Direct oxidative lactonization of alkenoic acids mediated solely by NaIO_{4} : beyond oxidant

Yan-Biao Kang,* Xian-Min Chen, Chuan-Zhi Yao, and Xiao-Shan Ning

Center of Advanced Nanocatalysis, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

E-mail: ybkang@ustc.edu.cn

Contents

(1) General informationS1
(2) General procedures S1 - S11
(3) Control reactions S11
(4) NMR monitoring experiments S11-S12
(5) ICP-AES experiments S13
(6) References S14
(7) NMR spectra S15-S46

1. General information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 spectrometer. Chemical shifts are reported in δ units relative to $\mathrm{CHCl}_{3}\left[{ }^{1} \mathrm{H} \delta=7.26,{ }^{13} \mathrm{C} \delta=77.36\right]$. ICP-AES were recorded on a PerkinElmer Optima 7300 DV. Mass spectra were recorded by the mass spectrometry service at the University of Science and Technology of China. Glycial acid (ACS reagent 99.7\%), allylacetic acid, triflic acid, and NaIO_{4} were purchased from commercially sources. TfOH solution (1 M in $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$) was preprepared by dilution of TfOH into the mixture of AcOH and $\mathrm{Ac}_{2} \mathrm{O}(2: 1)$. Acetic anhydride was purified by distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$ under an argon atmosphere.

2. General procedures

2.1. Procedure for the synthesis of acids

2, 2-diphenylpent-4-enoic acid (1b)

Prepared by literature procedure. ${ }^{1}$ A solution containing 10 mmol of 2,2-diphenylacetic acid in 5 mL of dry THF was added to 25 mmol of lithium diisopropylamide (LDA, $2.0 \mathrm{~mol} / \mathrm{L}$ in THF) in 25 mL of THF at $0{ }^{\circ} \mathrm{C}$. The suspension was stirred for 1 h at $25^{\circ} \mathrm{C}$ and 0.5 h at $60^{\circ} \mathrm{C}$. After the mixture was cooled to $0^{\circ} \mathrm{C}, 25 \mathrm{mmol}$ of 3-bromoprop-1-ene was added and the reaction stirred for 2 h at $60{ }^{\circ} \mathrm{C}$. The mixture was poured into ice-cold water (50 mL) and washed with ether $(50 \mathrm{~mL} \times 3)$. The aqueous phase was acidification with 2 M HCl solution and extracted with ether $(50 \mathrm{~mL} \times 3)$. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the titled compound as a white solid ($1.80 \mathrm{~g}, 71 \%$).

2,2-dipropylpent-4-enoic acid (1c)

Above procedure for 2,2-diphenylpent-4-enoic acid (1b) was used and the titled compound was obtained as colorless oil ($1.12 \mathrm{~g}, 61 \%$).

4-methyl-2, 2-diphenylpent-4-enoic acid (1d)

Above procedure for 2,2-diphenylpent-4-enoic acid (1b) was used and the titled compound was obtained as a pale yellow solid ($0.99 \mathrm{~g}, 74 \%$).

4-phenylpent-4-enoic acid (1e)

Prepared by literature procedure. ${ }^{2}$ To a suspension of methyltriphenylphosphonium bromide (4.64
$\mathrm{g}, 13 \mathrm{mmol})$ in THF (20 mL) was added sodium tert-butoxide ($2.92 \mathrm{~g}, 26 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was then stirred for 30 min . 3-benzoylpropionic acid $(1.71 \mathrm{~g}, 10 \mathrm{mmol})$ was then added to the reaction mixture at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature, and was then stirred for 16 h . After evaporation of THF, dichloromethane and 1 M NaOH solution were added. The aqueous layer was washed with dichloromethane. 2 M HCl solution was then added until the pH of the aqueous layer was to 2 , then extracted with dichloromethane twice and dried over NaSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum etherand ethyl acetate as eluent to give the title compound as white solid ($1.80 \mathrm{~g}, 67 \%$).

2-methylpent-4-enoic acid (1f)

Above procedure for 2,2-diphenylpent-4-enoic acid (1b) was used and the titled compound was obtained as colorless oil ($1.62 \mathrm{~g}, 95 \%$).

1-allylcyclopentanecarboxylic acid (1g)

Above procedure for 2,2-diphenylpent-4-enoic acid (1b) was used and the titled compound was obtained as colorless oil ($1.15 \mathrm{~g}, 75 \%$).

