Oxidative nucleophilic aromatic amination of nitrobenzenes

Viktor V. Khutorianskiy, Manoj Sonawane, Martin Pošta, Blanka Klepetářová, Petr Beier*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic E-mail: beier@uochb.cas.cz

Supplementary information

Contents	page
General information	SI2
Synthesis of 2-nitro-N-aryl-5-(pentafluorosulfanyl)anilines (2), general procedure	SI2
Synthesis of 2-nitro-5-trifluoromethyl-diphenylamine (3)	SI7
Synthesis of 4-nitro-3-phenylaminobenzonitrile (4)	SI8
Synthesis of 4-nitro- <i>N</i> -phenylaniline (5)	SI8
Synthesis of 2-nitro- <i>N</i> -phenylaniline (6)	SI9
Synthesis of 5-fluoro-2-nitro- <i>N</i> -phenylaniline (7)	SI9
Synthesis of 5-chloro-2-nitro- <i>N</i> -phenylaniline (8)	SI10
Synthesis of 5-bromo-2-nitro- <i>N</i> -phenylaniline (9)	SI10
Synthesis of 5-bromo-2-nitro- <i>N</i> -phenyl-3-(trifluoromethyl)aniline (12)	SI10
Synthesis of 5-chloro-2,4-dinitro- <i>N</i> -phenylaniline (13)	SI11
Synthesis of 2-nitro-4-(pentafluorosulfanyl)-N-phenylaniline (14)	SI11
Synthesis of 2-fluoro-6-nitro-4-(pentafluorosulfanyl)-N-phenylaniline (15)	SI12
Synthesis of 4-methyl-5-nitro- <i>N</i> -phenylpyridin-2-amine (16)	SI12
References	SI13
Copies of ¹ H and ¹³ C NMR spectra	SI14

General information

NMR chemical shifts (δ) are reported in ppm and coupling constants (*J*) are given in Hertz and referenced to residual signals of solvents or internal standards: CDCl₃ $\delta_{\rm H}$ = 7.26, $\delta_{\rm C}$ = 77.16; Me₄Si $\delta_{\rm H}$ = 0.00; CFCl₃ $\delta_{\rm F}$ = 0.00. ¹³C and ¹⁹F NMR spectra were ¹H decoupled. GCMS spectra were recorded on a gas chromatograph coupled with a quadrupole mass-selective electron impact (EI) detector (70 eV). High-resolution mass spectra (HRMS) were recorded on a gas chromatograph coupled with a orthogonal acceleration time-of-flight detector using EI ionization or an FT mass spectrometer using electrospray (ESI) ionization. Infrared spectra were measured on a FT-IR instrument. Purification of the products was performed by flash chromatography using silica gel 60. Dry solvents if used were obtained the following way: Et₂O and THF were distilled over Na/benzophenone and kept over activated 3Å molecular sieves, hexane and DMF were dried using activated 3Å molecular sieves. PE refers to petroleum ether of boiling point range 40-60°C.

Synthesis of 2-nitro-*N*-aryl-5-(pentafluorosulfanyl)anilines (2), general procedure. A solution of *n*-BuLi (2.5 M, 1.29 mL, 3.21 mmol, 4 equiv.) in hexanes was added to a solution of arylamine (3.21 mmol, 4 equiv.) in dry THF (5 mL) cooled to -78° C under argon. After stirring the mixture for 1 min the resulting solution was added via syringe over 1 min to a solution of 4-nitro-1-(pentafluorosulfanyl)benzene (1) (200 mg, 0.803 mmol, 1 equiv.) in dry THF (10 mL) cooled to -110° C to -120° C (liquid N₂/EtOH) under argon. The resulting mixture was stirred at this temperature for 10 min, followed by the addition of KMnO₄ (216 mg, 1.36 mmol, 1.7 equiv.) and liquid NH₃ (3-5 mL). The cooling bath was removed and after 5 min. of stirring, solid NH₄Cl (1 g) was carefully added, the mixture was slowly warmed to rt and excess of ammonia was allowed to boil off. Water was carefully added, the reaction mixture was filtered through filter paper under vacuum and solid on filter washed with several portions of EtOAc. The filtrate was extracted with EtOAc, combined organic phase was washed with water, brine, dried (MgSO₄) and solvent was removed under reduced pressure. Purification using flash chromatography (silica gel, PE–acetone) provided pure product **2**.

2-Nitro-5-(pentafluorosulfanyl)-N-phenylaniline (2a). Orange solid (199 mg, 73% yield);

NO₂ NHPh $R_f 0.55$ (PE-acetone, 95:5); m.p. 80-81°C; IR (film) v_{max} (cm⁻¹) 3357, 1621, 1597, 1578, 1499, 1490, 1432, 1345, 1171, 1158, 1077, 1027, 846, 753, 600; ¹H NMR (CDCl₃, 400 MHz) δ 9.51 (1H, br s), 8.28 (1H, d, J =9.3 Hz), 7.62 (1H, d, J = 2.3 Hz), 7.47 (2H, dt, J = 7.5, 2.0 Hz), 7.31 (1H, dt, J = 7.5, 0.6 Hz), 7.29-7.26 (2H, m), 7.11 (1H, dd, J = 9.3, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.62 (quint, J = 18.8 Hz), 142.90, 137.68, 133.80, 130.31 (2C), 127.51, 126.83, 124.36 (2C), 114.67 (quint, J = 5.1 Hz), 114.43 (quint, J = 4.5 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.96-80.36 (1F, m), 60.88 (4F, d, J = 150.5 Hz); GCMS (EI) m/z340 (100%) [M]⁺, 323 (8), 310 (13), 306 (22), 295 (12), 293 (14), 198 (15), 185 (14), 168 (12), 167 (46), 166 (23), 139 (16), 77 (21), 51 (11); HRMS (ESI) m/z Calcd for C₁₂H₈F₅N₂O₂S [M - H]⁺: 339.0232; Found: 339.0230.

