SUPPLEMENTAL INFORMATION

Synthesis of meta-substituted [¹⁸F]3-fluoro-4-aminopyridine via direct radiofluorination of pyridine N-oxides

P. Brugarolas^a, R. Freifelder^b, S.-H. Cheng^b, and O. DeJesus^c

^aDepartment of Neurology, The University of Chicago, ^bDepartment of Radiology, The University of Chicago, ^cDepartment of Medical Physics, The University of Wisconsin at Madison

* corresponding author: brugarolas@uchicago.edu

SUPPLEMENTAL METHODS

Complete experimental procedures

SUPPLEMENTAL DATA

Reference NMR data of the used compounds

SUPPLEMENTAL FIGURES

Sup. Fig. 1. Fluorination of 3-bromo-4-nitropyridine: **A**. UV HPLC trace. **B**. ¹H, ¹³C, ¹⁹F NMR.

Sup. Fig. 2. Fluorination of 3-iodo-4-nitropyridine: A. UV HPLC trace. B. ¹H, ¹³C, ¹⁹F NMR.

Sup. Fig. 3. Fluorination of 3-bromo-4-nitropyridine N-oxide: **A**. UV HPLC trace. **B**. ¹H, ¹³C, ¹⁹F NMR.

Sup. Fig. 4. Fluorination of 3-bromopyridine: A. UV HPLC trace. B. ¹H, ¹³C, ¹⁹F NMR.

Sup. Fig. 5. Fluorination of 3-bromopyridine N-oxide: A. UV HPLC trace. B. ¹H, ¹⁹F, ¹³C NMR.

Sup. Fig. 6. Hydrogenation of 3-fluoro-4-nitropyridine N-oxide. UV HPLC before and after.

Sup. Fig. 7. Radioactive and UV HPLC trace of radiofluorination of 3-bromo-4-nitropyridine N-

oxide (not spiked with reference standard)

SUPPLEMENTAL METHODS

All radioactivity procedures were approved by the Office of Radiation Safety at the University of Chicago. All chemicals were ordered from Sigma unless otherwise noted.

HPLC conditions (A-F):

A. Nucleodur 5 μm, 4.6 x 250 mm C18ec (Macherey-Nagel). Flow 1.4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-2 min: 5% B, 2-6 min: 5-50% B, 6-12 min: 50% B, 12-12.5 min: 50-5% B, 12.5-17 min: 5% B.

B. Nucleodur 5 μm, 4.6 x 250 mm C18ec (Macherey-Nagel). Flow 1.4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-2 min: 1% B, 2-9 min: 1-20% B, 9-11 min: 20% B, 11-11.5 min: 20-1% B, 11.5-14 min: 5% B.

C. Eclipse XDB 5 μm, 9.4 x 250 mm C18 column (Agilent). Flow 4: mL/min. Mobile phase: 50 mM NaH₄PO₄, 10 mM triethylamine, pH 8.0, 5% EtOH. Isocratic: 0-20 min.

D. Eclipse XDB 5 μm, 9.4 x 250 mm C18 column (Agilent). Flow: 4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-14 min: 5% B, 14-17 min: 5-25% B, 17-19 min: 25% B, 19-20 min: 25-5% B, 20-25 min: 5% B.

E. Eclipse XDB 5 μm, 9.4 x 250 mm C18 column (Agilent). Flow 4: mL/min. Mobile phase: 50 mM NaH₄PO₄, 10 mM triethylamine, pH 8.0, 5% EtOH. Isocratic: 0-10 min.

F. Acclaim 5 μm, 4.6 x 150 mm C18 column (Thermo Scientific). Flow 0.6: mL/min. Mobile phase: H₂O 0.1% TFA, 5% MeOH. Isocratic: 0-6 min.

RadioTLC analysis: The radioactive sample was spotted on a 25 * 75 mm TLC plate (PE SIL G, Whatman) next to the non-radioactive standard (1 mg/mL). The TLC was run in 95:5 methanol:acetic acid. The reference standard was visualized using a handheld UV-lamp and the radioactive stop measured with radio-TLC scanner (Eckert & Ziegler).

