Highly regioselectively meta arylation of oxalyl amide-protected

β -arylethylamine via catellani reaction

Jian Han, Li Zhang, Yan Zhu, Yongxiang Zheng, Xiaolan Chen, Zhi-Bin Huang, Da-Qing Shi,* and Yingsheng Zhao*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123 (PR China)

Supporting Information

Table of Contents

1. Reagents
2. Instruments
3. Optimization of reaction conditions
4. Preparation of substrates
5. <i>Meta</i> arylation with different aryl iodides
6. <i>Meta</i> arylation with different β -arylethyamides
7. Pd-catalyzed trifunctionlization of presubstituted β-arylethamide
8. Scale up and removal of directing group
9. Deuteration experiment
10. References
11. The structure determination of 3a , 3g , 3k , 3m , 4g , 4j and 5 according to HMBC spectrumS35
12. ¹ H and ¹³ C NMR spectraS38

1. Reagents: Unless otherwise noted, all reagents were purchased from Acros, Alfa, Adamas and used without further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova-400 MHz, Inova-300 MHz, Bruker DRX-400 or Bruker DRX-500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br s= broad singlet, m = multiplet. HRMS analysis were carried out using TOF-MS instrument with EI source.

3. Optimization of reaction conditions

OMe HN _{OA} +	10 mol% Pd(OAc) ₂ 1.5 equiv AgOAc 1 equiv norbornene 0.5 equiv 1-AdCO ₂ H solvent, 100 °C, 24 h	OMe HN _{OA} Ph 3a
Entry	Solvent	Yield $(\%)^b$
1	DCE	36
2	t-AmylOH	10
3	HFIP	7
4	toluene	65
5	m-xylene	78
6	mesitylene	86
7	PhCl	75
8	1,4-dioxane	78

Table S1. Screening of solvent^a

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), $Pd(OAc)_2$ (10 mol%), AgOAc (0.15 mmol), norbornene (0.1 mmol), 1-AdCO₂H (0.05 mmol), solvent (0.5 mL), 100 °C, 24 h. ^{*b*}Yields were based on LC-MS analysis using biphenyl as an internal standard.

 Table S2. Screening of oxidant^a

OMe HN _{OA} +	10 mol% Pd(OAc) ₂ 1.5 equiv oxidant 1 equiv norbornene 0.5 equiv 1-AdCO ₂ H mesitylene, 100 °C, 24 h	OMe HN OA Ph 3a
Entry	Oxidant	$Yield (\%)^b$
1	Ag ₂ CO ₃	0
2	Ag ₂ O	79
3	AgOPiv	68
4	AgF	24
5	AgCl	0
6	AgNO ₃	0

7	AgOTs	0
8	AgOTf	0
9	AgOAc (1 equiv)	62
10	AgOAc (1.5 equiv)	86
11	AgOAc (2 equiv)	80
12	BQ	0
13	Cu(OAc) ₂	0
14	$K_2S_2O_8$	0

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), $Pd(OAc)_2$ (10 mol%), oxidant (0.15 mmol), norbornene (0.1 mmol), 1-AdCO₂H (0.05 mmol), mesitylene (0.5 mL), 100 ^oC, 24 h. ^{*b*}Yields were based on LC-MS analysis using biphenyl as an internal standard.

OMe HN_OA H 1a	10 mol% Pd(OAc) ₂ 1.5 equiv AgOAc 1 equiv norbornene 0.5 equiv additive mesitylene, 100 °C, 24 h	OMe HN OA Ph 3a
Entry	Additive	Yield (%) ^b
1	none	75
2	1-AdCO ₂ H	86
3	PivOH	79
4	PhCO ₂ H	65
5	$(n-BuO)_2PO_2H$	73
6	HOAc	52
7	Ac-Gly-OH	75
8	K_2CO_3	0
9	PivONa	78

 Table S3. Screening of additive^a

^{*a*}**1a** (0.1 mmol), **2a** (0.3 mmol), Pd(OAc)₂ (10 mol%), AgOAc (0.15 mmol), norbornene (0.1 mmol), additive (0.05 mmol), mesitylene (0.5 mL), 100 °C, 24 h. ^{*b*}Yields were based on LC-MS analysis using biphenyl as an internal standard.

4. Preparation of substrates

4.1. Preparation of N, N–Diisopropyloxamoyl chloride S1^[1]

A solution of Diisopropylamine (7.01 mL, 50 mmol, 1.0 eq) in CH_2Cl_2 (50 mL) was added dropwise to a solution of oxalyl chloride (6.44 ml, 75 mmol, 1.5 eq) in CH_2Cl_2 (100 mL) at 0 °C, after stirring for 5 min, triethylamine (7.30 mL, 52.5 mmol, 1.05 eq) was added dropwise. The solution was warmed to room temperature and stirred for 6 hours. The excess of oxalyl chloride and the solvent were removed under reduce pressure and CH_2Cl_2 (30 mL) was added and evaporated. This operation was performed twice to give **S1** as a pale yellow solid. The crude product was used in the next step without any purification.

4.2. General procedures for the preparation of oxalamide substrates

A solution of amine (20 mmol, 1.0 eq) in CH_2Cl_2 (40 mL) was added dropwise to a solution of N,N–Diisopropyloxamoyl chloride S1 (25 mmol, 1.25 eq) in CH_2Cl_2 (50 mL) at 0 °C, after stirring for 5 min, triethylamine (2.92 mL, 21 mmol, 1.05 eq) was added dropwise and then the mixture was stirred for 6 hours at room temperature before quenched by water (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (20 mL × 2). The combined organic phase was washed with brine (30 mL), and then dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel afforded corresponding amide substrates as white solid or colourless oil with >80% yield.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.22–7.18 (m, 1H), 7.14–7.12 (m, 2H), 6.87 (dd, J = 17.7, 7.9 Hz, 2H), 4.64–4.57 (m, 1H), 3.82 (s, 3H), 3.53–3.43 (m, 3H), 2.86 (t, J = 6.9 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.40, 156.56, 129.60, 126.95, 126.13, 119.65, 109.35, 54.26, 48.60, 45.39, 38.59, 29.10, 19.88, 19.08; IR v 3265, 2966, 2935, 2882, 1667, 1616, 1542, 1510, 1486, 1459, 1447, 1437, 1390, 1367, 1350, 1280, 1247, 1236, 1197, 1159, 1137, 1061, 1042, 1020, 874, 823, 777, 759, 742, 693, 681, 632, 613 cm⁻¹.