2-Nitro-5-(pentafluorosulfanyl)-N-p-tolylaniline (2b). Orange solid (207 mg, 73% yield);

R_f 0.63 (PE-acetone, 95:5); m.p. 89-90°C; IR (film) ν_{max} (cm⁻¹) 3357, 3034, 2960, 1623, 1610, 1578, 1513, 1491, 1422, 1381, 1343, 1322, 1212, 1173, 1083, 1019, 950, 845, 824, 806, 753, 718, 688, 600, 583, 567; ¹H NMR (CDCl₃, 400 MHz) δ 9.47 (1H, br s), 8.27

(1H, d, J = 9.4 Hz), 7.55 (1H, d, J = 2.3 Hz), 7.27 (2H, d, J = 8.1 Hz), 7.15 (2H, d, J = 8.1 Hz), 7.07 (1H, dd, J = 9.4, 2.3 Hz), 2.40 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 158.65 (quint, J = 18.9 Hz), 143.45, 136.98, 134.88, 133.45, 130.90 (2C), 127.48, 124.67 (2C), 114.64 (quint, J = 5.0 Hz), 114.01 (quint, J = 4.8 Hz), 21.18; ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.08-80.48 (1F, m), 60.85 (4F, d, J = 150.5 Hz); GCMS (EI) *m/z* 354 (100%) [M]⁺, 320 (14), 307 (16), 198 (10), 181 (26), 180 (34), 91 (10); HRMS (ESI) *m/z* Calcd for C₁₃H₁₀F₅N₂O₂S [M - H]⁺: 353.0387; Found: 353.0386.

N-(4-methyxyphenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (2c). Red solid (208 mg,

70% yield); R_f 0.45 (PE-acetone, 95:5); m.p. 78-79°C; IR (film) v_{max} (cm⁻¹) 3357, 1621, 1577, 1511, 1490, 1343, 1259, 1247, 845, 753, 600; ¹H NMR (CDCl₃, 400 MHz) δ 9.42 (1H, br s), 8.27 (1H, d, J = 9.4 Hz), 7.41 (1H, d, J = 2.3 Hz), 7.19 (2H, ddd,

J = 9.0, 3.4, 0.5 Hz), 7.05 (1H, dd, J = 9.4, 2.3 Hz), 6.99 (2H, dd, J = 9.0, 3.4 Hz), 3.86 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 159.68 (quint, J = 18.8 Hz), 158.65, 144.15,

133.10, 130.03, 127.45, 126.94 (2C), 115.50 (2C), 114.42 (quint, J = 5.0 Hz), 113.68 (quint, J = 4.4 Hz), 55.64; ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.11-80.51 (1F, m), 61.03 (4F, d, J = 150.4 Hz); GCMS (EI) m/z 370 (100%) [M]⁺, 355 (31), 336 (24), 308 (13), 185 (10), 182 (12), 154 (9); HRMS (ESI) m/z Calcd for C₁₃H₁₀F₅N₂O₃S [M + H]⁺: 369.0338; Found: 369.0334.

2,4-Dimethoxy-N-(2-nitro-5-pentafluorosulfanyl)aniline (2d). Red solid (189 mg, 59%)

yield); *R_f* 0.31 (PE-acetone, 95:5); m.p. 75-76°C; IR (film) *ν*_{max} (cm⁻¹) 3360, 2840, 1623, 1578, 1513, 1490, 1440, 1345, 1261,
OMe 846, 815, 600; ¹H NMR (CDCl₃, 400 MHz) δ 9.28 (1H, br s),
8.25 (1H, d, *J* = 9.4 Hz), 7.29 (1H, d, *J* = 2.4 Hz), 7.19 (1H, d, *J*

= 8.6 Hz), 7.03 (1H, dd, J = 9.4, 2.4 Hz), 6.59 (1H, d, J = 2.6 Hz), 6.55 (1H, dd, J = 8.6, 2.6 Hz), 3.87 (3H, s), 3.80 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 159.76, 158.46 (quint, J = 18.3 Hz), 154.85, 143.83, 133.25, 127.24, 126.70, 118.98, 114.90 (quint, J = 5.1 Hz), 113.44 (quint, J = 4.4 Hz), 104.77, 99.93, 55.73, 55.67; ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.45-80.85 (1F, m), 60.85 (4F, d, J = 150.4 Hz); GCMS (EI) *m/z* 400 (100%) [M]⁺, 385 (15), 339 (15), 338 (13), 337 (17), 336 (12), 324 (11), 153 (25); HRMS (ESI) *m/z* Calcd for C₁₄H₁₃F₅N₂O₄S [M + Na]⁺: 423.0408; Found: 423.0406.