1-allylcyclohexanecarboxylic acid (1h)

Above procedure for 2,2-diphenylpent-4-enoic acid (1b) was used and the titled compound was obtained as colorless oil ($1.36 \mathrm{~g}, 75 \%$).

3, 3-dimethylpent-4-enoic acid (1i)

Prepared by literature procedure. ${ }^{4}$ 3-Methyl-2-buten-1-ol ($1.72 \mathrm{~g}, 20 \mathrm{mmol}$) and propionic acid (50 $\mathrm{mg}, 0.7 \mathrm{mmol}$) were added in 25 mL of triethyl orthoacetate, the solution was heated at $120-130{ }^{\circ} \mathrm{C}$ for 11 h . Then the reaction mixture was cooled to room temperature and poured into a mixture of 50 mL of ice cold $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. After being stirred overnight, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated NaHCO_{3}, saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by distillation at reduced pressure to give the crude product. The residue was added over 1 h to a solution of $50 \% \mathrm{NaOH}$ (aq.) in 50 mL of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$ at $5^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was warmed to room temperature, stirred for 4 h , partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with $5 \% \mathrm{KOH}$, and the combined aqueous phases were cooled in ice bath, acidified with concentrated HCl , and extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed by distillation at reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the title compound as colorless oil $(0.65 \mathrm{~g}, 51 \%)$.

2-allylbenzoic acid (1k)

Prepared by literature procedure. ${ }^{5}{ }^{i} \mathrm{PrMgCl}(2.0 \mathrm{M}$ in THF) ($5.25 \mathrm{~mL}, 10.5 \mathrm{mmol}$) was added dropwise to a solution of methyl 2-iodobenzoate ($1.83 \mathrm{~g}, 7.00 \mathrm{mmol}$) in THF (74 mL) at $-40^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1.5 h . Then was added to a freshly prepared solution of $\mathrm{CuCN}(0.63 \mathrm{~g}, 7.00 \mathrm{mmol})$ and $\mathrm{LiCl}(0.59 \mathrm{~g}, 14.0 \mathrm{mmol})$ in THF (20 mL), followed dropwise addition of allyl bromide ($2.43 \mathrm{~mL}, 28.0 \mathrm{mmol}$). After being stirred at $-40^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature, diluted with EtOAc $(50 \mathrm{~mL})$ and filtered over Celite. The organic solution was washed with a 25% ammonia aqueous solution $(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(100 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4},
filtered and concentrated in vacuo. The crude product was filtered through a short pad of chromatography column $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=50 / 1\right)$ and then dissolved in $\mathrm{EtOH}(50 \mathrm{~mL}) .2 \mathrm{M} \mathrm{NaOH}$ solution (50 mL) was added and the resulting mixture was stirred at room temperature for 4 h . EtOH was then removed under reduced pressure and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL} \times 2)$. The solution was acidified to pH 3 with 2 M HCl solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford 2-allyl benzoic acid ($0.76 \mathrm{~g}, 67 \%$ over two steps) as a white solid without further purification.

2,2-diphenylpent-4-enoic acid (1b)
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.65-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{1}$

2,2-dipropylpent-4-enoic acid (1c)

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.77-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-$ $1.47(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.0$, 134.1, 118.3, 49.5, 38.4, 37.5, 17.6, 14.9; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-1} 183.1380$, found: 183.1386; IR (neat): 3078, 2961, 2936, 2874, 1700, 1641, 1466, 1236, $916 \mathrm{~cm}^{-1}$.

4-methyl-2,2-diphenylpent-4-enoic acid (1d)

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.38-7.25(\mathrm{~m}, 10 \mathrm{H}), 4.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1$ H), 3.21 ($\mathrm{s}, 2 \mathrm{H}$), $1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.9,143.0,142.2,129.4,128.2$, 127.3, 115.9, 60.5, 46.0, 24.7; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 265.1223$, found: 265.1223; IR (neat): 3057, 2938, 1698, 1642, 1494, 1445, 1225, 898, 729, $699 \mathrm{~cm}^{-1}$.

4-phenylpent-4-enoic acid (1e)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .^{2}$

2-methylpent-4-enoic acid (1f)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{3}$

1-allylcyclopentanecarboxylic acid (1g)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.83-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14-2.08 (m, 2 H), 1.73-1.63 (m, 4 H), 1.61-1.55 (m, 2 H); ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~ C D C l ~} 3$) $\delta 184.8,135.0,118.0,53.7,43.0,35.9,25.5$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 153.0910$, found: 153.0918; IR (neat): $3078,2957,2874,1698,1641,1453,1406,1279,1234,1196,917 \mathrm{~cm}^{-1}$.