White solid.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.12 (m, 5H), 4.69–4.62 (m, 1H), 3.54–3.46 (m,

3H), 2.88–2.85 (m, 2H), 2.35 (s, 3H), 1.41 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.41, 163.28, 136.77, 136.46, 130.55, 129.36, 126.78, 126.24, 49.75, 46.58, 39.47, 32.98, 20.96, 20.15, 19.45.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.24–7,19 (m, 2H), 7.10–7.01 (m, 2H), 6.94 (br s, 1H), 4.68–4.61 (m, 1H), 3.58–3.53 (m, 2H), 3.51–3.46 (m, 1H), 2.91 (t, *J* = 7.1 Hz, 2H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.49, 163.27, 162.40 (d, *J*_{C-F} = 244.0 Hz), 131.18 (d, *J*_{C-F} = 5.0 Hz), 128.47 (d, *J*_{C-F} = 8.0 Hz), 125.63 (d, *J*_{C-F} = 16.0 Hz), 124.30 (d, *J*_{C-F} = 4.0 Hz), 115.48 (d, *J*_{C-F} = 22.0 Hz), 49.76, 46.55, 39.38, 29.03, 29.01, 20.93, 20.15.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 7.5, 1.6 Hz, 1H), 7.28–7.14 (m, 4H), 4.63–4.57 (m, 1H), 3.60–3.55 (m, 2H), 3.52–3.45 (m, 1H), 3.00 (t, J = 7.2 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.48, 162.33, 135.36, 133.23, 130.01, 128.68, 127.12, 126.04, 48.73, 45.50, 37.92, 32.25, 19.91, 19.12; HRMS Calcd for C₁₆H₂₃ClN₂NaO₂ [M+Na⁺]: 333.1346; Found: 333.1352.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.9 Hz, 1H), 7.32 (br s, 1H), 7.29–7.23 (m, 2H), 7.10–7.06 (m, 1H), 4.58–4.54 (m, 1H), 3.60–3.55 (m, 2H), 3.52–3.45 (m, 1H), 3.01 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.49, 163.40, 138.04, 132.95, 130.97, 128.32, 127.65, 124.63, 49.73, 46.44, 38.96, 35.65, 20.87, 20.09 .

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.22–7.18 (m, 1H), 7.10 (br s, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.76–6.75 (m, 2H), 4.58–4.52 (m, 1H), 3.78 (s, 3H), 3.56–3.51 (m, 2H), 3.49–3.44 (m, 1H), 2.82 (t, J = 7.2 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.46, 159.87, 140.22, 129.68, 121.15, 114.36, 112.18, 55.25, 49.80, 46.50, 40.39, 35.57, 20.90, 20.14.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.16 (t, J = 7.6 Hz, 2H), 7.03–7.00 (m, 3H), 4.58–4.51 (m, 1H), 3.56–3.51 (m, 2H), 3.49–3.44 (m, 1H), 2.81 (t, J = 7.3 Hz, 2H), 2.32 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.52, 162.48, 137.55, 137.22, 128.61, 127.54, 126.32, 124.81, 48.79, 45.45, 39.52, 34.41, 20.43, 19.88, 19.13; HRMS Calcd for C₁₇H₂₇N₂O₂ [M+H⁺]: 291.2073; Found: 291.2076.

White solid.^{[3] 1}H NMR (400 MHz, CDCl₃) δ 7.29 (br s, 1H), 7.13 (d, *J* = 4.9 Hz, 1H), 6.93–6.90 (m, 1H), 6.85 (s, 1H), 4.59–4.52 (m, 1H), 3.58–3.53 (m, 2H), 3.51–3.44 (m, 1H), 3.06 (t, *J* = 6.8 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.50, 163.42, 140.98, 127.09, 125.47, 123.95, 49.81, 46.47, 40.69, 29.63, 20.88, 20.13.

White solid. ^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.03 (br s, 1H), 6.80–6.78 (m, 1H), 6.74 (dd, J = 5.9, 1.8 Hz, 2H), 4.61–4.54 (m, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.54–3.44 (m, 3H), 2.78 (t, J = 7.1 Hz, 2H), 1.38 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.41, 163.29, 149.09, 147.80, 131.16, 120.77, 112.02, 111.45, 56.00, 55.94, 49.76, 46.54, 40.60, 35.16, 20.91, 20.14

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (br s, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 1.9 Hz, 1H), 7.05 (dd, *J* = 8.2, 2.0 Hz, 1H), 4.38–4.31 (m, 1H), 3.53–3.41 (m, 3H), 2.80 (t, *J* = 7.1 Hz, 2H), 1.35 (d, *J* = 6.8 Hz, 6H), 1.15 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.75, 162.68, 138.06, 131.42, 129.84, 129.55, 129.49, 127.34, 76.48, 49.00, 45.42, 38.90, 33.55, 19.81, 19.10; HRMS Calcd for C₁₆H₂₂Cl₂N₂NaO₂ [M+Na⁺]: 367.0956; Found: 367.0966.

White solid.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.26 (br s, 1H), 7.19–7.15 (m, 2H), 4.54–4.50 (m, 1H), 3.55–3.50 (m, 2H), 3.48–3.43 (m, 1H), 2.94 (t, *J* = 7.1 Hz, 2H), 1.37 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.52, 163.26, 134.99, 134.92, 133.12, 131.82, 129.45, 127.29, 49.81, 46.55, 38.71, 32.76, 20.90, 20.12.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (br s, 1H), 7.25–7.19 (m, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.91–6.85 (m, 2H), 4.45–4.38 (m, 1H), 3.55–3.50 (m, 2H), 3.46–3.41 (m, 1H), 2.83 (t, J = 7.2 Hz, 2H), 1.36 (d, J = 6.8 Hz, 6H), 1.15 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.75, 162.62, 161.94 (d, J_{C-F} = 244.0 Hz), 140.32 (d, J_{C-F} = 8.0 Hz), 129.04 (d, J_{C-F} = 8.0 Hz), 123.49 (d, J_{C-F} = 3.0 Hz), 114.70 (d, J_{C-F} = 21.0 Hz), 112.40 (d, J_{C-F} = 21.0 Hz), 48.89, 45.38, 39.11, 34.13, 34.12, 19.80, 19.09; HRMS Calcd for C₁₆H₂₃FN₂NaO₂ [M+Na⁺]: 317.1641; Found: 317.1650.

White solid. ^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.17 (m, 4H), 7.10 (d, *J* = 7.0 Hz, 1H), 4.53–4.46 (m, 1H), 3.56–3.50 (m, 2H), 3.49–3.44 (m, 1H), 2.83 (t, *J* = 7.2 Hz, 2H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.55, 163.45, 140.75, 134.40, 129.94, 128.99, 127.07, 126.83, 49.90, 46.54, 40.21, 35.16, 20.91, 20.15.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.42 (br s, 1H), 7.35 (s, 1H), 7.32–7.31 (m, 1H), 7.14 (d, *J* = 4.6 Hz, 2H), 4.43–4.38 (m, 1H), 3.54–3.49 (m, 2H), 3.47–3.42 (m, 1H), 2.81 (t, *J* = 7.2 Hz, 2H), 1.36 (d, *J* = 6.8 Hz, 6H), 1.16 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.65, 163.61, 141.08, 131.85, 130.15, 129.66, 127.49, 122.58, 49.93, 46.40, 40.11, 35.03, 20.85, 20.11.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 2H), 7.45–7.41 (m, 2H), 7.17 (br s, 1H), 4.63–4.58 (m, 1H), 3.59–3.54 (m, 2H), 3.52–3.45 (m, 1H), 2.92 (t, *J* = 7.2 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.47, 163.16, 139.64, 132.33 (d, *J*_{C-F} = 1.0 Hz), 131.03 (q, *J*_{C-F} = 32.0 Hz), 129.19, 125.62 (q, *J*_{C-F} = 4.0 Hz), 124.23 (q, *J*_{C-F} = 270.0 Hz), 123.60 (q, *J*_{C-F} = 4.0 Hz), 49.82, 46.65, 40.29, 35.39, 20.91, 20.15.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.08 (br s, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 6.69 (d, *J* = 1.4 Hz, 1H), 6.65 (dd, *J* = 7.9, 1.6 Hz, 1H), 5.91 (s, 2H), 4.62–4.55 (m, 1H), 3.51–3.44(m, 3H), 2.76 (t, *J* = 7.1 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.41, 163.33, 147.87, 146.30, 132.39, 121.77, 109.18, 108.46, 100.99, 49.79, 46.54, 40.73, 35.24, 20.92, 20.15; HRMS Calcd for C₁₇H₂₃N₂O₄ [M-H⁺]: 319.1658; Found: 319.1673.