N-(4-fluorophenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (**2e**). Orange solid (189 mg, $\stackrel{NO_2}{\leftarrow}$ H $\stackrel{K_f}{\leftarrow}$ 0.45 (PE-acetone, 95:5); m.p. 106-107°C; IR (film) ν_{max} (cm⁻¹) 3368, 3355, 1624, 1614, 1578, 1536, 1511, 1490, 1348, 1328, 1259, 833, 808, 600; ¹H NMR (CDCl₃, 400 MHz) δ 9.41 (1H, br s), 8.29 (1H, d, *J* = 9.3 Hz), 7.44 (1H, d, *J* = 2.3 Hz), 7.29-7.23

(2H, m), 7.19 (1H, d, J = 8.1 Hz), 7.17 (1H, d, J = 8.1 Hz), 7.11 (1H, dd, J = 9.3, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 161.30 (d, J = 247.4 Hz), 158.72 (quint, J = 18.5 Hz), 143.39, 133.63, 133.55 (d, J = 3.2 Hz), 127.55, 127.04 (2C, d, J = 8.5 Hz), 117.33 (2C, d, J = 22.6 Hz), 114.43 (quint, J = 4.6 Hz), 114.28 (quint, J = 5.1 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.87-80.27 (1F, m), 60.85 (4F, d, J = 150.5 Hz); GCMS (EI) *m/z* 358 (100%) [M]⁺, 324 (13), 311 (22), 216 (15), 203 (14), 185 (47), 184 (26), 157 (13), 95 (14), 75 (10); HRMS (ESI) *m/z* Calcd for C₁₂H₇F₆S [M - H]⁺: 357.0127; Found: 357.0130. N-(4-chlorophenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (2f). Red solid (215 mg, 72%)

yield); R_f 0.44 (PE-acetone, 95:5); m.p. 90-91°C; IR (film) ν_{max} (cm⁻¹) 3354, 1620, 1593, 1575, 1535, 1495, 1342, 1263, 848, 830, 601, 509; ¹H NMR (CDCl₃, 400 MHz) δ 9.42 (1H, br s), 8.29 (1H, d, J = 9.3 Hz), 7.55 (1H, d, J = 2.3 Hz), 7.44 (2H, dd, J = 8.6, 2.1

Hz), 7.22 (2H, dd, J = 8.6, 2.1 Hz), 7.15 (1H, dd, J = 9.3, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.67 (quint, J = 18.9 Hz), 142.51, 136.32, 134.09, 132.24, 130.50 (2C), 127.60, 125.65 (2C), 114.92 (quint, J = 4.5 Hz), 114.51 (quint, J = 5.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.78-80.18 (1F, m), 60.9 (4F, d, J = 150.5 Hz); GCMS (EI) m/z 374 (100%) [M]⁺, 327 (12), 201 (28), 200 (11), 166 (16), 111 (10), 75 (12); HRMS (ESI) m/z Calcd for C₁₂H₇ClF₅N₂O₂S [M - H]⁺: 372.9842; Found: 372.9840.

N-(3-bromophenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (2g). Yellow amorphous solid

(195 mg, 58% yield); R_f 0.44 (PE-acetone, 95:5); IR (film) ν_{max} (cm⁻¹) 3353, 1620, 1586, 1571, 1494, 1478, 1427, 1343, 1263, 845, 601; ¹H NMR (CDCl₃, 400 MHz) δ 9.43 (1H, br s), 8.29 (1H, d, *J* = 9.3 Hz), 7.63 (1H, d, *J* = 2.3 Hz), 7.46-7.41 (2H, m), 7.33 (1H, t, t)

J = 7.9 Hz), 7.22 (1H, ddd, J = 7.9, 1.8, 0.5 Hz), 7.17 (1H, dd, J = 9.3, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.58 (quint, J = 18.7 Hz), 141.96, 139.27, 134.39, 131.44, 129.62, 127.54, 127.07, 123.74, 122.34, 115.29 (quint, J = 4.5 Hz), 114.75 (quint, J = 5.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.71-80.10 (1F, m), 61.00 (4F, d, J = 150.6 Hz); GCMS (EI) m/z 420 (100%) [M + 1]⁺, 419 (14), 418 (97), 386 (11), 384 (11), 294 (14), 293 (22), 247 (12), 245 (12), 185 (24), 184 (19), 166 (27), 165 (14), 164 (17), 157 (16), 155 (13), 140 (10), 139 (20), 76 (13), 75 (16), 63 (15); HRMS (ESI) m/z Calcd for C₁₂H₇BrF₅N₂O₂S [M - H]⁺: 416.9337; Found: 416.9334.

N-(4-iodophenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (**2h**). Orange solid (255 mg, $\stackrel{NO_2}{\leftarrow}$ H $\stackrel{N}{\leftarrow}$ 68% yield); *R_f* 0.45 (PE-acetone, 95:5); m.p. 89-90°C; IR (film) *v*_{max} (cm⁻¹) 3351, 1618, 1583, 1535, 1499, 1494, 1390, 1342, 1262, 1007, 848, 601; ¹H NMR (CDCl₃, 400 MHz) δ 9.40 (1H, br s), 8.29 (1H, d, *J* = 9.3 Hz), 7.78 (2H, dd, *J* = 8.6, 2.8 Hz), 7.60 (1H, d, *J* = 2.3

Hz), 7.16 (1H, dd, J = 9.3, 2.3 Hz), 7.03 (2H, dd, J = 8.6, 2.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.64 (quint, J = 19.1 Hz), 142.08, 139.38 (2C), 137.61, 134.29, 127.61, 125.80

(2C), 115.11 (quint, J = 4.4 Hz), 114.62 (quint, J = 5.0 Hz), 90.58; ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.76-80.16 (1F, m), 61.00 (4F, d, J = 150.5 Hz); GCMS (EI) m/z 466 (100%) [M]⁺, 432 (8), 185 (15), 166 (14), 139 (10), 76 (10); HRMS (ESI) m/z Calcd for C₁₂H₇F₅IN₂O₂S [M - H]⁺: 464.9199; Found: 464.9196.