1-allylcyclohexanecarboxylic acid (1h)

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.81-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.63-1.58(m, 3 H), 1.46-1.36 (m, 2 H), 1.30-1.21 (m, 3 H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.2,133.7,118.3,47.5,44.7,33.8,26.1,23.4$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-}$167.1067, found: 167.1074; IR (neat): 3078, 2934, 2858, 1698, 1641, 1454, 1416, 1283, 1245, 1139, $917 \mathrm{~cm}^{-1}$.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.92(\mathrm{dd}, J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 2 \mathrm{H})$, $1.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{4}$

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.11-$ $6.00(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{5}$

2.2. General reaction conditions.

$\mathrm{NaIO}_{4}(1.25 \mathrm{mmol}, 267 \mathrm{mg})$ was added to 2 mL solvent of $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$, followed by the addition of allylacetic acid ($1 \mathrm{mmol}, 100 \mathrm{mg}$) and $\mathrm{TfOH}(0.05 \mathrm{mmol})$. The resulting reaction mixture was stirred at corresponding temperature for desired time. After cooled down to room temperature, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and resulting mixture was extracted with ethyl ether ($20 \mathrm{~mL} \times 3$). The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude mixture was purified by silica gel chromatography.

(5-oxotetrahydrofuran-2-yl) methyl acetate (2a)
Colorless oil, $112.3 \mathrm{mg}, 71 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, 70^{\circ} \mathrm{C}, 14 \mathrm{~h}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.75-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}){ }^{6}$

(5-oxo-4,4-diphenyltetrahydrofuran-2-yl) methyl acetate (2b)
Colorless oil, $257.6 \mathrm{mg}, 83 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.40-7.25 (m, 10 H$), 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}){ }^{7}$

(5-0xo-4, 4-dipropyltetrahydrofuran-2-yl) methyl acetate (2c)
Colorless oil, $171.2 \mathrm{mg}, 71 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, \mathrm{TfOH}: 5 \mathrm{~mol} \%, 60{ }^{\circ} \mathrm{C}, 68 \mathrm{~h}\right) .{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.62-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.2$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=12.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.44$ $(\mathrm{m}, 4 \mathrm{H}), 1.39-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,170.9,74.4$, $65.7,47.9,39.8,38.8,34.2,21.0,17.9,14.6$ (two peaks); HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 243.1591, found: 243.1587 ; IR (neat): 2961, 2936, 2875, 1770, 1747, 1459, 1371, 1236, 1192, 1130, 1045, $975,934 \mathrm{~cm}^{-1}$.

(2-methyl-5-oxo-4, 4-diphenyltetrahydrofuran-2-yl) methyl acetate (2d)
White solid, $204.4 \mathrm{mg}, 63 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, \mathrm{TfOH}: 10 \mathrm{~mol} \%, 80{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 4.11(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 177.0,170.8,142.9,142.6,129.2,129.0,127.8$ (three peaks), 127.7, 81.3, 68.7, 58.8, 45.4, 24.3, 20.9; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 325.1434$, found: 325.1435; IR (neat): 3055, 2974, 2929, 1754, 1732, 1496, 1449, 1385, 1297, 1248, 1234, 1176, 1140, 1091, 1061, 982, 766, 709, $648 \mathrm{~cm}^{-1}$.

(5-oxo-2-phenyltetrahydrofuran-2-yl) methyl acetate (2e)
Colorless oil, $175.4 \mathrm{mg}, 75 \%$ yield $\left(\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, 70^{\circ} \mathrm{C}, 39 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 3.35(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 1$ H), 2.54-2.46(m, 1H), 2.43-2.35(m, 1H), 2.25-2.16(m, 1H), 2.07(s, $3 H) .{ }^{6}$

Colorless oil, $131.9 \mathrm{mg}, 77 \%$ yield ($\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, 70^{\circ} \mathrm{C}, 24 \mathrm{~h}$). For the mixture of cis and trans isomers: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.68-4.63(\mathrm{~m}, 0.54 \mathrm{H}), 4.56-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}$, $J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.2,3.4 \mathrm{~Hz}, 0.56 \mathrm{H}), 4.07(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 0.54 \mathrm{H}), 4.04$ $(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1.58 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 0.62 \mathrm{H}), 2.04-$ 1.97 (m, 0.55 H), 2.02 ($\mathrm{s}, 3 \mathrm{H}$), 2.02 ($\mathrm{s}, 1.57 \mathrm{H}), 1.63-1.54$ (m, 1 H), 1.23 (s, 3 H), 1.21 ($\mathrm{s}, 1.71 \mathrm{H}$).