White solid.^{[4] 1}H NMR (400 MHz, CDCl₃) δ 7.32–7.28 (m, 2H), 7.23–7.20 (m, 3H), 7.11 (br s, 1H), 4.60–4.53 (m, 1H), 3.58–3.53 (m, 2H), 3.52–3.45 (m, 1H), 2.86 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.45, 163.41, 138.68, 128.85, 128.70, 126.62, 49.78, 46.52, 40.53, 35.55, 20.92, 20.16.

White solid.^{[4] 1}H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.6 Hz, 2H), 7.23–7.19 (m, 3H), 6.94 (br s, 1H), 4.42–4.37 (m, 1H), 3.54–3.39 (m, 3H), 3.03–2.94 (m, 1H), 1.38–1.35 (m, 6H), 1.28 (d, J = 7.0 Hz, 3H), 1.16–1.12 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.54, 143.93, 128.72, 127.28, 126.77, 49.83, 46.40, 45.86, 39.78, 20.88, 20.16, 20.14, 19.45.

White solid.^{[2] 1}H NMR (400 MHz, CDCl₃) δ 7.30–7.24 (m, 4H), 7.17 (d, *J* = 7.1 Hz, 2H), 4.89–4.82 (m, 1H), 4.39–4.33 (m, 1H), 3.72 (s, 3H), 3.51–3.44 (m, 1H), 3.22–3.17 (m, 1H), 3.12–3.07 (m, 1H), 1.42–1.40 (m, 6H), 1.21–1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 184.72, 171.32, 162.95, 135.74, 129.34, 128.69, 127.21, 53.24, 52.52, 49.81, 46.50, 38.03, 20.90, 20.81, 20.10.

Pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (br s, 1H), 6.88 (d, J = 3.7 Hz, 1H), 6.63 (d, J = 3.7 Hz, 1H), 4.83–4.78 (m, 1H), 4.53–4.47 (m, 1H), 3.77 (s, 3H), 3.54–3.47 (m, 1H), 3.39–3.26 (m, 2H), 1.42 (dd, J = 6.7, 5.3 Hz, 6H), 1.22 (dd, J = 6.6, 4.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.50, 162.09, 161.48, 137.88, 129.10, 126.73, 110.10, 51.97, 51.91, 48.92, 45.70, 31.41, 20.01, 19.94, 19.18; HRMS Calcd for C₁₆H₂₃BrN₂NaO₄S [M+Na⁺]: 441.0460; Found: 441.0468.

Pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (br s, 1H), 7.15 (dd, J = 5.1, 1.1 Hz, 1H), 6.92 (dd, J = 5.1, 3.5 Hz, 1H), 6.84 (d, J = 3.1 Hz, 1H), 4.85–4.81 (m, 1H), 4.52–4.46 (m, 1H), 3.74 (s, 3H), 3.52–3.45 (m, 1H), 3.43–3.35 (m, 2H), 1.41 (dd, J = 6.7, 4.3 Hz, 6H), 1.20 (dd, J = 6.6, 3.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.69, 162.03, 161.58, 136.04, 126.25, 126.07, 124.01, 52.21, 51.70, 48.82, 45.58, 30.97, 19.95, 19.88, 19.13; HRMS Calcd for C₁₆H₂₅N₂O₄S [M+H⁺]: 341.1535; Found: 341.1536.

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 1.1 Hz, 1H), 7.14 (br s, 1H), 6.27 (dd, *J* = 3.0, 1.9 Hz, 1H), 6.08 (d, *J* = 3.1 Hz, 1H), 4.65–4.58 (m, 1H), 3.58–3.53 (m, 2H), 3.52–3.45 (m, 1H), 2.87 (t, *J* = 6.7 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.42, 163.23, 152.72, 141.69, 110.39, 106.51, 49.77, 46.57, 37.95, 27.98, 20.94, 20.16; HRMS Calcd for C₁₄H₂₂N₂NaO₃ [M+Na⁺]: 289.1528; Found: 289.1530.

5. Meta arylation with different aryl iodides

A mixture of **1a** (0.2 mmol, 61.3 mg), **2** (0.6 mmol, 3.0 eq), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AgOAc (50 mg, 0.3 mmol, 1.5 eq), norbornene (18.8 mg, 0.2 mmol, 1.0 eq), 1-AdCO₂H (18 mg, 0.1 mmol, 0.05 eq) and 1 mL mesitylene in a 15 mL glass vial was heated at 100 °C with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:15 to 1:3) to give product.

Pale yellow oil; Yield (81%, 61.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.5 Hz, 2H), 7.46–7.40 (m, 4H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.12 (br s, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 4.71–4.65 (m, 1H), 3.88 (s, 3H), 3.59–3.54 (m, 2H), 3.51–3.44 (m, 1H), 2.94 (t, *J* = 6.8 Hz, 2H), 1.40 (d, *J* = 6.7 Hz, 6H), 1.16 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.40, 162.19, 156.24, 139.82, 132.87, 128.54, 127.82, 126.49, 125.91, 125.81, 125.60, 109.77, 54.59, 48.64, 45.58, 38.72, 29.30, 19.94, 19.15; HRMS Calcd for C₂₃H₃₀N₂NaO₃ [M+Na⁺]: 405.2154; Found: 405.2152; IR v 3270, 3089, 2994, 2977, 2937, 2884, 2835, 1674, 1612, 1561, 1495, 1450, 1434, 1381, 1362, 1317, 1306, 1290, 1263, 1244, 1205, 1170, 1158, 1140, 1120, 1093, 1055, 1038, 1022, 988, 956, 925, 876, 805, 774, 752, 740, 728, 702, 675, 612 cm⁻¹.

Pale yellow oil; Yield (83%, 63.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.32 (m, 3H), 7.28–7.21 (m, 3H), 7.04 (br s, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 4.71–4.64 (m, 1H), 3.89 (s, 3H), 3.51–3.44 (m, 1H), 3.38–3.33 (m, 2H), 2.83 (t, J = 7.0 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.05, 161.99, 156.87, 143.20, 140.49, 128.22, 127.28, 126.20, 126.16, 124.11, 121.77, 108.42, 54.64, 48.44, 45.55, 38.75, 25.41, 19.97, 19.12; HRMS Calcd for C₂₃H₃₁N₂O₃ [M+H⁺]: 383.2335; Found: 383.2347.

Pale yellow solid; Yield (77%, 61.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.41 (m, 3H), 7.37 (d, *J* = 2.2 Hz, 1H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.10 (br s, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 4.72–4.65 (m, 1H), 3.88 (s, 3H), 3.58–3.54 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, *J* = 6.9 Hz, 2H), 2.38 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.17 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.20, 156.04, 136.95, 135.52, 132.87, 128.55, 128.38, 126.44, 125.76, 125.41, 109.77, 54.60, 48.66, 45.60, 38.79, 29.32, 20.19, 19.96, 19.17; HRMS Calcd for C₂₄H₃₃N₂O₃ [M+H⁺]: 397.2491; Found: 397.2500.