Non-radioactive fluorination of 3-bromo-4-nitropyridine (3): 10 μ L of 1 M tetrabutylammonium fluoride (TBAF) solution in THF (10 μ mol, 0.5 eq.) was added to a solution of 3-bromo-4-nitropyridine (96%, Aurum Pharmatech, LLC) (20 μ mol, 1 eq.) in 500 μ L of anhydrous dimethylsulfoxide (DMSO) in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions A). Retention times: 3-bromo-4-nitropyridine (**3**) = 10.83 min, 3-fluoro-4-nitropyridine = 8.38, 3-bromo-4-fluoropyridine (**6**) = 11.76 min. Retention times for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS (*m/z M*⁺ exp.: 174.9423, calc: 174.9433) and ¹H, ¹³C and ¹⁹F NMR. Product amount was calculated from the area under the curve of the HPLC UV1 trace using a calibration curve.

Non-radioactive fluorination of 3-iodo-4-nitropyridine (4): 10 µL of 1 M TBAF solution in THF (10 µmol, 0.5 eq.) was added to a solution of 3-iodo-4-nitropyridine (96%, Aurum Pharmatech, LLC) (20 µmol, 1 eq.) in 500 µL of anhydrous dimethylsulfoxide (DMSO) in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions A). Retention times: 3-iodo-4-aminopyridine (**4**) = 11.02 min, 3-iodo-4-fluoropyridine (**7**) = 13.43 min. Starting material absorbs at 254 and 313 nm. Product does not absorb at 313 nm. The product Identity of the product was confirmed by HR-MS (*m/z M*⁺ exp.: 222.9288, calc: 222.9294) and ¹H, ¹³C and ¹⁹F NMR.

Non-radioactive fluorination of 3-bromopyridine N-oxide (8): 10 µL of 1 M TBAF solution in THF (10 µmol, 0.5 eq.) was added to a solution of a 3-bromo-4-nitropyridine N-oxide (98+%, Alfa Aesar) (20 µmol, 1 eq.) in 500 µL of anhydrous DMSO in a 2 mL HPLC vial. The reaction was analyzed by HPLC (conditions B). Retention times: 3-bromo-4-nitropyridine N-oxide (8) = 11.84 min, 3-fluoro-4-nitropyridine N-oxide (9) = 7.93 min. Retention time for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS (*m/z M*⁺ exp.: 158.0141, calc.: 158.0128) and ¹H, ¹³C and ¹⁹F NMR. Product amount was calculated from the area under the curve of the HPLC UV2 trace using a calibration curve.

Reaction of 3-bromopyridine (11) with TBAF: 120 μL of 1 M TBAF solution in THF (120 μmol, 1.2 eq.) was added to a solution of a 3-bromopyridine (97%, Combi-Blocks) (100 μmol, 1 eq.) in

400 μ L of anhydrous DMSO in a 2 mL HPLC vial. The reaction was heated to 120 C for 30 min and analyzed by HPLC (conditions F) and ¹H, ¹³C and ¹⁹F NMR. Retention times: 3-bromopyridine (**11**) = 4.31 min, 3-fluoropyridine (**12**) = 1.56 min. No product was detected by HPLC or NMR.

Reaction of 3-bromopyridine N-oxide (13) with TBAF: 120 μ L of 1 M TBAF solution in THF (120 μ mol, 1.2 eq.) was added to a solution of a 3-bromopyridine N-oxide (97%, Alfa-Aesar) (100 μ mol, 1 eq.) in 400 μ L of anhydrous DMSO in a 2 mL HPLC vial. The reaction was heated to 120 C for 30 min and analyzed by HPLC (conditions F) and ¹H, ¹³C and ¹⁹F NMR. Retention times: 3-bromopyridine N-oxide (**13**) = 3.46 min, 3-fluoropyridine N-oxide (**14**) = 1.42 min. Yield was determined based on ¹H-NMR and HPLC.

Catalytic hydrogenation of 3-fluoro-4-nitropyridine N-oxide (9): 0.1 mg of 3-fluoro-4aminopyridine N-oxide (9) were dissolved in 4 mL of MeOH in a 50 mL round bottom flask containing a stir bar. While stirring, 3-4 mg of 10% Pd/C (dry basis) was added and the flask sealed with a rubber septum. The vial was evacuated and backfilled with hydrogen gas from a balloon and the mixture was allowed to react for 10 min. After 10 min, the suspension was passed through a 0.4 µm PTFE filter and analyzed by HPLC (conditions C). Reference retention times: 3-fluoro-4-aminopyridine N-oxide (9) = 5.80 min, 3-fluoro-4-aminopyridine (10) = 7.05 min. Retention time for the product matched within 0.05 min the reference standard. Identity of the product was confirmed by HR-MS ($m/z M^+$ exp.: 112.0416, calc: 112.0437). Product amount was calculated from the area under the curve of the HPLC UV2 trace using a calibration curve.