2-Nitro-5-(pentafluorosulfanyl)-N-(3-(trifluoromethyl)phenyl)aniline (2i). Yellow

amorphous solid (196 mg, 60% yield); R_f 0.44 (PE-acetone, 95:5); IR (film) v_{max} (cm⁻¹) 3358, 1622, 1614, 1597, 1502, 1462, 1328, 1265, 1132, 847, 754, 602; ¹H NMR (CDCl₃, 400 MHz) δ 9.49 (1H, br s), 8.32 (1H, d, *J* = 9.3 Hz), 7.64 (1H, d, *J* = 2.3 Hz), 7.59

(1H, d, J = 7.7 Hz), 7.57-5.53 (2H, m), 7.47 (1H, d, J = 7.7 Hz), 7.21 (1H, dd, J = 9.3, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.64 (quint, J = 18.9 Hz), 141.76, 138.70, 134.70, 132.90 (q, J = 32.9 Hz), 130.94, 127.66, 126.82, 123.60 (q, J = 272.6 Hz), 123.06 (q, J = 3.8 Hz), 120.61 (q, J = 3.8 Hz), 115.65 (quint, J = 4.5 Hz), 114.68 (quint, J = 5.0 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.54-79.84 (1F, m), 60.95 (4F, d, J = 150.5 Hz), -63.53 (3F, s); GCMS (EI) *m/z* 408 (100%) [M]⁺, 374 (13), 361 (15), 253 (11), 235 (47), 234 (19); HRMS (ESI) *m/z* Calcd for C₁₃H₇F₈N₂O₂S [M - H]⁺: 407.0106; Found: 407.0102.

N-(4-ethynylphenyl)-2-nitro-5-(pentafluorosulfanyl)aniline (2j). Red solid (227 mg, 78%

yield); R_f 0.44 (PE-acetone, 95:5); m.p. 122-123°C; IR (film) v_{max} (cm⁻¹) 3352, 3296, 2109, 1621, 1602, 1582, 1535, 1509, 1492, 1343, 1263, 1119, 840, 811, 722, 601; ¹H NMR (CDCl₃, 400 MHz) δ 9.48 (1H, br s), 8.29 (1H, d, J = 9.3 Hz), 7.67 (1H, d, J =

2.3 Hz), 7.58 (2H, dd, J = 8.6, 2.3 Hz), 7.23 (2H, dd, J = 8.6, 2.3 Hz), 7.17 (1H, dd, J = 9.3, 2.3 Hz), 3.14 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 158.58 (quint, J = 18.6 Hz), 141.80, 138.27, 134.48, 134.09 (2C), 127.59, 123.28 (2C), 120.10, 115.28 (quint, J = 4.5 Hz), 114.92 (quint, J = 5.0 Hz), 82.81, 78.24; ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.73-80.13 (1F, m), 60.96 (4F, d, J = 150.5 Hz); GCMS (EI) *m/z* 364 (100%) [M]⁺, 330 (9), 315 (15), 191 (30), 190 (22), 163 (10); HRMS (ESI) *m/z* Calcd for C₁₄H₈F₅N₂O₂S [M - H]⁺: 363.0232; Found: 363.0229.

Isopropyl-4-[2-nitro-5-(pentafluorosulfanyl)phenylamino]benzoate (2k). Yellow

amorphous solid (120 mg, 35% yield); R_f 0.34 (PE-acetone, 95:5); IR (film) v_{max} (cm⁻¹) 3352, 1713, 1621, 1603, 1577,

1512, 1493, 1469, 1388, 1378, 1343, 1279, 1103, 845, 601; ¹H NMR (CDCl₃, 400 MHz) δ 9.52 (1H, br s), 8.31 (1H, d, J = 9.3 Hz), 8.12 (1H, dt, J = 8.7, 2.4 Hz), 7.79 (2H, d, J =2.3 Hz), 7.31 (2H, dt, J = 8.7, 2.4 Hz), 7.22 (1H, dd, J = 9.3, 2.3 Hz), 5.27 (1H, sept, J =6.2 Hz), 1.39 (6H, d, J = 6.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 165.27, 158.51 (quint, J =18.9 Hz), 142.07, 141.09, 135.06, 131.77 (2C), 128.29, 127.59, 122.02 (2C), 115.88 (quint, J = 4.5 Hz), 115.29 (quint, J = 4.8 Hz), 68.80, 22.09 (2C); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.63-80.02 (1F, m), 61.02 (4F, d, J = 150.5 Hz); GCMS (EI) *m*/*z* 426 (100%) [M]⁺, 385 (12), 384 (71), 368 (20), 367 (82), 351 (10), 337 (11), 320 (16), 295 (10), 211 (10), 167 (16), 166 (17), 164 (10), 139 (12); HRMS (ESI) *m*/*z* Calcd for C₁₆H₁₄F₅N₂O₄S [M - H]⁺: 425.0600; Found: 425.0596.

