14)   | 108.6      |
|-------------------|------------|
| C(4)-C(5)-H(14)   | 108.6      |
| C(6)-C(5)-H(14)   | 108.6      |
| O(1)-C(6)-C(15)   | 109.38(17) |
| O(1)-C(6)-C(5)    | 111.41(16) |
| C(15)-C(6)-C(5)   | 115.71(17) |
| O(1)-C(6)-H(3)    | 106.6      |
| C(15)-C(6)-H(3)   | 106.6      |
| C(5)-C(6)-H(3)    | 106.6      |
| C(14)-C(7)-O(1)   | 128.30(18) |
| C(14)-C(7)-C(8)   | 122.22(17) |
| O(1)-C(7)-C(8)    | 109.49(15) |
| C(9)-C(8)-C(17)   | 117.05(18) |
| C(9)-C(8)-C(7)    | 122.09(17) |
| C(17)-C(8)-C(7)   | 120.85(18) |
| C(10)-C(9)-C(8)   | 121.72(18) |
| C(10)-C(9)-H(12)  | 119.1      |
| C(8)-C(9)-H(12)   | 119.1      |
| C(11)-C(10)-C(9)  | 119.9(2)   |
| C(11)-C(10)-H(11) | 120.1      |
| C(9)-C(10)-H(11)  | 120.1      |
| O(2)-C(11)-C(16)  | 116.13(19) |
| O(2)-C(11)-C(10)  | 124.4(2)   |
| C(16)-C(11)-C(10) | 119.47(19) |
| O(2)-C(12)-H(7)   | 109.5      |
| O(2)-C(12)-H(8)   | 109.5      |
| H(7)-C(12)-H(8)   | 109.5      |
| O(2)-C(12)-H(2)   | 109.5      |
| H(7)-C(12)-H(2)   | 109.5      |
| H(8)-C(12)-H(2)   | 109.5      |
| O(4)-C(13)-O(3)   | 115.85(17) |
| O(4)-C(13)-C(14)  | 122.86(18) |
| O(3)-C(13)-C(14)  | 121.28(16) |
| C(7)-C(14)-C(13)  | 133.62(19) |
| C(7)-C(14)-H(13)  | 113.2      |
| C(13)-C(14)-H(13) | 113.2      |
| C(6)-C(15)-H(5)   | 109.5      |
| C(6)-C(15)-H(4)   | 109.5      |

| H(5)-C(15)-H(4)   | 109.5    |
|-------------------|----------|
| C(6)-C(15)-H(6)   | 109.5    |
| H(5)-C(15)-H(6)   | 109.5    |
| H(4)-C(15)-H(6)   | 109.5    |
| C(17)-C(16)-C(11) | 120.4(2) |
| C(17)-C(16)-H(10) | 119.8    |
| C(11)-C(16)-H(10) | 119.8    |
| C(16)-C(17)-C(8)  | 121.5(2) |
| C(16)-C(17)-H(9)  | 119.3    |
| C(8)-C(17)-H(9)   | 119.3    |
| C(19)-C(18)-C(4)  | 120.4(2) |
| C(19)-C(18)-H(16) | 119.8    |
| C(4)-C(18)-H(16)  | 119.8    |
| C(1)-C(19)-C(18)  | 120.4(2) |
| C(1)-C(19)-H(15)  | 119.8    |
| C(18)-C(19)-H(15) | 119.8    |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

| Table 10.   | Anisotropic displacement parame   | ters        | (Å <sup>2</sup> x 10 <sup>3</sup> ) for M | IO_160219_0M.         | The anisotropic |
|-------------|-----------------------------------|-------------|-------------------------------------------|-----------------------|-----------------|
| displacemen | t factor exponent takes the form: | $-2\pi^{2}$ | $[h^2 a^{*2}U^{11} +$                     | $+ 2 h k a^* b^* U^1$ | 12]             |
|             |                                   |             |                                           |                       |                 |

