Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

> Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2016

A reversible B-A transition of DNA duplexes induced by synthetic cationic copolymers

Nonoka Yamaguchi,^a Yu-ki Zouzumi,^a Naohiko Shimada,^b Shu-ichi Nakano, ^a Naoki Sugimoto, ^{a,c}

Atsushi Maruyama,*^b Daisuke Miyoshi,*^a

^a Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University,

7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.

^b Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

^c Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Contents

- Page 2. Supplemental Figure S1: UV spectra and different UV spectra of GC8
- Page 3. Supplemental Figure S2: Melting and annealing curves of GC0
- Page 4: Supplemental Figure S3: Melting and annealing curves of GC8
- Page 5: Supplemental Figure S4: Melting curves of GC2, GC4, GC5, GC6, and GC8
- Page 6. Supplemental Figure S5: Non-denaturing polyacrylamide gel of GC8
- Page 7: Supplemental Table S1: Thermodynamic parameters of GC8

Page 8: Materials and Methods

Figure S1. (a) UV spectra of 5 μ M GC8 in the presence of PAA-*g*-Dex of various concentrations [N/P = 0 (green), 0.3 (gray), 1.0 (blue), 3.0 (yellow)] in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0), and 1 mM Na₂EDTA at 25°C. (b) UV difference spectra of 5 μ M GC8, obtained by subtraction of the spectrum in the absence of PAA-*g*-Dex from the spectra in the presence of PAA-*g*-Dex [N/P = 0.3 (gray), 1.0 (blue), 3.0 (yellow)].

Figure S2. Melting and annealing curves of 20 μ M GC0 in the presence of PLL-g-Dex (a: N/P = 0), (b: N/P = 0.1), (c: N/P = 0.3), (d: N/P = 1.0), (e: N/P = 3.0) or in the presence of PAA-g-Dex (f: N/P = 0), (g: N/P = 0.1), (h: N/P = 0.3), (i: N/P = 1.0), (j: N/P = 3.0) in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0), and 1 mM Na₂EDTA.

Figure S3. Melting and annealing curves of 20 μ M GC8 in the presence of PLL-g-Dex (a: N/P = 0), (b: N/P = 0.1), (c: N/P = 0.3), (d: N/P = 1.0), (e: N/P = 3.0) or in the presence of PAA-g-Dex (f: N/P = 0), (g: N/P = 0.1), (h: N/P = 0.3), (i: N/P = 1.0), (j: N/P = 3.0) in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0), and 1 mM Na₂EDTA.

Figure S4. Normalized melting curves of 20 μ M DNA duplexes in the presence of PLL-*g*-Dex (left column) or PAA-*g*-Dex (right column) of various concentrations [N/P = 0 (green), 0.1, 0.3, 1.0, 3.0 (yellow)] in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0) and 1 mM Na₂EDTA. (a)(b) GC2, (c)(d) GC4, (e)(f) GC5, (g)(h) GC6, (i)(j) GC8.

Figure S5. Non-denaturing 10% polyacrylamide gel electrophoresis of 10 μ M GC8 in the presence of PAA-*g*-Dex and PVS. All experiments were carried out in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0), and 1 mM Na₂EDTA at 4°C. Lanes 1 and 6, DNA ladder including 100, 90, 80, 70, 60, 50, 40, 30, 20 base pairs duplexes; Lane 2, [PAA-*g*-Dex] = 0 μ M [PVS] = 0 μ M; Lane 3, [PAA-*g*-Dex] = 200 μ M [PVS] = 0 μ M; Lane 4, [PAA-*g*-Dex] = 600 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 7, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 8, [PAA-*g*-Dex] = 1000 μ M [PVS] = 200 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 0 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 00 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 00 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 00 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 00 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 00 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 400 μ M; Lane 5, [PAA-*g*-Dex] = 1000 μ M [PVS] = 600 μ M.

	<u> </u>			
	ΔG° 25	ΔH°	$T\Delta S^{\circ}$	$T_{ m m}$
	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(°C)
Without	-14.7	-75.2	-60.5	57.8
+PAA-g-Dex	-21.9	-117	-95.0	67.6
+PAA-g-Dex + PVS	-15.4	-81.4	-66.0	58.2

Table S1. Thermodynamic parameters for formation of DNA duplex of GC8 in the absence of polymer, in the presence of PAA-*g*-Dex (N/P = 3.0), and in the presence of PAA-*g*-Dex (N/P = 3.0) and PVS (1200 μ M sulfonate) in the buffer of 100 mM NaCl 10 mM Na₂HPO₄ (pH7.0), and 1 mM Na₂EDTA.