N-(2-nitro-5-(pentafluorosulfanyl)phenyl)naphthalen-1-amine (21). Yellow solid (173

SF₅

mg, 55% yield); R_f 0.52 (PE-acetone, 95:5); m.p. 115-116°C; IR (film) v_{max} (cm⁻¹) 3348, 3062, 1618, 1597, 1577, 1509, 1490, 1410, 1397, 1339, 1319, 1245, 1170, 1160, 1017, 955, 845, 816, 791, 779, 753, 736, 688, 669, 600, 578; ¹H NMR (CDCl₃, 400 MHz) δ 9.80

(1H, br s), 8.34 (1H, d, J = 9.4 Hz), 7.98-7.93 (2H, m), 7.89 (1H, d, J = 8.1 Hz), 7.61-7.56 (2H, m), 7.54 (1H, d, J = 7.3 Hz), 7.50 (1H, dt, J = 7.3, 1.1 Hz), 7.30 (1H, d, J = 2.3 Hz), 7.10 (1H, dd, J = 9.4, 2.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 158.73 (quint, J = 18.6 Hz), 144.16, 134.76, 133.51, 133.47, 129.65, 128.92, 128.20, 127.45, 127.38, 127.15, 125.93, 123.14, 122.01, 114.95 (quint, J = 5.0 Hz), 114.22 (quint, J = 4.4 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.85-80.25 (1F, m), 60.84 (4F, d, J = 150.5 Hz); GCMS (EI) *m/z* 390 (100%) [M]⁺, 356 (28), 344 (11), 343 (13), 248 (19), 235 (13), 234 (11), 218 (10), 217 (32), 216 (25), 215 (14), 214 (12), 189 (10), 127 (16); HRMS (ESI) *m/z* Calcd for C₁₆H₁₀F₅N₂O₂S [M - H]⁺: 389.0378; Found: 389.0381.

Synthesis of 2-nitro-5-trifluormethyl-diphenylamine (3). Synthetized according to NO_2 general procedure for 2 from *n*-BuLi solution (3.21 mmol), aniline (3.21 mmol), and 1-nitro-4-(trifluoromethyl)benzene (0.803 mmol) providing after flash chromatography 3 as an orange solid (145 mg 64% yield); R_f 0.68 (PE-acetone, 95:5); m.p. 72-73°C; IR (film) v_{max} (cm⁻¹) 3355, 1631,

1598, 1592, 1528, 1499, 1493, 1462, 1347, 1120, 771, 760, 740, 696; ¹H NMR (CDCl₃,

400 MHz) δ 9.55 (1H, br s), 8.32 (1H, dq, J = 8.9, 0.4 Hz), 7.50-7.43 (3H, m), 7.33-7.27 (3H, m), 6.97 (1H, ddd, J = 8.9, 1.9, 0.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 143.17, 137.84, 137.05 (q, J = 32.9 Hz), 134.48, 130.24 (2C), 127.92, 126.73, 124.72 (2C), 122.90 (q, J = 273.6 Hz), 113.59 (q, J = 4.2 Hz), 113.44 (q, J = 3.4 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -64.59 (s); GCMS (EI) *m*/*z* 282 (100%) [M]⁺, 265 (14), 249 (16), 248 (32), 237 (31), 236 (14), 235 (54), 216 (15), 167 (29), 166 (14), 77 (17), 51 (13); HRMS (ESI) *m*/*z* Calcd for C₁₃H₈F₃N₂O₂ [M - H]⁺: 281.0543; Found: 281.0540.

Synthesis of 4-nitro-3-phenylaminobenzonitrile (4). Synthetized according to general

procedure for **2** from *n*-BuLi solution (3.21 mmol), aniline (3.21 mmol), and 4-nitrobenzonitrile (0.803 mmol) providing after flash chromatography **4** as a red solid (138 mg, 72% yield); R_f 0.34 (PE-

ĊN acetone, 95:5); m.p. 135-136°C; IR (film) ν_{max} (cm⁻¹) 3350, 2235, 1615, 1596, 1574, 1498, 1484, 1339, 1261, 1065, 1027, 756, 697; ¹H NMR (CDCl₃, 400 MHz) δ 9.48 (1H, br s), 8.29 (1H, d, J = 8.8 Hz), 7.51-7.46 (2H, m), 7.43 (1H, d, J = 1.7 Hz), 7.35 (1H, tt, J = 7.5, 1.5 Hz), 7.29-7.25 (2H, m), 6.97 (1H, dd, J = 8.8, 1.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 143.27, 137.34, 134.56, 130.34 (2C), 127.86, 127.18, 125.15 (2C), 120.65, 119.08, 119.01, 117.25; GCMS (EI) *m/z* 239 (100%) [M]⁺, 222 (15), 206 (17), 205 (49), 204 (10), 194 (44), 193 (29), 192 (89), 191 (16); HRMS (ESI) *m/z* Calcd for C₁₃H₈N₃O [M - H]⁺: 238.0622; Found: 238.0620.

Synthesis of 4-nitro-*N*-phenylaniline (5).¹ Synthetized according to general procedure NO₂ for 2 from *n*-BuLi solution (3.21 mmol), aniline (3.21 mmol), and 1,4dinitrobenzene (0.803 mmol) providing after flash chromatography 5 as a yellow solid (147 mg, 85% yield); R_f 0.11 (PE-acetone, 95:5); m.p. 130-131°C; NHPh IR (film) v_{max} (cm⁻¹) 3340, 1604, 1584, 1540, 1502, 1497, 1484, 1467, 1319, 1299, 841, 748; ¹H NMR (CDCl₃, 400 MHz) δ 8.12 (2H, dd, J = 9.3, 2.1 Hz), 7.42-7.36 (2H, m), 7.21 (2H, dd, J = 7.4, 1.1 Hz), 7.17 (1H, tt, J = 7.4, 1.1 Hz), 6.91 (2H, dd, J = 9.3, 2.1 Hz), 6.30 (1H, br s); ¹³C NMR (CDCl₃, 100 MHz) δ 150.43, 139.65, 139.59, 129.79 (2C), 126.33 (2C), 124.70, 121.99 (2C), 113.75 (2C); GCMS (EI) *m/z* 214 (100%) $[M]^+$, 184 (33), 168 (29), 167 (92), 166 (17), 77 (12); HRMS (ESI) *m/z* Calcd for $C_{12}H_9N_2O_2$ [M - H]⁺: 213.0669; Found: 213.0669.