|       | $\mathbf{U}^{11}$ | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|       |                   |                 |                 |                 |                 |                 |
| O(1)  | 69(1)             | 45(1)           | 46(1)           | 7(1)            | 23(1)           | 8(1)            |
| O(2)  | 89(1)             | 55(1)           | 79(1)           | 0(1)            | 23(1)           | 29(1)           |
| O(3)  | 37(1)             | 42(1)           | 60(1)           | 10(1)           | 14(1)           | 5(1)            |
| O(4)  | 43(1)             | 56(1)           | 81(1)           | 10(1)           | 26(1)           | 5(1)            |
| C(1)  | 78(2)             | 44(1)           | 106(2)          | 6(1)            | 7(2)            | -7(1)           |
| C(2)  | 67(2)             | 46(1)           | 84(2)           | 14(1)           | 5(1)            | 10(1)           |
| C(3)  | 47(1)             | 48(1)           | 67(2)           | 9(1)            | 1(1)            | 3(1)            |
| C(4)  | 41(1)             | 43(1)           | 48(1)           | 6(1)            | 9(1)            | 1(1)            |
| C(5)  | 35(1)             | 45(1)           | 44(1)           | 7(1)            | 8(1)            | 3(1)            |
| C(6)  | 54(1)             | 41(1)           | 46(1)           | 8(1)            | 11(1)           | 1(1)            |
| C(7)  | 38(1)             | 40(1)           | 40(1)           | 2(1)            | 4(1)            | -2(1)           |
| C(8)  | 38(1)             | 40(1)           | 36(1)           | -5(1)           | 3(1)            | 0(1)            |
| C(9)  | 47(1)             | 47(1)           | 45(1)           | 1(1)            | 12(1)           | 6(1)            |
| C(10) | 60(1)             | 41(1)           | 43(1)           | 0(1)            | 7(1)            | 3(1)            |
| C(11) | 55(1)  | 45(1) | 47(1)  | -10(1) | 3(1)  | 12(1)  |
|-------|--------|-------|--------|--------|-------|--------|
| C(12) | 103(2) | 58(2) | 90(2)  | 8(2)   | 6(2)  | 30(2)  |
| C(13) | 36(1)  | 45(1) | 46(1)  | 5(1)   | 6(1)  | 1(1)   |
| C(14) | 39(1)  | 41(1) | 48(1)  | 7(1)   | 11(1) | 2(1)   |
| C(15) | 86(2)  | 63(2) | 54(2)  | 4(1)   | -9(1) | 5(1)   |
| C(16) | 51(1)  | 56(1) | 66(2)  | -5(1)  | 23(1) | 6(1)   |
| C(17) | 49(1)  | 48(1) | 57(2)  | 0(1)   | 15(1) | 0(1)   |
| C(18) | 46(1)  | 50(1) | 85(2)  | 5(1)   | -1(1) | -1(1)  |
| C(19) | 61(2)  | 57(2) | 115(2) | 4(2)   | -6(2) | -11(1) |
|       |        |       |        |        |       |        |

Table 11. Hydrogen coordinates ( x  $10^4$ ) and isotropic displacement parameters (Å  $^2$ x  $10^3$ ) for MO\_160219\_0M.

|       | Х    | У     | Z    | U(eq) |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| H(1)  | 5346 | 5101  | 3744 | 92    |
| H(18) | 1764 | 4605  | 3212 | 79    |
| H(17) | 1052 | 3234  | 3213 | 65    |
| H(14) | 4978 | 1754  | 4171 | 49    |
| H(3)  | 5269 | 1858  | 2734 | 56    |
| H(12) | 3151 | -1140 | 4341 | 55    |
| H(11) | 5135 | -2351 | 4387 | 58    |
| H(7)  | 8629 | -3112 | 4767 | 126   |
| H(8)  | 9580 | -3755 | 4200 | 126   |
| H(2)  | 6909 | -3524 | 4100 | 126   |
| H(13) | 2116 | 10    | 4478 | 51    |
| H(5)  | 2189 | 1335  | 1904 | 104   |
| H(4)  | 1438 | 2153  | 2273 | 104   |
| H(6)  | 604  | 1326  | 2601 | 104   |
| H(10) | 9641 | -1428 | 2992 | 68    |
| H(9)  | 7678 | -217  | 2952 | 61    |
| H(16) | 7559 | 2849  | 4260 | 73    |
| H(15) | 8232 | 4225  | 4267 | 94    |