Procurement of [¹⁸F]fluoride: Cyclotron produced no-carrier-added aqueous [¹⁸F]fluoride was obtained from IBA Molecular North America, Inc.

Production of tetrabutyl ammonium [¹⁸**F**]**fluoride ([**¹⁸**F**]**TBAF):** Fifty to a hundred mCi (1.85 – 3.7 GBq) of cyclotron produced ¹⁸F⁻ were trapped in a Sep-Pak Accell Plus QMA Plus Light Cartridge (Waters Corporation) preconditioned with 5 mL of 50 mM of KHCO₃ followed by 10 mL of water and 20 mL of air. The cartridge was eluted with a solution containing of 300 μ L of 50

4

mM TBA-HCO₃ in water with 5% EtOH (ABX advanced biochemical compounds GmbH) and 600 μ L of acetonitrile (MeCN). The water-MeCN solution was dried azeotropically at 85 °C under reduced pressure (20 mbar) for 7.5 min. To ensure complete dryness two additional aliquots of MeCN (500 μ L) followed by evaporation (3 min) were performed. After drying, the vial was filled with argon gas and cooled down to room temperature in a water beaker. The [¹⁸F]TBAF residue was dissolved in 100-400 μ L of anhydrous DMSO and used for the reactions. Radiochemical synthesis of [¹⁸F]3-fluoro-4-nitropyridine N-oxide ([¹⁸F]9) from 3-bromo-4nitropyridine N-oxide (8): 100 μ L of 3-bromo-4-nitropyridine N-oxide (8) dissolved in DMSO (20 mg/mL) were added to 100 μ L of [¹⁸F]TBAF solution (~10 mCi, ~370 MBq) in 3 mL microreactor vial and allowed to react for 15 min. 100 μ L of this solution with or without reference standard (20 μ g) were injected into a semiprep C-18 HPLC column equipped with a variable wavelength UV-Vis detector and a radiation detector (conditions C). The radioactive peaks were collected and the radioactivity of each fraction measured using a Capintec dose calibrator. The radiochemical yield was calculated as radioactivity in the peak corrected for decay over radioactivity injected.

Radiochemical synthesis of [¹⁸F]3-fluoro-4-nitropyridine N-oxide ([¹⁸F]9) from 3-fluoro-4nitropyridine N-oxide (9) by ¹⁹F/¹⁸F exchange: 100 μ L of 3-fluoro-4-nitropyridine N-oxide (9) dissolved in DMSO (1 mg/mL) were added to 100 μ L of [¹⁸F]TBAF solution (~10 mCi, ~370 MBq) in 3 mL microreactor vial and allowed to react for 1 min. 100 μ L of this solution were injected into a semiprep C-18 HPLC column equipped with a variable wavelength UV-Vis detector and a radiation detector (conditions E). The radioactive peaks were collected and the radioactivity of each fraction measured using a Capintec dose calibrator. The radiochemical yield was calculated as radioactivity in the peak corrected for decay over radioactivity injected.

Synthesis of [¹⁸F]3-fluoro-4-aminopyridine ([¹⁸F]10): 1-10 mCi (37-370 MBq) of [¹⁸F]3-fluoro-4-aminopyridine N-oxide ([¹⁸F]9) containing 20-100 μg of cold 3-fluoro-4-aminopyridine N-oxide were dissolved in 4 mL of MeOH and the reaction was carried out as described above. The

5

presence of cold compound facilitated obtaining reproducible yields. The product was purified by semiprep HPLC (conditons D). The final specific activity was 10-100 mCi/µmol (0.37-3.7 GBq/µmol).

SUPPLEMENTAL DATA

Reference NMR data of the used compounds.

3-bromo-4-nitropyridine (3):

¹H-NMR (d_6 -DMSO, 500 MHz) δ (ppm): 8.06 (1H, t, J = 1.3 Hz), 8.85 (1H, d, J = 1.3 Hz), 9.11 (1 H, s). ¹³C-NMR (d_6 -DMSO, 125 MHz) δ : (ppm) 110.1 (s), 118.5 (s), 150.8 (s), 150.9 (s), 154.3 (s).