Materials and Methods Materials

The PLL-*g*-Dex copolymer (M_n of PLL = 14400, M_n of Dex = 5300, degree of substitution of Dex = 14.4%, weight fraction of Dex = 86%) and PAA-*g*-Dex (M_n of PAA = 15000, M_n of Dex = 5300, degree of substitution of Dex = 11.4 %, weight fraction of Dex = 92%) were prepared by a reductive amination reaction between poly(L-lysine) and dextran, as described in detail previously (1,2). PVS (poly(vinyl sulfonate) was purchased from Sigma-Aldrich.

DNA oligonucleotides were HPLC grade and were purchased from Hokkaido System Science (Sapporo, Japan) and and Sigma-Aldrich Japan K.K. (Tokyo, Japan). The single-strand concentrations of the DNA oligodeoxynucleotides were determined by measuring the absorbance at 260 nm and high temperature using a UV-1800 spectrometer (Shimadzu Co., Ltd., Kyoto, Japan) connected to a Shimadzu TMSPC-8 thermoprogrammer. Single-strand extinction coefficients were calculated from mononucleotide and dinucleotide data using the nearest-neighbor approximation (3).

All chemical reagents were of reagent grade from Wako Pure Chemical Co., Ltd. (Osaka, Japan) and Sigma-Aldrich Japan K.K. And the chemical reagents were used without further purification.

Circular dichroism measurements

Circular Dichroism (CD) spectra of DNA oligonucleotides were measured for 20 μ M DNA total strand concentration using a J-820 spectropolarimeter (JASCO Co., Ltd., Hachioji, Japan) with a 0.1-cm path length quartz cell at 25°C. The CD spectrum was obtained by taking the average of three scans made at 0.2-nm intervals from 200 to 350 nm. Before measurement, the DNA samples were heated at 90°C for 3 min, gently cooled at 0.5°C min⁻¹, and incubated at 25°C. The temperature of the cell holder was regulated by a PTC-348 temperature controller (JASCO), and the cuvette-holding chamber was flushed with a constant stream of dry N₂ gas to avoid water condensation on the cuvette exterior. Before the measurement, the sample was heated to 90°C, gently cooled at a rate of 0.5 °C min⁻¹, and incubated at 25°C for 1 h.

Thermal and thermodynamic analysis

The UV melting curves of DNA oligonucleotides were measured by a Shimadzu 1800 spectrophotometer (Shimadzu) equipped with the Shimadzu TMSPC-8 temperature controller. The UV melting curves were measured at 260 nm where DNA duplexes show a hyperchromic transition (4). All experiments were carried out in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0) and 1 mM Na₂EDTA. The heating rate was 0.5°C min⁻¹. The thermodynamic parameters were calculated from the fit of the melting curves (with at least five different concentrations of DNA oligonucleotides) to a theoretical equation for an intramolecular association as described previously (5,6). Before the measurement, the sample was heated to 90°C, gently cooled at a rate of 0.5°C min⁻¹ for annealing, and incubated at 0°C for 1 h.

Non-denaturing gel electrophoresis

Gel electrophoresis was performed on non-denaturing gels containing 10% polyacrylamide. Ice-cold loading buffer (980 μ L) was mixed with 20 μ L of 10 μ M GC8, and a 5 μ L aliquot of the mixed solution was loaded and analyzed by electrophoresis at 10 V cm⁻¹ for 3 h at 4°C. All experiments were carried out in the buffer of 100 mM NaCl, 10 mM Na₂HPO₄ (pH7.0) and 1 mM Na₂EDTA at 4°C. Gels were stained by using SYBR® Gold (Molecular Probes) and imaged with FLA-5100 (Fuji Film Co., Ltd., Tokyo, Japan). Before the measurement, the sample was heated to 90 °C, gently cooled at a rate of 0.5 °C min⁻¹, and incubated at 4 °C for 1 h.

References

- 1. A. Maruyama, M. Katoh, T. Ishihara, T. Akaike, *Bioconjugate Chem.* 1997, 8, 3-6.
- 2. Y. Sato, Y. Kobayashi, T. Kamiya, H. Watanabe, T. Akaike, K. Yoshikawa, A. Maruyama, *Biomaterials*, **2005**, *26*, 703-711.
- Richard, E. G. Handbook of Biochemistry and Molecular Biology; CRC Press: Cleveland, OH, 1975.
- 4. J.-L. Mergny, L. Lacroix, *Oligonucleotides* **2003**, *13*, 515-537.
- 5. L. A. Marky, K. J. Breslauer, *Biopolymers* **1987**, *26*, 1601-1620.
- 6. D. Miyoshi, H. Karimata, N. Sugimoto, J. Am. Chem. Soc. 2006, 128, 7957-7963.