Electronic Supporting information

A solid lithium superionic conductor Li₁₁AlP₂S₁₂ with thio-

LISICON analogous structure

Pengfei Zhou, Jianbin Wang, Fangyi Cheng, Fujun Li* and Jun Chen*

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

E-mail: fujunli@nankai.edu.cn; chenabc@nankai.edu.cn

Experimental

Powder X-ray diffraction (XRD) patterns of the obtained samples were collected in the 2θ range of 10–80° (Rigaku MiniFlex600 using Cu K α radiation). Raman scattering spectra were obtained by using an argon-ion laser of 532 nm (DXR, Thermo Fisher Scientific). Samples were protected to avoid contamination of moisture and air during measurements. The obtained powders were pressed into dense pellets (diameter=16 mm, thickness~1 mm) by a conventional coaxial cold press at a pressure of 150 MPa for the evaluation of electrochemical performance. The crosssection microstructures of pellets were observed by scanning electron microscope (SEM, JEOL JSM7500F) with an energy dispersive X-ray detector (EDS). The alternating-current (a.c.) impedance was conducted by electrochemical impedance spectroscopy (EIS) using stainless steel (SUS) served as blocking electrodes. Symmetric SUS/LAIPS/SUS cells were measured on a Parstat 2273A potentiostat/galvanostat workstation with 200 mV constant voltage in the frequency range of 0.1 Hz to 2 MHz. The temperature was changed from 0 to 100 °C, and the samples were kept at each temperature for at least 30 minutes before measurement. Cyclic voltammetry (CV) was carried out on the Li/LAIPS/SUS cells at a scan rate of 5 mV s⁻¹ between -0.5 and 5.0 V (vs. Li⁺/Li) at 25 °C, in which the SUS served as the current collector and the lithium foil worked as the reference and counter electrode. Direct-current (dc) polarization was measured on the two symmetric cells: non-blocking Li/LAIPS/Li and blocking SUS/LAIPS/SUS with an applied 0.5 V for 1500 s for determination of lithium ion transport number of the synthesized LAIPS electrolytes. The symmetric non-blocking Li/LAIPS/Li cell was continuously discharged and charged at 0.1 mA for evaluation of the compatibility between lithium foils and LAIPS solid electrolyte.

An all-solid-state cell with the configuration of LiCoO₂-LAIPS₅₀₀/LAIPS₅₀₀/In was employed to evaluate the feasibility of the LAIPS₅₀₀ solid electrolyte in Li-ion batteries.¹⁻³ The cathode composite was prepared by mixing the commercial LiCoO₂ (Alfa, 99.5%) and LAIPS₅₀₀ with a ratio of 70:30 (wt%) in an airtight powder homogenizer for 20 min at 3500 rotation per minute. 10 mg of the composite was prepressed onto a carbon cloth as current collector, then 150 mg of LAIPS₅₀₀ was added as a Li-ion conducting membrane on the top of the composite cathode. Finally, the bilayer pellet with a diameter of 16 mm was coaxially cold pressed under 150 MPa. An indium foil (Alfa, 99.997%; 0.1 mm thickness) was pressed onto another side of LAIPS₅₀₀, and used as the anode. The assembled cell was tested between 2.3 and 3.7 V at a current density of 0.13 mA cm⁻² on a LAND-CT2001A testing instrument and 25 °C. All the experiments were conducted under protection to avoid contamination of moisture and air.

SEM and EDS

Fig. S1 Cross-section morphologies and EDS elemental mappings of $LAIPS_{400}$ (a), $LAIPS_{500}$, (b) and $LAIPS_{600}$ (c).

Table S1 EDS elemental compositions of LAIPS₄₀₀, LAIPS₅₀₀, and LAIPS₆₀₀.

	Atomic ratio (%)		
Composition	Al-K	P-K	S-K
LAIPS ₄₀₀	6.86	14.85	78.29
LAIPS ₅₀₀	7.59	14.20	78.21
LAIPS ₆₀₀	6.50	13.95	79.55

Table S1summarizes the EDS elemental compositions of LAIPS₄₀₀, LAIPS₅₀₀, and LAIPS₆₀₀. The Al/P/S ratio was determined to be 6.86:15.85:77.29 (1.05:2.27:12), 7.59:14.20:78.21 (1.16:2.17:12), and 6.50:13.95:79.55 (0.98:2.10:12) for LAIPS₄₀₀, LAIPS₅₀₀, and LAIPS₆₀₀, respectively. They are approaching to the stoichiometric ratio of Al/P/S=1:2:12.