3-iodo-4-nitropyridine (4):

¹H-NMR (*d*₆-DMSO, 500 MHz) δ (ppm): 7.99 (1H, d, *J* = 5.2 Hz), 8.80 (1H, d, *J* = 5.2 Hz), 9.23 (1 H, s). ¹³C-NMR (*d*₆-DMSO, 125 MHz) δ (ppm): 83.5 (s), 118.2 (s), 150.0 (s), 158.4 (s), 159.8 (s).

3-fluoro-4-nitropyridine (5):

¹H-NMR (d_6 -DMSO, 500 MHz) δ (ppm): 8.13 (1H, t, J = 6.2 Hz), 8.75 (1H, d, J = 5.25 Hz), 9.03 (1 H, d, J = 2.9 Hz). ¹³C-NMR (d_6 -DMSO, 125 MHz) δ (ppm): 118.4 (d, J = 4.8 Hz), 141.8 (d, J = 23.1 Hz), 141.9 (d, J = 23.1 Hz), 147.5 (d, J = 6.7 Hz), 149.7 (d, J = 269.5 Hz). ¹⁹F-NMR (d_6 -DMSO, 470 MHz) δ (ppm): -135.13 (dd, $J_2 = 8.9$ Hz, $J_1 = 2.5$ Hz).

3-bromo-4-fluoropyridine (6):

¹H-NMR (*d*₆-DMSO, 500 MHz) δ (ppm): 7.50 (1H, dd, $J_2 = 9.0$ Hz, $J_1 = 5.5$ Hz), 8.56 (1H, dd, $J_2 = 7.5$ Hz, $J_1 = 5.5$ Hz), 8.81 (1 H, J: 9.5 Hz). ¹³C-NMR (*d*₆-DMSO, 125 MHz) δ (ppm): 106.0 (s), 112.9 (d, J: 16.2 Hz), 151.1 (d, J: 6.2 Hz), 153.5 (s), 165.0 (d, J: 275.4 Hz). ¹⁹F-NMR (*d*₆-DMSO, 470 MHz) δ (ppm): -99.1 (dd, $J_2 = 16.9$ Hz, $J_1 = 9.1$ Hz).

3-bromo-4-nitropyridine N-oxide (8):

¹H-NMR (d_6 -DMSO, 500 MHz) δ (ppm): 8.15 (1H, d, J = 7.1 Hz), 8.38 (1H, dd, $J_2 = 7.1$ Hz, $J_1 = 2.0$ Hz), 8.85 (1 H, d, J = 1.9 Hz). ¹³C-NMR (d_6 -DMSO, 125 MHz) δ (ppm): 100? (s), 122.8 (s), 139.2 (s), 142.7 (s), 154.3 (s).

3-fluoro-4-nitropyridine N-oxide (9):

¹H-NMR (*d*₆-DMSO, 500 MHz) δ (ppm): 8.24 (1H, dd, $J_2 = 31.6$ Hz, $J_1 = 0.8$ Hz), 8.25 (1H, dd, $J_2 = 35.1$ Hz, $J_1 = 1.8$ Hz), 8.91 (1 H, dd, $J_2 = 7.1$ Hz, $J_1 = 1.8$ Hz). ¹³C-NMR (*d*₆-DMSO, 125 MHz) δ (ppm): 122.3 (s), 131.4 (s), 131.7 (s), 137.0 (d, J = 4.3 Hz), 153.3 (d, J = 264.8 Hz). ¹⁹F-NMR (*d*₆-DMSO, 470 MHz) δ (ppm): -126.7 (dd, $J_2 = 8.5$ Hz, $J_1 = 0.8$ Hz).

3-bromopyridine (11):

¹H-NMR (*d*₆-DMSO, 500 MHz) δ (ppm): 7.38 (1H, dd, $J_2 = 8.1$ Hz, $J_1 = 3.5$ Hz), 7.85 (1H, dt, $J_2 = 8.2$ Hz, $J_1 = 1.0$ Hz), 8.56 (1 H, m), 8.69 (1 H, d, J = 2.3 Hz). ¹³C-NMR (*d*₆-DMSO, 125 MHz) δ (ppm): 120.3 (s), 124.9 (s), 138.2 (s), 147.6 (s), 150.1 (s).