Synthesis of 2-nitro-*N*-phenylaniline (6).² Synthetized according to general procedure NO₂ for 2 from *n*-BuLi solution (3.21 mmol), aniline (3.21 mmol), and 1,2dinitrobenzene (0.803 mmol) providing after flash chromatography **6** as an orange solid (154 mg, 90% yield); R_f 0.57 (PE-acetone, 95:5); m.p. 78-79°C; IR (film) v_{max} (cm⁻¹) 3351, 1618, 1596, 1500, 1459, 1348, 1039, 1028, 779, 753, 739, 691; ¹H NMR (CDCl₃, 400 MHz) δ 9.49 (1H, br s), 8.20 (1H, dd, J = 8.6, 1.6 Hz), 7.45-7.38 (2H, m), 7.36 (1H, dt, J = 8.6, 1.6 Hz), 7.30-7.26 (2H, m), 7.25-7.20 (2H, m), 6.77 (1H, dt, J = 6.9, 1.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 143.12, 138.76, 135.74, 133.26, 129.79 (2C), 126.71, 125.71, 124.41 (2C), 117.17, 116.10; GCMS (EI) *m/z* 214 (100%) [M]⁺, 197 (12), 181 (13), 180 (32), 169 (29), 168 (27), 167 (93), 166 (26), 140 (10), 139 (14), 77 (18), 51 (16); HRMS (ESI) *m/z* Calcd for C₁₂H₁₀N₂O₂ [M + Na]⁺: 237.0634; Found: 237.0635.

Synthesis of 5-fluoro-2-nitro-N-phenylaniline (7).³ Synthetized according to general procedure for 2 from *n*-BuLi solution (3.21 mmol), aniline (3.21 mmol), NO_2 NHPh and 1-fluoro-4-nitrobenzene (0.803 mmol) providing after flash chromatography 7 as a yellow solid (114 mg, 61% yield) or from 1,3difluoro-4-nitrobenzene (0.803 mmol) in 59% yield; Rf 0.57 (PE-acetone, 95:5); m.p. 98–99°C; IR (film) v_{max} (cm⁻¹) 3328, 1626, 1591, 1506, 1464, 1417, 1342, 775, 735, 698; ¹H NMR (CDCl₃, 400 MHz) δ 9.64 (1H, br s), 8.27 (1H, dd, J = 9.5, 6.1Hz), 7.48-7.42 (2H, m), 7.32-7.27 (3H, m), 6.80 (1H, dd, J = 11.4, 2.6 Hz), 6.47 (1H, dt, J = 9.5, 2.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 167.40 (d, J = 256.3 Hz), 145.75 (d, J = 256.3 Hz) 13.2 Hz), 138.07, 130.09 (2C), 130.00, 129.88, 126.62, 125.06 (2C), 106.09 (d, J = 24.8 Hz), 101.50 (d, J = 27.9 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -99.94 (m); GCMS (EI) m/z232 (100%) [M]⁺, 215 (12), 199 (15), 198 (41), 187 (32), 186 (24), 185 (79), 184 (23), 157 (10), 77 (15), 51 (13); HRMS (ESI) m/z Calcd for C₁₂H₉FN₂O₂ [M + Na]⁺: 255.0540; Found: 255.0541.

Synthesis of 5-chloro-2-nitro-*N*-phenylaniline (8).⁴ Synthetized according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 mmol), and 1-NPh chloro-4-nitrobenzene (1 mmol) at -78°C providing after flash chromatography 8 as a orange solid (122 mg, 49% yield); R_f 0.42 (hexane-CH₂Cl₂, 90:10); m.p. 186–187°C; IR (film) v_{max} (cm⁻¹) 3331, 1612, 1595, 1571, 1564, 1495, 1484, 1338, 1246, 936, 747, 710; ¹H NMR (CDCl₃, 400 MHz) δ 9.55 (1H, br s), 8.16 (1H, d, *J* = 9.1 Hz), 7.48-7.44 (2H, m), 7.32-7.27 (3H, m), 7.15 (1H, d, *J* = 2.2 Hz), 6.72 (1H, dd, *J* = 9.1, 2.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 144.09, 142.65, 138.01, 131.62, 130.14 (2C), 128.26, 126.61, 125.04 (2C), 118.04, 115.33; GCMS (EI) *m/z* 250 (33%) [M]⁺, 248 (100) [M]⁺, 214 (51), 203 (35), 201 (35), 167 (57), 166 (45), 139 (19), 77 (31); HRMS (ESI) *m/z* Calcd for C₁₂H₉ClN₂O₂ [M]⁺: 248.0353; Found: 248.0348.