Raman spectra

Fig. S2 Raman spectra of the starting materials, Li_2S , P_2S_5 , and Al_2S_3 .

Crystalline structure

Fig. S3 Schematic structure of LAIPS₅₀₀: (a) only PS_4 tetrahedra are indicated; (b) and (c) show the connection of PS_4 tetrahedra with LiS_4 tetrahedra and LiS_6 octahedra, respectively.

Fig. S4 Schematic structure of the Li_3PS_4 (a) and $Li_4P_2S_6$ (b) phase.⁴⁻⁶

Impedance spectroscopy

Fig. S5 (a-c) Nyquist plots of $LAIPS_{400}$, $LAIPS_{500}$, and $LAIPS_{600}$ at different temperatures measured in symmetric SUS/LAIPS/SUS cells.

Compounds	Conductivity σ _{Li} (S cm ⁻¹ , 25 °C)	Activation Energies E _a (kJ mol ⁻¹)	Reference s
Li ₂ GeS ₄	2.0×10 ⁻⁷	-	7
$Li_{4-2x}Zn_xGeS_4$	3.0 ×10 ⁻⁷	-	7
$Li_{4+x+\delta}(Ge_{1-\delta'-x}-Ga_x)S_4(x=0.25)$	6.5×10 ⁻⁷	-	7
$Li_{3+5x}P_{1-x}S_4(x=0.065)$	1.5×10-4	22.0	8
$Li_{3.25}Ge_{0.25}P_{0.75}S_4$ thin film	1.8×10 ⁻⁴	40.5	9
$Li_{4-x}Ge_{1-x}P_{x}S_{4}(x=0.75)$	2.2×10 ⁻³	20.0	10
Li ₁₁ AlP ₂ S ₁₂ (thio-LISICON)	8.0×10 ⁻⁴	25.4	This work

Table S2 Lithium ionic conductivity and activation energies of the reported thio-LISICON electrolytes.

Fig. S6 Charge-discharge curves of the all-solid-state $LiCoO_2$ -LAIPS₅₀₀/LAIPS₅₀₀/In cell at 0.13 mA cm⁻² and 25 °C.

References

- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, *Nat. Mater.*, 2011, 10, 682-686.
- 2. S. Teragawa, K. Aso, K. Tadanaga, A. Hayashi and M. Tatsumisago, J. Power Sources, 2014, 248, 939-942.
- 3. J. Kim, M. Eom, S. Noh and D. Shin, J. Power Sources, 2013, 244, 476-481.
- 4. K. Homma, M. Yonemura, M. Nagao, M. Hirayama and R. Kanno, *J. Phys. Soc. Jpn.*, 2010, **79**, 90-93
- 5. Z. D. Hood, C. Kates, M. Kirkham, S. Adhikari, C. Liang and N. A. W. Holzwarth, *Solid State Ionics*, 2016, **284**, 61-70.
- Z. C. Liu, W. J. Fu, E. A. Payzant, X. Yu, Z. L. Wu, N. J. Dudney, J. Kiggans, K. L. Hong, A. J. Rondinone and C. D. Liang, *J. Am. Chem. Soc.*, 2013, 135, 975-978.
- R. Kanno, T. Hata, Y. Kawamoto and M. Irie, *Solid State Ionics*, 2000, 130, 97-104.
- 8. M. Murayama, N. Sonoyama, A. Yamada and R. Kanno, *Solid State Ionics*, 2004, **170**, 173-180.
- 9. Y. M. Wang, Z. Q. Liu, X. L. Zhu, Y. F. Tang and F. Q. Huang, *J. Power Sources*, 2013, **224**, 225-229.
- 10. R. Kanno and M. Maruyama, J. Electrochem. Soc., 2001, 148, 742-746.