(1-oxo-2-oxaspiro [4.4] nonan-3-yl) methyl acetate (2g)
Colorless oil, $161.8 \mathrm{mg}, 76 \%$ yield ($\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}$, TfOH: $5 \mathrm{~mol} \%, 70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.62-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=12.4$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.11 (m, 2 H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$), 1.93-1.79 (m, 4 H), 1.76-1.58 (m, 4 H), ${ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.0,170.9,74.8,65.4,49.9,39.0,38.0,37.2,25.7,25.6,21.0$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$213.1121, found: 213.1121; IR (neat): 2956, 2872, 1770, 1746, 1448, 1371, 1234, 1188, 1155, 1043, 975, $933 \mathrm{~cm}^{-1}$.

(1-oxo-2-oxaspiro [4.5] decan-3-yl) methyl acetate (2h)
Colorless oil, $172.0 \mathrm{mg}, 76 \%$ yield ($\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}$, TfOH: $\left.5 \mathrm{~mol} \%, 70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.66-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=12.4$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (dd, $J=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 4 \mathrm{H})$, $1.42-1.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 181.1, 171.0, $74.5,65.7,44.7,35.5,34.4,32.3$, 25.5, 22.4 (two peaks), 21.1; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$227.1278, found: 227.1276; IR (neat): 2935, 2859, 1766, 1743, 1450, 1372, 1236, 1194, 1167, 1032, 963, $942 \mathrm{~cm}^{-1}$.

(3,3-dimethyl-5-oxotetrahydrofuran-2-yl) methyl acetate (2i)
Colorless oil, $80.1 \mathrm{mg}, 43 \%$ yield $\left(\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, 70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.30-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3$ H), $1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{8}$

(2j)
White solid, $131.5 \mathrm{mg}, 67 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, \mathrm{TfOH}: 5 \mathrm{~mol} \%, 60{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1$ H), $1.69(\mathrm{dd}, J=15.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{dd}, J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.4,170.4,84.3,76.1,46.2,43.7,42.7,29.8,25.4,21.4$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 197.0808, found: 197.0808; IR (neat): 2988, 1784, 1728, 1378, 1249, 1197, 1113, 1024, 1005, 961, $930,834 \mathrm{~cm}^{-1}$.
 (1-oxoisochroman-3-yl) methyl acetate (2k)

Colorless oil, $200.9 \mathrm{mg}, 91 \%$ yield ($\left.\mathrm{NaIO}_{4}: 1.25 \mathrm{mmol}, 0.267 \mathrm{~g}, \mathrm{TfOH}: 5 \mathrm{~mol} \%, 70{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=16.4,11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,164.9$, $138.4,134.3,130.7,128.2,127.8,125.1,76.1,65.3,30.0,21.0$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 243.0633$, found: 243.0635 ; IR (neat): 2954, 1728, 1608, 1460, 1368, 1227, 1085, 1031963 , $942,747,695,605 \mathrm{~cm}^{-1}$.
 octane-1,2-diyl diacetate (2l)
Colorless oil, $126.8 \mathrm{mg}, 55 \%$ yield $\left(\mathrm{NaIO}_{4}: 0.5 \mathrm{mmol}, 0.107 \mathrm{~g}, 80{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}$, 3 H , two peaks), $1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.85(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{9}$

dodecane-1,2-diyl diacetate (2m)
Colorless oil, 54% yield $\left(\mathrm{NaIO}_{4}: 0.50 \mathrm{mmol}, 0.107 \mathrm{~g}, 80^{\circ} \mathrm{C}, 46 \mathrm{~h}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.07-5.01 (m, 1 H), $4.20(\mathrm{dd}, J=11.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=11.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 16 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{9}$

3. Control reactions

Equation 1, Scheme 4. $\mathrm{NaIO}_{4}(0-1.25 \mathrm{mmol}, 0-267.4 \mathrm{mg})$ was added to 2 mL premixed solvent of $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$, followed by the addition of 5-(iodomethyl)-dihydrofuran-2(3H)-one (1 $\mathrm{mmol}, 226 \mathrm{mg})$ and $\mathrm{TfOH}(0.05 \mathrm{mmol})$. The resulting reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 14 h . The conversions were collected on GC using ethyl 3-phenylpropionate as internal standard.