Synthesis of 5-bromo-2-nitro-*N*-phenylaniline (9).⁵ Synthetized according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 mmol), and 1-NHPh bromo-4-nitrobenzene (1 mmol) at -78°C providing after flash chromatography 9 as a orange solid (123 mg, 42% yield); R_f 0.44 (hexane- H_2Cl_2 , 90:10); m.p. 202–203°C; IR (film) v_{max} (cm⁻¹) 3352, 1610, 1594, 1566, 1498, 1484, 1335, 1251, 1066, 918, 795; ¹H NMR (CDCl₃, 400 MHz) δ 9.52 (1H, br s), 8.07 (1H, d, J = 9.1 Hz), 7.50-7.42 (2H, m), 7.33 (1H, d, J = 2.1 Hz), 7.32-7.27 (3H, m), 6.87 (1H, dd, J = 9.1, 2.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 143.97, 137.97, 132.02, 131.39, 130.13 (2C), 128.11, 126.58, 124.97 (2C), 120.87, 118.44; GCMS (EI) m/z 294 (91%) [M]⁺, 292 (93) [M]⁺, 260 (43), 258 (41), 247 (39), 167 (100), 166 (59), 139 (39), 77 (59), 51 (44); HRMS (ESF) m/z Calcd for $C_{12}H_9BrN_2O_2$ [M – H]⁻: 290.9775; Found: 290.9775.

Synthesis of 5-bromo-2-nitro-*N*-phenyl-3-(trifluoromethyl)aniline (12). Synthetized according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 mmol), and 4-bromo-1-nitro-2-(trifluoromethyl)benzene (1 mmol) providing after flash chromatography **12** as a yellow solid (169 mg, 47% yield); R_f 0.55 (hexane-CH₂Cl₂-EtOAc, 75:20:5); m.p. 209-210°C; IR (film) ν_{max} (cm⁻¹) 3399, 1592, 1544, 1502, 1435, 1326, 1297, 1180, 1169, 1159, 961, 857, 706, 659; ¹H NMR (CDCl₃, 400 MHz) δ 7.52 (1H, d, J = 1.9 Hz), 7.49 (1H, br s), 7.43 (2H, t, J = 7.6 Hz), 7.29 (1H, d, J = 1.6 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.18 (2H, d, J = 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 141.24, 138.25, 133.98, 130.27 (2C), 127.08(q, J = 33.8 Hz), 127.02, 126.02, 123.32 (2C), 123.02, 121.60 (q, J = 274.4 Hz), 120.80 (q, J = 5.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ -59.83 (s); GCMS (EI) *m/z* 362 (99%) [M]⁺, 360 (99) [M]⁺, 235 (100), 199 (15), 198 (41), 187 (32), 186 (24), 185 (79), 184 (23), 157 (10), 77 (15), 51 (13); HRMS (EI) *m/z* Calcd for C₁₃H₈BrF₃N₂O₂ [M]⁺: 359.9721; Found: 359.9728.

Synthesis of 5-chloro-2,4-dinitro-*N*-phenylaniline (13).⁶ Synthetized according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 O_2N (NHPh mmol), and 1-chloro-2,4-dinitrobenzene (1 mmol) at -78°C providing after flash chromatography 13 as a orange solid (149 mg, 51% yield); R_f 0.37 (hexane-CH₂Cl₂-EtOAc, 75:20:5); m.p. 132-133°C; IR (film) v_{max} (cm⁻¹) 3342, 1618, 1593, 1576, 1496, 1350, 1332, 1285, 1141, 987; ¹H NMR (CDCl₃, 400 MHz) δ 9.84 (1H, br s), 9.07 (1H, s), 7.53 (2H, t, *J* = 7.8 Hz), 7.41 (1H, t, *J* = 7.5 Hz), 7.31 (2H, d, *J* = 7.5 Hz), 7. 17 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 145.73, 136.38 (2C), 135.81(2C), 130.58 (2C), 128.22, 126.82, 125.67 (2C), 118.05; GCMS (EI) *m*/*z* 295 (35%) [M]⁺, 293 (100) [M]⁺, 230 (20), 202 (21), 201 (21), 166 (40), 139 (21), 77 (20), 51 (11); HRMS (EI) *m*/*z* Calcd for C₁₃H₈ClN₃O₄ [M]⁺: 293.0203; Found: 293.0201.

Synthesis of 2-nitro-4-(pentafluorosulfanyl)-*N*-phenylaniline (14). Synthetized NO_2 according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 mmol), 1-nitro-3-(pentafluorosulfanyl)benzene (1 mmol) providing after flash chromatography 14 as a orange solid (241 mg, 71% yield); R_f 0.50 (hexane-CH₂Cl₂-EtOAc, 75:20:5); m.p. 217-218°C; IR (film) v_{max} (cm⁻¹) 3353, 2927, 1622, 1596, 1573, 1508, 1357, 1272, 914,857, 837, 597; ¹H NMR (CDCl₃, 400 MHz) δ 9.72 (1H, br s), 8.66 (1H, d, J = 2.6 Hz), 7.66 (1H, dd, J = 9.5, 2.7 Hz), 7.48 (2H, m), 7.34 (1H, tt, J = 8.4, 6.8 Hz), 7.29 (2H, m), 7.15 (1H, d, J = 9.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 144.98, 142.45 (quint, J = 19.9 Hz), 137.32, 132.53 (quint, J = 4.5 Hz), 130.92, 130.24 (2C), 127.32, 125.62 (quint, J = 5.0 Hz), 125.45 (2C), 115.87; ¹⁹F NMR (CDCl₃, 376 MHz) δ 83.66 (1F, m), 63.45 (4F, d, J = 151.1 Hz); GCMS (EI) m/z 340 (100%) [M]⁺, 323 (13), 306 (12), 293 (17), 185 (21), 167 (43), 139 (16), 77 (16); HRMS (EI) m/z Calcd for C₁₂H₉F₅N₂O₂S [M]⁺: 340.0305; Found: 340.0306.