|                                                                                                                                                                                                                                                                                                                                                            | 84       | 12 85   | 66 8 |                  | 22                | 00100 |           |           |           | 00 |           |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|------------------|-------------------|-------|-----------|-----------|-----------|----|-----------|--------|
|                                                                                                                                                                                                                                                                                                                                                            | - 152.   |         | 118  |                  | 83                | 71 77 |           |           |           |    |           |        |
|                                                                                                                                                                                                                                                                                                                                                            | 1        |         |      |                  |                   | VV    |           |           |           |    |           |        |
| Current Data Parameters<br>NAME SNK-5029<br>EXPNO 2<br>PROCNO 1                                                                                                                                                                                                                                                                                            |          |         |      |                  |                   |       |           |           |           |    |           |        |
| F2 - Acquisition Parameters   Date_ 20141214   Time 18.33   INSTRUM spect   PROBHD mm QNP   PULPROG zgpg   TD 32766   SOLVENT DMSO   NS 100   DS 0   SWH 45045.047 Hz   FIDRES 1.374666 Hz   AQ 0.3637748 sec   RG 2048   DW 11.100 usec   DE 6.50 usec   TE 296.5 K   D1 3.0000000 sec   d11 0.03000000 sec   MCREST 0.0000000 sec   MCWRK 0.01500000 sec |          |         |      |                  |                   |       |           |           |           |    |           |        |
| CHANNEL f1     NUC1   13C     P1   4.80 usec     PL1   0.00 dB     SF01   150.5346470 MHz                                                                                                                                                                                                                                                                  |          |         |      |                  |                   |       |           |           |           |    |           |        |
| CHANNEL f2     CPDPRG2   waltz16     NUC2   1H     PCPD2   92.00 usec     PL2   120.00 dB     PL12   9.00 dB     PL13   14.00 dB     SF02   598.6029930 MHz                                                                                                                                                                                                |          | I       | E    | <sub>br</sub> 1c |                   | J     |           |           |           |    |           |        |
| F2   -   Processing parameters     SI   65536     SF   150.5180966 MHz     WDW   EM     SSB   0     LB   3.00 Hz     GB   0     PC   1.00                                                                                                                                                                                                                  |          |         |      |                  |                   |       |           | -         |           |    |           |        |
| 1D NMR plot parameters<br>CX 20.00 cm<br>CY 4.00 cm<br>F1P 200.000 ppm<br>F1 30103.62 Hz<br>F2P 0.000 ppm<br>F2 0.00 Hz                                                                                                                                                                                                                                    |          |         |      |                  |                   |       |           |           |           |    |           |        |
|                                                                                                                                                                                                                                                                                                                                                            |          |         |      |                  |                   |       | *****     |           |           |    |           | ****** |
|                                                                                                                                                                                                                                                                                                                                                            | 60 150 · | 140 130 | ) 12 | ) 110 10         | )0 <del>9</del> 0 | 80 70 | <b>60</b> | <b>50</b> | <b>40</b> | 30 | <b>20</b> | ppm    |























































5.255












































udd 11 LL L J 1 1 L 1 1 Current Data Parameters NAME RS-2-42-1 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date\_ 20150507 Time 10.37 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG -zg TD 32768 SOLVENT CDC13 NS 16 DS 0 8382.229 Hz SWH 0.255805 Hz FIDRES AQ 1.9546613 sec RG 128 DW 59.650 usec DE 85.21 usec Ο С TE 297.3 K D1 2.00000000 sec MCREST 0.00000000 sec n MCWRK 0.01500000 sec റ ======= CHANNEL f1 ======== NUC1 1H P1 10.00 usec PL1 0.00 dB 5b 598.6029930 MHz SFC1 F2 - Processing parameters SI 32768 SF 598.60C0305 MHz WDW no SSB 0 LB 0.00 Hz GB 0 PC 1.00 1D NMR plot parameters CX 20.00 cm CY 8.00 cm 10.000 ppm F1P F1 5986.00 Hz F2P -0.500 ppm F2 -299.30 Hz 0.52500 ppm/cm 314.26501 Hz/cm PPMCM HZCM .1802 44 Integral 1661 1751 882 00 8 2 Ò 6 ppm
















































TD

NS DS

SWH

HZCM