Yellow solid; Yield (80%, 73.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.43–7.39 (m, 3H), 7.35 (d, J = 2.1 Hz, 1H), 7.10 (br s, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.72–4.65 (m, 1H), 3.88 (s, 3H), 3.58–3.53 (m, 2H), 3.51–3.45 (m, 1H), 2.93 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.38, 162.13, 156.51, 138.76, 131.57, 130.88, 128.37, 127.51, 126.69, 125.47, 119.94, 109.85, 54.63, 48.65, 45.62, 38.61, 29.29, 19.96, 19.16; HRMS Calcd for C₂₃H₃₀BrN₂O₃ [M+H⁺]: 461.1440; Found: 461.1444.

Yellow solid; Yield (58%, 58.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.5 Hz, 2H), 7.40 (dd, J = 8.4, 2.4 Hz, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.30 (d, J = 8.5 Hz, 2H), 7.10 (br s, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.73–4.66 (m, 1H), 3.88 (s, 3H), 3.57–3.52 (m, 2H), 3.51–3.45 (m, 1H), 2.92 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 206.11, 162.37, 162.11, 156.56, 139.34, 136.86, 131.59, 128.30, 127.79, 126.70, 125.43, 109.85, 91.31, 54.62, 48.63, 45.61, 38.60, 30.06, 29.29, 19.96, 19.16; HRMS Calcd for C₂₃H₂₉IN₂NaO₃ [M+Na⁺]: 531.1121; Found: 531.1112.

Pale yellow solid; Yield (72%, 59.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, *J* = 1.6 Hz, 1H), 7.44–7.40 (m, 2H), 7.36 (d, *J* = 2.2 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.27–7.25 (m, 1H), 7.10 (br s, 1H), 7.10 (s, 1H), 6.93 (d, *J* = 8.5 Hz, 1H), 4.72–4.66 (m, 1H), 3.88 (s, 3H), 3.58–3.53 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, *J* = 6.9 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.17 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.39, 162.14, 156.67, 141.68, 133.71, 131.37, 129.04, 128.53, 126.70, 125.98, 125.78, 125.65, 124.04, 109.83, 54.63, 48.65, 45.62, 38.60, 29.32, 19.96, 19.16; HRMS Calcd for C₂₃H₃₀ClN₂O₃ [M+H⁺]: 417.1945; Found: 417.1938.

Yellow oil; Yield (82%, 75.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, *J* = 1.6 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.41 (dd, *J* = 8.5, 2.1 Hz, 2H), 7.35 (d, *J* = 2.2 Hz, 1H), 7.26 (d, *J* = 15.7 Hz, 1H), 7.09 (br s, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 4.72–4.66 (m, 1H), 3.58–3.53 (m, 2H), 3.51–3.45 (m, 1H), 2.93 (t, *J* = 6.9 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.17 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.15, 156.68, 141.97, 131.27, 129.32, 128.88, 128.71, 128.53, 126.71, 125.67, 124.51, 121.99, 109.83, 54.63, 48.66, 45.62, 38.60, 29.32, 19.96, 19.17; HRMS Calcd for C₂₃H₃₀BrN₂O₃ [M+H⁺]: 461.1440; Found: 461.1448.

Pale yellow oil; Yield (81%, 80.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 2.0 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 8.4, 2.2 Hz, 1H), 7.34 (d, J = 2.1 Hz, 1H), 7.30 (dd, J = 8.3, 2.0 Hz, 1H), 7.11 (br s, 1H), 6.92 (d, J = 8.5 Hz, 1H), 4.71–7.65 (m, 1H), 3.88 (s, 3H), 3.57–3.45 (m, 3H), 2.92 (t, J = 6.8 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.15, 156.86, 140.58, 133.79, 132.93, 130.24, 128.34, 127.53, 126.84, 125.49, 125.32, 119.53, 109.88, 54.63, 48.65, 45.60, 38.47, 29.28, 19.95, 19.15; HRMS Calcd for C₂₃H₂₉BrClN₂O₃ [M+H⁺]: 495.1050; Found: 495.1040.

Pale yellow oil; Yield (83%, 68.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.4, 2.3 Hz, 1H), 7.38 (d, J = 2.2 Hz, 1H), 7.17 (s, 2H), 7.09 (br s, 1H), 6.95 (s, 1H), 6.91 (d, J = 8.4 Hz, 1H), 4.71–4.64 (m, 1H), 3.88 (s, 3H), 3.58–3.53 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, J = 6.9 Hz, 2H), 2.37 (s, 6H), 1.41 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.44, 162.22, 156.10, 139.80, 137.32, 133.13, 128.60, 127.49, 126.35, 125.61, 123.87, 109.68, 54.59, 48.66, 45.59, 38.81, 29.33, 20.53, 19.97, 19.17; HRMS Calcd for C₂₅H₃₅N₂O₃ [M+H⁺]: 411.2648; Found: 411.2655.

Yellow oil; Yield (70%, 57.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 8.4, 2.4 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.09–7.06 (m, 2H), 6.93 (d, J = 8.5 Hz, 1H), 6.86–6.84 (m, 1H), 4.70–4.63 (m, 1H), 3.87 (d, J = 6.2 Hz, 6H), 3.59–3.54 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.16 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.43, 162.21, 159.08, 156.36, 141.37, 132.76, 128.81, 128.58, 126.48, 125.69, 118.48, 111.56, 111.39, 109.75, 54.61, 54.47, 48.68, 45.59, 38.72, 29.34, 19.96, 19.16; HRMS Calcd for C₂₄H₃₂N₂NaO₄ [M+Na⁺]: 435.2260; Found: 435.2262.

Yellow oil; Yield (56%, 49.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 8.4, 2.0 Hz, 1H), 7.32 (d, J = 1.8 Hz, 1H), 7.10 (br s, 1H), 7.06–7.01 (m, 2H), 6.89 (d, J = 7.6 Hz, 2H), 4.72–4.65 (m, 1H), 4.28 (s, 4H), 3.86 (s, 3H), 3.57–3.52 (m, 2H), 3.51–3.44 (m, 1H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.21, 155.92, 142.77, 141.82, 133.51, 132.33, 128.19, 126.42, 125.18, 118.94, 116.58, 114.59, 109.75, 63.58, 63.57, 54.58, 48.65, 45.58, 38.79, 29.29, 19.96, 19.16; HRMS Calcd for C₂₅H₃₂N₂NaO₅ [M+Na⁺]: 463.2209; Found: 463.2208.

Yellow oil; Yield (79%, 69.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 1.8 Hz, 1H), 7.70 (dd, J = 7.9, 1.9 Hz, 1H), 7.46 (dd, J = 8.4, 2.4 Hz, 1H), 7.40 (d, J = 2.3 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.10 (br s, 1H), 6.95 (d, J = 8.5 Hz, 1H), 4.74–4.67 (m, 1H), 3.89 (s, 3H), 3.58–3.53 (m, 2H), 3.52–3.45 (m, 1H), 2.94 (t, J = 6.9 Hz, 2H), 2.61 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 206.12, 162.39, 162.10, 156.93, 148.72, 138.99, 132.24, 130.61, 130.13, 130.08, 128.35, 126.96, 125.57, 121.55, 109.97, 54.66, 48.63, 45.63, 38.57, 30.06, 29.35, 19.97, 19.22, 19.15; HRMS Calcd for C₂₄H₃₂N₃O₅ [M+H⁺]: 442.2342; Found: 442.2339.