Equation 2, Scheme 4. $\mathrm{NaIO}_{4}(0.25-1.25$ equiv, $53.5-267.4 \mathrm{mg})$ was added to 2 mL premixed solvent of $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$, followed by the addition of allylacetic acid ($1 \mathrm{mmol}, 100 \mathrm{mg}$) and $\mathrm{TfOH}(0.05 \mathrm{mmol})$. The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 14 h . The conversions were collected on GC using ethyl 3-phenylpropionate as internal standard.

Equation 3, Scheme 4. $\mathrm{NaIO}_{3}(1.25$ equiv, 247 mg) was added to 2 mL premixed solvent of $\mathrm{AcOH}-$ $\mathrm{Ac}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$, followed by the addition of allylacetic acid $(1 \mathrm{mmol}, 100 \mathrm{mg})$ and $\mathrm{TfOH}(0.05 \mathrm{mmol})$. The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 14 h . The conversions were collected on GC using ethyl 3-phenylpropionate as internal standard.

4. NMR monitoring experiments

All data were collected by ${ }^{1} \mathrm{H}$ NMR using ethyl 3-phenylpropionate as internal standard.

General procedure: Ethyl 3-phenyl-propionate ($0.5 \mathrm{mmol}, 89 \mathrm{mg}$) and $\mathrm{NaIO}_{4}(6.25 \mathrm{mmol}, 1.34 \mathrm{~g})$ were added to 10 mL solvent of $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$, followed by the addition of allylacetic acid (5 $\mathrm{mmol}, 501 \mathrm{mg})$ and TfOH ($0.25 \mathrm{mmol}, 38 \mathrm{mg}$). The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ and sampled $30 \mu \mathrm{~L}$ of reaction mixture for ${ }^{1} \mathrm{H}$ NMR tests. Allylacetic acid [1a], (3-oxocyclopentyl)methyl acetate [2a] and 3-(iodomethyl)cyclopentan-1-one [3a] were determined using ethyl 3-phenylpropionate as internal standard by ${ }^{1} \mathrm{H}$ NMR. The results were demonstrated in Table S1 and Figure S1.

Table S1. [1a], [2a] and [3a] v.s. Time.

Time (min)	$\mathbf{1 a}(\%)$	$\mathbf{2 a}(\%)$	$\mathbf{3 a}(\%)$
0	100	0	0
30	94	4	3
60	89	6	5
120	84	10	7
180	76	16	10
240	67	22	12
360	17	45	18
480	0	60	27
600		66	30
720	71	20	
840	73	9	
960		6	6

Conditions: $\mathrm{NaIO}_{4}(6.25 \mathrm{mmol}, 1.34 \mathrm{~g})$, allylacetic acid ($5 \mathrm{mmol}, 501 \mathrm{mg}$), $\mathrm{TfOH}(0.25 \mathrm{mmol}, 38$ mg), solvent (10 mL), $70^{\circ} \mathrm{C}$, ethyl 3-phenylpropionate ($0.5 \mathrm{mmol}, 89 \mathrm{mg}$) as internal standard.

5．ICP－AES experiments

The trace metals in the reaction mixture were measured by ICP－AES at Instruments Center for Physical Science of the University of Science and Technology of China．

中国科学技术大学理化科学实验中心

样品名称：
送样单位：

报 告

报告日期： 2014.9 .19报告编号：

6. References

1 N. T. Barczak, E. R. Jarvo, Chem. Eur. J. 2011, 17, 12912.
2 A. Takemiya, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 6042.
3 C. Taillier, B. Gille, V. Bellosta, J. Cossy, J. Org. Chem. 2005, 70, 2097.
4 W. A. Kleschick, J. Org. Chem. 1986, 51, 5429; V. Jaeger, H. J. Guenther, Tetrahedron Lett. 1977, 29, 2543.

5 S. Nicolai, C. Piemontesi, J. Waser, Angew. Chem. Int. Ed. 2011, 50, 4680.
6 Y.-B. Kang, L. H. Gade, J. Am. Chem. Soc. 2011, 133, 3658.
7 T. Marcello, T. Lorenzo, T. Marco, B. Donatella, Tetrahedron 1990, 46, 7139.
8 H.-J. Ha, K.-N. Yoon, S.-Y. Lee, Y.-S. Park, M.-S. Lim, Y.-G. Yim, J. Org. Chem. 1998, 63, 8062.
9 Y.-B. Kang, L. H. Gade, J. Org. Chem. 2012, 77, 1610.