3-fluoropyridine (12):

¹H-NMR (d_6 -DMSO, 500 MHz) δ (ppm): 7.40 (1H, m), 7.60 (1H, dt, $J_2 = 7.5$ Hz, $J_1 = 1.5$ Hz), 8.41 (1 H, m), 8.50 (1 H, d, J = 3.0 Hz). ¹³C-NMR (d_6 -DMSO, 125 MHz) δ (ppm): 122.8 (d, J =17.7 Hz), 124.9 (d, J = 3.9 Hz), 137.7 (d, J = 22.5 Hz), 145.8 (d, J = 4.1 Hz), 159.2 (d, J = 252.8Hz). ¹⁹F-NMR (d_6 -DMSO, 470 MHz) δ (ppm): -126.7 (t, J = 5.1 Hz).

3-bromopyridine N-oxide (13):

¹H-NMR (d_6 -DMSO, 500 MHz) δ (ppm): 7.37 (1H, t, J = 7.8 Hz), 7.58 (1H, d, J = 7.6 Hz), 8.25 (1 H, d, J = 7.1 Hz), 8.56 (1 H, s). ¹³C-NMR (d_6 -DMSO, 125 MHz) δ (ppm): 120.0 (s), 127.0 (s), 128.3 (s), 138.3 (s), 140.0 (s).

3-fluoropyridine N-oxide (14):

¹H-NMR (*d*₆-DMSO, 500 MHz) δ (ppm): 7.40 (1H, dt, $J_2 = 55.4$ Hz, $J_1 = 7.9$ Hz), 7.42 (1H, dd, $J_2 = 54.5$ Hz, $J_1 = 7.2$ Hz), 8.13 (1 H, d, J = 6.4 Hz), 8.51 (1 H, s). ¹³C-NMR (*d*₆-DMSO, 125 MHz) δ (ppm): 113.2 (d, J = 20.4 Hz), 126.6 (d, J = 10.0 Hz), 129.2 (d, J = 35.5 Hz), 136.2 (s), 160.2 (d, J = 247.9 Hz). ¹⁹F-NMR (*d*₆-DMSO, 470 MHz) δ (ppm): -122.1 (td, $J_2 = 5.3$ Hz, $J_1 = 0.8$ Hz).

SUPPLEMENTAL DATA

Sup. Fig. 1. Fluorination of 3-bromo-4-nitropyridine.

1A. UV HPLC trace

Elution times:

3-bromo-4-nitropyridine (**3**): 10.85 min – absorbs at 254 and 313 nm 3-bromo-4-fluoropyridine (**6**): 11.88 min – absorbs only at 254 nm

1B. NMR

¹⁹F NMR

Sup. Fig. 2. Fluorination of 3-iodo-4-nitropyridine

2A. UV HPLC trace

Elution times: 3-iodo-4-nitropyridine (**4**): 10.98 min – absorbs at 254 and 313 nm 3-iodo-4-fluoropyridine (**7**): 13.38 min – absorbs only at 254 nm

2B. NMR ¹H NMR

¹⁹F NMR

Sup. Fig. 3. Fluorination of 3-bromo-4-nitropyridine N-oxide

3A. UV HPLC trace

Elution times:

3-bromo-4-nitropyridine N-oxide (8): 11.83 min – absorbs at 254 and 313 nm 3-fluoro-4-nitropyridine N-oxide (9): 7.95 min – absorbs only at 254 and 313 nm

3B. NMR

¹H NMR

Sup. Fig. 4. Fluorination of 3-bromopyridine:

70 60

80

40

50

30 20

10 ppm

190 180 170 160 150 140 130 120 110 100 90

¹⁹F NMR

Sup. Fig. 5. Fluorination of 3-bromopyridine N-oxide:

5B. NMR

¹H NMR

¹⁹F NMR

¹³C NMR (replicate reaction sample)

Sup. Fig. 6. UV HPLC traces hydrogenation of 3-fluoro-4-nitropyridine N-oxide (before and after)

Sup. Fig. 7. Radioactive and UV HPLC trace of radiofluorination of 3-bromo-4-nitropyridine N-oxide (not spiked with reference standard)

Product elutes at 11.6 min and precursor elutes at 17.2 min.

HPLC conditions: Eclipse XDB 5 μm, 9.4 x 250 mm C18 column (Agilent). Flow: 4 mL/min. Solvent A: 50 mM NH₄HCO₃, pH 8.0. Solvent B: 100% MeOH. Method: 0-13 min: 5% B, 13-14 min: 5-25% B, 14-20 min: 25% B, 20-21 min: 25-5% B, 21-30 min: 5% B.