Synthesisof2-fluoro-6-nitro-4-(pentafluorosulfanyl)-N-phenylaniline(15). NO_2 Synthetized according to general procedure for 2 from *n*-BuLisolutionsolution(4 mmol), aniline(4 mmol), 1-fluoro-3-nitro-5- F_5S F(pentafluorosulfanyl)benzene(1 mmol) providing after flash
chromatography 15 as a orange solid (250 mg, 70% yield); R_f 0.48

(hexane-CH₂Cl₂-EtOAc, 75:20:5); m.p. 163-164°C; IR (film) ν_{max} (cm⁻¹) 3413, 1598, 1513, 1500, 1261, 1106, 923, 858, 842, 602; ¹H NMR (CDCl₃, 400 MHz) δ 9.28 (1H, br s), 8.49 (1H, t, *J* = 2.2 Hz), 7.64 (1H, dd, *J* = 12.2, 2.6 Hz), 7.37 (2H, t, *J* = 7.9 Hz), 7.23 (1H, t, *J* = 7.5 Hz), 7.12 (2H, dd, *J* = 6.9, 2.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 153.39, 150.85, 141.92 (m), 139.41 (d, *J* = 3.3 Hz), 135.46, 133.95 (d, *J* = 11.7 Hz), 129.16 (2C), 125.84, 122.25 (2C), 120.96 (m), 119.74 (dt, *J* = 25.1, 4.5 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 81.80 (1F, m), 63.45 (4F, d, *J* = 151.6 Hz), -110.58 (1F, d, *J* = 12.1 Hz); GCMS (EI) *m/z* 358 (100%) [M]⁺, 313(25), 203(19), 185(41), 146(16), 77(8); HRMS (EI) *m/z* Calcd for C₁₂H₈F₆N₂O₂S [M]⁺: 358.0211; Found: 358.0209.

Synthesis of 4-methyl-5-nitro-*N*-phenylpyridin-2-amine (16).⁷ Synthetized according to general procedure for 2 from *n*-BuLi solution (4 mmol), aniline (4 mmol), and 4-methyl-3-nitropyridine (1 mmol) at -78°C providing after flash chromatography 16 as a orange solid (158 mg, 69% yield) R_f 0.24 (hexane-CH₂Cl₂-EtOAc, 20:75:5); m.p. 110-111°C; IR (film) v_{max} (cm⁻¹) 3404, 1613, 1557, 1499, 1450, 1336, 1279, 697; ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (1H, s), 7.47-7.20 (1H, br s), 7.35 (2H, t, *J* = 7.3 Hz), 7.27 (2H, d, *J* = 7.3 Hz), 7.14 (1H, t, *J* = 7.2 Hz), 6.60 (1H, s), 2.52 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 158.86, 148.24, 146.09, 138.32, 129.82 (2C), 125.49, 122.68 (2C), 108.67, 21.81; GCMS (EI) *m/z* 229 (81%) $[M]^+$, 228 (100), 182 (41), 156 (12), 128 (14) 77 (20); HRMS (EI) *m/z* Calcd for $C_{12}H_{11}N_3O_2 [M]^+$: 229.0851; Found: 229.0850.

References

- 1 Y. Zhang, V. César and G. Lavigne, Eur. J. Org. Chem., 2015, 2042.
- 2 M. T. Barros, S. S. Dey and C. D. Maycock, Eur. J. Org. Chem., 2013, 742.
- 3 M. J. Plater and W. T. A. Harrison, J. Chem. Res., 2015, 39, 98.
- 4 K. Lee, H. R. Kim, C. H. Park, C. O. Lee, J. K. Lee, H. J. Jung, S. Y. Cho, C. H. Chae,
 S. U. Choi, J. D. Ha, US 2015/0152069 A1.
- 5 G. Battagliarin, F. L. Benedito, S. Metz, K. Dormann, P. Murer, S. Watanabe, C. Lennartz, G. Beck, T. Gessner, WO 2015/014944 A1.
- 6 A. J. Boydston, P. D. Vu, O. L. Dykhno, V. Chang, A. R. Wyatt, 2nd, A. S. Stockett,
 E. T. Ritschdorff, J. B. Shear and C. W. Bielawski, *J. Am. Chem. Soc.*, 2008, 130, 3143.
- 7 M. Wandas, B. Palasek, A. Puszko and H. Ban-Oganowska, *Chem. Heterocycl. Comp.*, 1997, 33, 551.

Copies of ¹H and ¹³C NMR spectra 2a, ¹H NMR (CDCl₃, 400MHz)

SI15

2b, ¹³C NMR (CDCl₃, 100MHz)

2c, ¹³C NMR (CDCl₃, 100MHz)

2d, ¹³C NMR (CDCl₃, 100MHz)

2e, ¹³C NMR (CDCl₃, 100MHz)

2h, ¹H NMR (CDCl₃, 400MHz)

2h, ¹³C NMR (CDCl₃, 100MHz)

2i, ¹³C NMR (CDCl₃, 100MHz)

2k, ¹³C NMR (CDCl₃, 100MHz)

2l, ¹H NMR (CDCl₃, 400MHz)

3, ¹H NMR (CDCl₃, 400MHz)

12, ¹H NMR (CDCl₃, 400MHz)

12, ¹³C NMR (CDCl₃, 100MHz)

14, ¹H NMR (CDCl₃, 400MHz)

15, ¹H NMR (CDCl₃, 400MHz)

15, ¹³C NMR (CDCl₃, 100MHz)