Pale yellow oil; Yield (75%, 67.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.56–7.49 (m, 2H), 7.45 (dd, J = 8.4, 2.4 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.08 (br s, 1H), 6.95 (d, J = 8.5 Hz, 1H), 4.74–4.67 (m, 1H), 3.89 (s, 3H), 3.59–3.54 (m, 2H), 3.51–3.45 (m, 1H), 2.95 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.13, 156.80, 140.64, 131.35, 130.22 (q, $J_{C-F} = 32.0$ Hz), 129.22 (d $J_{C-F} = 1.0$ Hz), 128.63, 128.28, 127.44, 126.85, 126.09 (q, $J_{C-F} = 271.0$ Hz), 125.80, 124.73, 122.62 (q, $J_{C-F} = 4.0$ Hz), 122.45 (q, $J_{C-F} = 4.0$ Hz), 109.93, 54.66, 48.65, 45.63, 38.59, 29.37, 19.95, 19.13; HRMS Calcd for C₂₄H₃₀F₃N₂O₃ [M+H⁺]: 451.2209; Found: 451.2207.

Pale yellow oil; Yield (81%, 71.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.4 Hz, 1H), 7.51–7.47 (m, 1H), 7.36 (t, J = 7.3 Hz, 2H), 7.17–7.11 (m, 3H), 6.88 (d, J = 8.4 Hz, 1H), 4.71–4.64 (m, 1H), 3.87 (s, 3H), 3.67 (s, 3H), 3.56–3.44 (m, 3H), 2.90 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.40, 162.42, 162.23, 156.04, 141.01, 132.66, 130.32, 129.93, 129.84, 129.82, 128.80, 126.99, 125.91, 125.87, 109.06, 54.48, 51.16, 48.65, 45.53, 38.81, 29.16, 19.93, 19.14; HRMS Calcd for C₂₅H₃₂N₂NaO₅ [M+Na⁺]: 463.2209; Found: 463.2217.

Yellow oil; Yield (60%, 52.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.48 (dd, *J* = 12.8, 4.9 Hz, 2H), 7.42 (d, *J* = 2.2 Hz, 1H), 7.12 (br s, 1H), 6.94 (d, *J* = 8.5 Hz, 1H), 4.71–4.65 (m, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.59–3.54 (m, 2H), 3.51–3.44 (m, 1H), 2.95 (t, *J* = 6.9 Hz, 2H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.16 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.29, 162.41, 162.18, 156.61, 140.05, 131.68, 130.33, 129.73, 128.51, 127.93, 126.91, 126.85, 126.71, 125.71, 109.86, 54.62, 51.30, 48.65, 45.58, 38.72, 29.35, 19.94, 19.14; HRMS Calcd for C₂₅H₃₂N₂NaO₅ [M+Na⁺]: 463.2209; Found: 463.2222.

Pale yellow oil; Yield (62%, 49.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 2H), 7.34 (s, 1H), 7.29–7.24 (m, 1H), 7.19–7.08 (m, 3H), 6.94 (d, J = 8.5 Hz, 1H), 4.71–4.64 (m, 1H), 3.88 (s, 3H), 3.58–3.53 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 162.41, 162.20, 160.07, 157.62, 156.34, 130.38 (d, $J_{C-F} = 3.0$ Hz), 129.72 (d, $J_{C-F} = 3.0$ Hz), 127.75 (d, $J_{C-F} = 3.0$ Hz), 127.62, 127.60, 127.52, 127.27 (d, $J_{C-F} = 1.0$ Hz), 126.26, 123.44 (d, $J_{C-F} = 3.0$ Hz), 115.14 (d, $J_{C-F} = 23.0$ Hz), 109.46, 54.58, 48.67, 45.59, 38.71, 29.24, 19.94, 19.15; HRMS Calcd for C₂₃H₂₉FN₂NaO₃ [M+Na⁺]: 423.2060.; Found: 423.2068.

Yellow oil; Yield (53%, 43.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.40–7.38 (dd, J = 8.4, 2.4 Hz, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.10 (br s, 1H), 6.95–6.90 (m, 3H), 4.71–4.64 (m, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.58–3.53 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, J = 6.9 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.16 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.21, 157.85, 155.80, 132.58, 132.48, 128.19, 126.92, 126.43, 125.16, 113.27, 109.78, 54.59, 54.48, 48.65, 45.58, 38.77, 29.30, 19.96, 19.16; HRMS Calcd for C₂₄H₃₂N₂NaO₄ [M+Na⁺]: 435.2260; Found: 435.2268.

6. Meta arylation with different β -arylethyamides

A mixture of oxalamide **1** (0.2 mmol, 1.0 eq), iodobenzene **2a** or methyl 2-iodobenzoate **2m** (0.6 mmol, 3.0 eq), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AgOAc (50 mg, 0.3 mmol, 1.5 eq), norbornene (18.8 mg, 0.2 mmol, 1.0 eq), 1-AdCO₂H (18 mg, 0.1 mmol, 0.05 eq) and 1 mL mesitylene in a 15 mL glass vial was heated at 100 °C with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:15 to 1:3) to give product.

Pale yellow solid; Yield (66%, 48.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.58 (m, 2H), 7.43–7.37 (m, 4H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.08 (br s, 1H), 4.76–4.69 (m, 1H), 3.59–3.54 (m, 2H), 3.53–3.46 (m, 1H), 2.93 (t, *J* = 7.4 Hz, 2H), 2.39 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.34, 162.02, 140.06, 138.31, 136.15, 134.60, 130.07, 127.83, 127.20, 126.18, 126.15, 124.52, 48.71, 45.70, 38.53, 32.16, 19.96, 19.16, 18.17; HRMS Calcd for C₂₃H₃₀N₂NaO₂ [M+Na⁺]: 389.2205; Found: 389.2207.

Pale yellow oil; Yield (80%, 59.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.5 Hz, 2H), 7.42 (dd, *J* = 9.1, 6.8 Hz, 4H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.12–7.07 (m, 2H), 4.68–4.61 (m, 1H), 3.63–3.58 (m, 2H), 3.51–3.45 (m, 1H), 2.96 (t, *J* = 7.0 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.16 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.43, 162.02, 161.27, 158.82, 139.24, 136.66 (d, *J*_{C-F} = 3.0 Hz), 128.98 (d, *J*_{C-F} = 5.0 Hz), 127.92, 126.41, 126.19, 126.18 (d, *J*_{C-F} = 8.0 Hz), 124.82 (d, *J*_{C-F} = 16.0 Hz), 114.83 (d, *J*_{C-F} = 22.0 Hz), 48.74, 45.66, 38.41, 28.46, 28.18, 19.93, 19.16; HRMS Calcd for C₂₂H₂₇FN₂NaO₂ [M+Na⁺]: 393.1954; Found: 393.1960.

Pale yellow solid; Yield (72%, 55.6 mg);¹H NMR (400 MHz, CDCl₃) δ 7.58–7.56 (m, 2H), 7.47 (d, J = 1.7 Hz, 1H), 7.44–7.38 (m, 4H), 7.36–7.33 (m, 1H), 7.06 (br s, 1H), 4.74–4.67 (m, 1H), 3.65–

3.59 (m, 2H), 3.52–3.45 (m, 1H), 3.06 (t, J = 7.1 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.38, 161.92, 139.34, 138.97, 135.57, 132.38, 129.06, 128.80, 127.98, 126.75, 126.41, 126.21, 125.89, 48.70, 45.70, 38.01, 32.46, 28.46, 19.95, 19.16; HRMS Calcd for C₂₂H₂₇ClN₂NaO₂ [M+Na⁺]: 409.1659; Found: 409.1672.