7 NMR spectra

$089^{\circ} \downarrow 乙$

S00 97

9くが09

OSO LL
09 $\varepsilon^{\circ} \angle L$
989 LL

1d
986＇Gレレ

9Lでしてし
691•8て1
08と 6 てし

OGl＇Zヤレ
9て0とかし \qquad
\qquad

1 g
\qquad

$89^{\circ} 0$

\qquad
$\varepsilon 68 \cdot ร$ \qquad
196でて

098：LL
LL9＇LL

1 g

レL6＇\downarrow \＆レ －

$|\mid$ 든
021° \qquad

$1 i$1

$2 \mathbf{a}$

$2 c$
\quad 9で L

G6G＇ゅレ
レカ9゙カレ
七06 L
GS6．0Z

S91・ゥ
0LL＇8\＆
七て8＇6と
$688^{\circ} \angle t$ \qquad

2c

206．02L \qquad

0ع9＊081 \qquad $-$

$6 \pm \varepsilon^{\prime}\llcorner$
986° \qquad

$2 f$

8LG＇
L69＇
して9＇
0ヶ9＇
699°
Z89＇
$\angle 69^{\circ}$
とZL＇．
StL＇L
092：
$68 L^{\circ}$ L
L18＇
LE8＇
098^{\prime}
698^{\prime}
Z68．
LL6＇
\downarrow \＆ 60°
690°
690° Z
てしレ
とカレ
9 GL と
ZLLて
L81＂て
カ0で
$\downarrow 90^{\circ}$ 七
080 เ
S60
レレレ
七9で \downarrow
てLでも
S6で \downarrow
ع0६
6SG＇七－
L9G＇\downarrow－
GLG＇\downarrow
と89＇\dagger
$169^{\circ} \downarrow$
$66 \mathrm{~S}^{\circ} \downarrow$
909 ＇
s．9．\downarrow
てZ9•

2g
1.001 1．00．01

A

2 g

9160 01 \qquad
086.181 \qquad

LL6．0Z
เ6G＇GZ
ع69＇sz
90て＇$\angle \varepsilon$
L00＇8 8
$\downarrow \triangleright 0$ 6\＆
$668^{\circ} 6 t$ \qquad
Sとち 99
0と8 \downarrow L
$680^{\circ} \angle$
$09 \varepsilon^{\circ} \angle L$
$0 \angle 9^{\circ} \angle L$ －

レレでし
てZでし
OGでレ
8しでし
レレどレ
レモع＇レ
8Sع＇し
6LE＇
カ0ガし
カてガし
EOS＇
8\＆＇．
GLG．
009＇1
عと9
č9 ${ }^{\circ}$
OZL＇L
ZGL＇レ
SLL＇
0Z8．
と98．
Z60 $て$
ع0と＇乙
$0 乙 \varepsilon^{\prime} 乙$
Sع\＆＇乙
ZSE＇乙
980 ＇\downarrow
LOL＇\dagger
くいじゅ
G6でも ——
と0と＇เ
9てどャ
เ६६＇เ
96S＇ャ —
とเ9・ゥ
8て9＇t－
七七9＇\downarrow
199＇t

2h

610゙レL

Lレレ゙レ8レ
，

てとがして
LSE＇GZ
G6L’6Z
699° てt
$0 \angle 9$ と
LLL＇9力
$\stackrel{7}{\circ} \cdot 9 L$
$680^{\circ} \angle L$
$6 \varepsilon 0^{\circ} \angle L$
$09 \varepsilon^{\prime} \angle L$
1 L9 LL
てZどゅ8 \qquad
$95 \varepsilon^{\circ} 021$

ع68＇8L

2j

2k

\qquad
\qquad
10.1
$=$

00.1
1

2k
ZLO＇GZ1
てヤ8＇LZレ
をとで8てレ
LZL゙0とし
ตLモレセレ
เ0ガ8とし
$88 Z^{\prime} 99$
$6 \angle 0.9 \angle$
$6 \angle 0^{\circ} 9 L$
$970^{\circ} \angle L$
09 $\varepsilon^{\circ} L L$
ع89 12
$88^{\circ}+91$
て10゙しくし \qquad

21
t9で \qquad