Pale yellow oil; Yield (85%, 73.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 12.6, 7.9 Hz, 3H), 7.47–7.41 (m, 3H), 7.37–7.31 (m, 2H), 7.06 (br s, 1H), 4.75–4.69 (m, 1H), 3.64–3.59 (m, 2H), 3.52–3.45 (m, 1H), 3.07 (t, J = 7.1 Hz, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.38, 161.91, 140.01, 138.95, 137.30, 132.38, 128.79, 127.99, 126.80, 126.18, 126.16, 122.70, 48.70, 45.70, 38.08, 34.88, 19.95, 19.16; HRMS Calcd for C₂₂H₂₇BrN₂NaO₂ [M+Na⁺]: 453.1154; Found: 453.1136.

Pale yellow oil; Yield (66%, 50.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.04 (s, 1H), 6.99 (s, 2H), 6.76 (s, 1H), 4.68–4.62 (m, 1H), 3.86 (s, 3H), 3.63–3.58 (m, 2H), 3.52–3.45 (m, 1H), 2.90 (t, J = 7.1 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 162.13, 159.32, 142.14, 140.08, 139.51, 127.85, 126.61, 126.36, 119.32, 112.25, 110.35, 54.49, 48.78, 45.64, 39.43, 34.77, 19.95, 19.18; HRMS Calcd for C₂₃H₃₀N₂NaO₃ [M+Na⁺]: 405.2154; Found: 405.2157.

Pale yellow solid; Yield (70%, 51.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.27 (s, 1H), 7.24 (s, 1H), 7.03 (s, 1H), 6.98 (br s, 1H), 4.69–4.62 (m, 1H), 3.62–3.57 (m, 2H), 3.52–3.45 (m, 1H), 2.89 (t, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.39, 162.15, 140.75, 140.27, 138.02, 137.81, 127.81, 127.63, 126.36, 126.34, 125.45, 123.90, 48.76, 45.64, 39.57, 34.57, 20.58, 19.96, 19.18; HRMS Calcd for C₂₃H₃₀N₂NaO₂ [M+Na⁺]: 389.2205; Found: 389.2206.

Yellow solid; Yield (87%, 62.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.3 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.29–7.26 (m, 2H), 7.19 (br s, 1H), 7.17 (s, 1H), 4.66–4.59 (m, 1H), 3.65–3.60 (m, 2H), 3.52–3.45 (m, 1H), 3.10 (t, *J* = 6.9 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.51, 162.21, 141.31, 140.83, 134.95, 127.88, 126.21, 125.38, 123.95, 117.89, 48.84, 45.61, 39.60, 29.04, 19.93, 19.17; HRMS Calcd for C₂₀H₂₆N₂NaO₂S [M+Na⁺]: 381.1613; Found: 381.1626.

Pale yellow solid; Yield (45%, 37.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.53 (m, 2H), 7.42–7.38 (m, 2H), 7.35–7.31 (m, 1H), 7.00 (br s, 1H), 6.78 (s, 2H), 4.72–4.65 (m, 1H), 3.91 (s, 3H), 3.60–3.54 (m, 5H), 3.53–3.46 (m, 1H), 2.84 (t, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 6.2 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.35, 162.06, 152.22, 144.28, 137.25, 134.95, 133.43, 128.36, 127.22, 126.27, 121.87, 111.08, 59.73, 55.13, 48.75, 45.67, 39.55, 34.53, 19.96, 19.18; HRMS Calcd for C₂₄H₃₂N₂NaO₄ [M+Na⁺]: 435.2260; Found: 435.2261.

Pale yellow solid; Yield (51%, 42.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.37 (m, 5H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.14 (br s, 1H), 7.10 (d, *J* = 2.0 Hz, 1H), 4.63–4.56 (m, 1H), 3.59–3.53 (m, 2H), 3.52–3.46 (m, 1H), 2.85 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.41, 161.99, 141.90, 138.26, 137.20, 132.64, 129.23, 128.72, 128.41, 128.36, 127.25, 127.11, 48.84, 45.70, 39.10, 33.74, 19.94, 19.17; HRMS Calcd for C₂₂H₂₇Cl₂N₂O₂ [M+H⁺]: 421.1450; Found: 421.1455.

Pale yellow oil; Yield (9%, 7.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.37 (m, 4H), 7.31 (s, 1H), 7.26–7.24 (m, 2H), 7.04 (br s, 1H), 4.60–4.53 (m, 1H), 3.51–3.44 (m, 1H), 3.33–3.28 (m, 2H), 2.77 (t, *J* = 7.4 Hz, 2H), 1.38 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101

MHz, CDCl₃) δ 163.18, 142.38, 139.15, 136.36, 131.93, 131.43, 131.41, 130.36, 129.00, 128.66, 127.94, 49.80, 46.66, 39.59, 38.82, 36.57, 32.15, 27.99, 20.93, 20.12; HRMS Calcd for C₂₂H₂₇Cl₂N₂O₂ [M+H⁺]: 421.1450; Found: 421.1465.

Pale yellow oil; Yield (71%, 59.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.44–7.36 (m, 5H), 7.23 (s, 1H), 7.10 (br s, 1H), 4.73–4.67 (m, 1H), 3.57–3.54 (m, 2H), 3.52–3.46 (m, 1H), 3.00 (t, *J* = 7.1 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.17 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 206.15, 162.33, 161.78, 138.48, 137.22, 134.15, 132.57, 132.51, 130.45, 129.52, 128.51, 127.25, 127.05, 48.69, 45.72, 37.84, 31.77, 30.06, 19.93, 19.14; HRMS Calcd for C₂₂H₂₇Cl₂N₂O₂ [M+H⁺]: 421.1450; Found: 421.1457.

Off-white solid; Yield (49%, 41.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 7.7, 1.2 Hz, 1H), 7.55–7.51 (m, 1H), 7.45–7.40 (m, 1H), 7.36 (dd, J = 7.6, 1.0 Hz, 1H), 7.01 (s, 1H), 6.95 (br s, 1H), 6.93–6.87 (m, 2H), 4.69–4.63 (m, 1H), 3.68 (s, 3H), 3.59–3.54 (m, 2H), 3.52–3.46 (m, 1H), 2.89 (t, J = 7.2 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.68, 162.42, 161.99, 161.65 (d, J_{C-F} = 244.0 Hz), 142.81 (d, J_{C-F} = 9.0 Hz), 140.35 (d, J_{C-F} = 2.0 Hz), 139.70 (d, J_{C-F} = 8.0 Hz), 130.58, 129.77, 129.68, 129.11, 126.82, 123.79 (d, J_{C-F} = 3.0 Hz), 113.56 (d, J_{C-F} = 21.0 Hz), 112.84 (d, J_{C-F} = 22.0 Hz), 51.24, 48.78, 45.66, 39.35, 34.36, 19.94, 19.17; HRMS Calcd for C₂₂H₂₇FN₂NaO₂ [M+Na⁺]: 393.1954; Found: 393.1968.

Pale yellow solid; Yield (62%, 55.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.55–7.51 (m, 1H), 7.45–7.41 (m, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 11.6 Hz, 2H), 7.05 (s, 1H), 7.02 (s, 1H), 4.67–4.60 (m, 1H), 3.68 (s, 3H), 3.59–3.54 (m, 2H), 3.52–3.45 (m, 1H), 2.87 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 206.13, 167.59, 162.48, 162.07, 142.42, 140.20, 139.20, 133.04, 130.64, 129.81, 129.56, 129.18, 126.87, 126.73, 126.37, 125.87, 51.24, 48.82, 45.63, 39.32, 34.24, 30.06, 19.93, 19.16; HRMS Calcd for C₂₄H₂₉ClN₂NaO₄ [M+Na⁺]: 467.1714; Found: 467.1716.

Pale yellow solid; Yield (65%, 63.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.7 Hz, 1H), 7.55–7.51 (m, 1H), 7.43 (dd, *J* = 7.5, 6.7 Hz, 1H), 7.34 (dd, *J* = 9.4, 4.3 Hz, 3H), 7.10 (s, 1H), 7.01 (br s, 1H), 4.67–4.61 (m, 1H), 3.68 (s, 3H), 3.59–3.54 (m, 2H), 3.52–3.46 (m, 1H), 2.87 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.58, 162.45, 161.99, 142.68, 140.09, 139.42, 130.65, 129.84, 129.63, 129.55, 129.21, 128.76, 126.90, 126.86, 121.24, 51.25, 48.82, 45.67, 39.36, 34.22, 19.97, 19.18; HRMS Calcd for C₂₄H₂₉BrN₂NaO₄ [M+Na⁺]: 511.1208; Found: 511.1206.

Yellow solid; Yield (53%, 50.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.47–7.37 (m, 5H), 7.10 (br s, 1H), 4.68–4.62 (m, 1H), 3.66 (s, 3H), 3.62–3.57 (m, 2H), 3.52–3.46 (m, 1H), 2.96 (t, J = 7.1 Hz, 2H), 1.40 (d, J = 6.7 Hz, 6H), 1.18 (d, J = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.45, 162.44, 161.90, 141.61, 140.18, 138.34, 131.41 (d, J_{C-F} = 1.0 Hz), 130.79, 129.94, 129.64, 129.54, 129.39, 127.07, 124.53, 123.38 (q, J_{C-F} = 4.0 Hz),123.18 (q, J_{C-F} = 270.0 Hz), 122.84 (q, J_{C-F} = 4.0 Hz), 51.20, 48.78, 45.70, 39.36, 34.40, 19.92, 19.15; HRMS Calcd for C₂₅H₂₉F₃N₂NaO₄ [M+Na⁺]: 501.1977; Found: 501.1983.

Off-white solid; Yield (81%, 73.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 7.8, 1.1 Hz, 1H), 7.57–7.53 (m, 1H), 7.46–7.39 (m, 2H), 7.01 (br s, 1H), 6.70 (dd, J = 5.9, 1.5 Hz, 2H), 5.90 (s, 2H), 4.71–4.65 (m, 1H), 3.74 (s, 3H), 3.57–3.46 (m, 3H), 1.41 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.51, 163.37, 163.11, 147.43, 143.57, 136.42, 132.37, 131.88, 131.20, 130.86, 130.22, 127.88, 122.85, 122.47, 108.51, 101.13, 52.23, 49.76, 46.64, 40.76, 35.39, 20.95, 20.18; HRMS Calcd for C₂₅H₃₀N₂NaO₆ [M+Na⁺]: 477.2002; Found: 477.2000.

Pale yellow oil; Yield (60%, 65.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.81 (m, 2H), 7.54–7.50 (m, 2H), 7.42–7.39 (m, 4H), 7.16 (d, J = 1.3 Hz, 2H), 7.12 (d, J = 1.4 Hz, 1H), 7.06 (br s, 1H), 4.70–4.64 (m, 1H), 3.67 (s, 6H), 3.62–3.57 (m, 2H), 3.51–3.44 (m, 1H), 2.93 (t, J = 7.2 Hz, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.15, 162.46, 162.10, 141.16, 140.62, 137.14, 130.41, 130.00, 129.91, 128.95, 126.86, 126.43, 125.91, 51.17, 48.76, 45.60, 39.68, 34.51, 19.92, 19.16; HRMS Calcd for C₃₂H₃₆N₂NaO₆ [M+Na⁺]: 567.2471; Found: 567.2478.

Pale yellow oil; Yield (72%, 80.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.54–7.50 (m, 2H), 7.40 (dd, J = 12.7, 4.9 Hz, 4H), 7.15 (d, J = 2.3 Hz, 3H), 6.94 (br s, 1H), 4.57–4.51 (m, 1H), 3.70–3.61 (m, 7H), 3.48–3.41 (m, 1H), 3.39–3.33 (m, 1H), 3.09–3.03 (m, 1H), 1.38–1.33 (m, 9H), 1.16 (d, J = 6.6 Hz, 3H), 1.11 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.23, 162.65, 162.31, 142.41, 141.16, 140.58, 130.38, 130.08, 129.83, 128.92, 126.42, 125.93, 125.44, 51.16, 48.81, 45.45, 45.01, 38.69, 19.89, 19.82, 19.15, 19.13, 18.43; HRMS Calcd for C₃₃H₃₈N₂NaO₆ [M+Na⁺]: 581.2628; Found: 581.2644.

Pale yellow oil; Yield (58%, 69.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 7.1 Hz, 2H), 7.39 (t, *J* = 8.3 Hz, 5H), 7.09 (s, 3H), 4.90–4.85 (m, 1H), 4.59–4.53 (m, 1H), 3.69 (d, *J* = 17.4 Hz, 9H), 3.49–3.42 (m, 1H), 3.24 (d, *J* = 5.9 Hz, 2H), 1.39 (t, *J* = 6.8 Hz, 6H), 1.18 (d, *J* = 6.6 Hz, 3H), 1.07 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.27, 168.01, 161.95, 161.38, 141.07, 140.66, 134.30, 130.39, 129.97, 128.94, 127.32, 126.57, 126.46, 52.41, 51.61, 51.19, 48.76, 45.63, 36.93, 19.92, 19.76, 19.14, 19.11; HRMS Calcd for C₃₄H₃₈N₂NaO₈ [M+Na⁺]: 625.2526; Found: 625.2542.

Yellow oil; Yield (80%, 88.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 1.1 Hz, 1H), 7.55–7.51 (m, 1H), 7.45–7.40 (m, 2H), 7.31–7.29 (m, 1H), 6.65 (s, 1H), 4.86–4.82 (m, 1H), 4.61–4.54 (m, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.54–3.47 (m, 1H), 3.41–3.31 (m, 2H), 1.42 (dd, J = 6.8, 2.5 Hz, 6H), 1.21 (t, J = 6.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.52, 166.72, 162.13, 161.39, 140.37, 135.80, 135.04, 130.79, 130.33, 129.82, 129.48, 128.24, 127.16, 107.63, 52.04, 51.92, 51.45, 48.88, 45.70, 31.51, 20.00, 19.94, 19.19, 19.15; HRMS Calcd for C₂₄H₂₉BrN₂NaO₆S [M+Na⁺]: 575.0827; Found: 575.0810.

Yellow oil; Yield (61%, 57.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.5, 1.9 Hz, 1H), 7.49–7.45 (m, 1H), 7.38–7.33 (m, 3H), 7.06 (d, J = 1.4 Hz, 1H), 6.82 (d, J = 1.3 Hz, 1H), 4.88–4.84 (m, 1H), 4.61–4.54 (m, 1H), 3.78 (s, 3H), 3.73 (s, 3H), 3.53–3.46 (m, 1H), 3.42 (d, J = 5.3 Hz, 2H), 1.42 (dd, J = 6.8, 1.7 Hz, 6H), 1.20 (dd, J = 8.5, 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.70, 168.16, 162.08, 161.44, 140.46, 135.80, 135.72, 130.33, 129.99, 129.63, 128.66, 127.52, 126.40, 121.01, 52.26, 51.83, 51.31, 48.84, 45.67, 31.23, 19.97, 19.95, 19.18; HRMS Calcd for C₂₄H₃₁N₂O₆S [M+H⁺]: 475.1903; Found: 475.1918.

Yellow oil; Yield (21%, 16.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 7.7, 1.0 Hz, 1H), 7.49–7.45 (m, 2H), 7.38–7.32 (m, 2H), 7.08 (br s, 1H), 6.20 (s, 1H), 4.75–4.69 (m, 1H), 3.81 (s, 3H), 3.63–3.58 (m, 2H), 3.53–3.47 (m, 1H), 2.91 (t, J = 6.7 Hz, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.23, 162.39, 161.97, 151.83, 137.94, 131.69, 130.39, 129.82, 129.41, 128.68, 126.22, 125.03, 107.50, 51.35, 48.78, 45.69, 37.00, 27.14, 19.98, 19.19; HRMS Calcd for C₂₂H₂₉N₂O₅ [M+H⁺]: 401.2076; Found: 401.2085.

7. Pd-catalyzed trifunctionlization of presubstituted β-arylethamide

The first step: a mixture of oxalamide **1g** (0.2 mmol, 1.0 eq), iodobenzene (0.6 mmol, 3.0 eq), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AgOAc (100 mg, 0.6 mmol, 3.0 eq), norbornene (18.8 mg, 0.2 mmol, 1.0 eq), 1-AdOH (18 mg, 0.1 mmol, 0.05 eq) and 1 mL m-xylene in a 15 mL glass vial was heated at 100 °C with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:8) to give product **4f**.

The second step: a mixture of presubstituted β -arylethamide **4f** (0.2 mmol, 1.0 eq), Pd(OAc)₂ (4.5 mg, 10 mol%), PhI(OAc)₂ (0.6 mmol, 3.0 eq), HOAc (0.4 mmol, 2.0 eq) and 1 mL toluene in a 15 mL glass vial was heated at 60 °C with vigorous stirring for 36 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:4) to give product **5**.

The third step: a mixture of presubstituted β -arylethamide **5** (0.2 mmol, 1.0 eq), bromoalkyne (0.4 mmol, 2.0 eq), Pd(OAc)₂ (6.6 mg, 15 mol%), KOAc (0.8 mmol, 4.0 eq), AgOAc (0.8 mmol, 4.0 eq), and 1 mL toluene in a 15 mL glass vial was heated at 140 °C with vigorous stirring for 72 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:20) to give product **6**.

Yellow oil; Yield (65%, 55.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.55 (m, 2H), 7.43–7.39 (m, 2H), 7.34–7.31 (m, 3H), 7.01 (br s, 1H), 4.66–4.59 (m, 1H), 3.57–3.44 (m, 2H), 3.47 (dd, *J* = 13.6, 6.8 Hz, 1H), 2.80 (t, *J* = 7.3 Hz, 2H), 2.41 (s, 3H), 2.22 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.16 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.57, 162.50, 162.15, 146.72, 139.50, 138.47, 130.13, 129.97, 127.83, 127.59, 126.43, 126.31, 125.99, 48.75, 45.61, 38.39, 29.39, 19.92, 19.74, 19.16, 15.77; HRMS Calcd for C₂₅H₃₂N₂NaO₄ [M+Na⁺]: 447.2260; Found: 447.2256.

Yellow oil; Yield (56%, 67.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.8 Hz, 2H), 7.37–7.28 (m, 3H), 7.10 (s, 1H), 6.98 (br s, 1H), 4.81–4.75 (m, 1H), 3.56–3.48 (m, 3H), 3.07 (s, 2H), 2.43 (s, 3H), 2.18 (s, 3H), 1.43 (d, *J* = 6.8 Hz, 6H), 1.22 (d, *J* = 6.7 Hz, 6H), 0.97 (d, *J* = 3.0 Hz, 21H); ¹³C NMR (101 MHz, CDCl₃) δ 169.66, 163.35, 162.90, 147.60, 143.42, 140.54, 133.64, 131.38, 130.72, 129.51, 127.96, 127.35, 121.26, 103.74, 98.70, 49.57, 46.64, 39.05, 29.36, 21.03, 20.71, 20.19, 18.68, 16.89, 11.33; HRMS Calcd for C₃₆H₅₂N₂NaO₄Si [M+Na⁺]: 627.3594; Found: 627.3597.

8. Scale up and removal of directing group

A mixture of **1a** (1 mmol, 306.4 mg), 2 (3 mmol, 3.0 eq), $Pd(OAc)_2$ (22.4 mg, 10 mol%), AgOAc (250 mg, 1.5 mmol, 1.5 eq), norbornene (94 mg, 1 mmol, 1.0 eq), 1-AdCO₂H (90 mg, 0.5 mmol, 0.05 eq) and 5 mL mesitylene in a 15 mL glass vial was heated at 100 °C with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated in vacuo and purified by column chromatography on silica gel to give product **3a**.

The compound **3a** (76.5 mg, 0.2 mmol) was dissolved in a mixture of MeOH/THF (0.2 mL /0.8 mL), NaOH (48 mg, 0.12 mmol, 6 eq) was then added. The mixture was heated to 100 $^{\circ}$ C and stirred for 12 hours. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (Methanol/DCM = 1:20) to give the desired product **9** as white solid in 38.1 mg, 84% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.56–7.54 (m, 2H), 7.45–7.39 (m, 4H), 7.32–7.27 (m, 1H), 6.93 (d, J = 8.4 Hz, 1H), 3.86 (s, 3H), 2.98 (t, J = 6.9 Hz, 2H), 2.84 (t, J = 6.9 Hz, 2H), 2.03 (br s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.39, 140.97, 133.60, 129.50, 128.82, 128.37, 126.87, 126.75, 126.19, 110.78, 55.57, 42.20, 34.83; HRMS Calcd for C₁₅H₁₈NO [M+H⁺]: 228.1388; Found: 228.1381.

9. Deuteration experiment

A: Deuteration study

Procedure for A:

a) A mixture of compound **1a** (0.2 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AcOD (4 mmol, 20.0 eq) and mesitylene (1 mL) was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:10) to give the deuterated product **7**.

b) A mixture of compound **1a** (0.2 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AcOD (4 mmol, 20.0 eq), norbornene (18.8 mg, 1.0 eq) and mesitylene (1 mL) was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:10) to give the product.

c) A mixture of compound **1a** (0.2 mmol), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AcOD (4 mmol, 20.0 eq), AgOAc (50 mg, 1.5 eq), norbornene (18.8 mg, 1.0 eq) and mesitylene (1 mL) was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:10) to give the product.

Procedure for B:

A mixture of compound **7** (0.2 mmol, 1.0 eq), **2m** (0.6 mmol, 3.0 eq), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AgOAc (50 mg, 1.5 eq), norbornene (18.8 mg, 1.0 eq), 1-AdCO₂H (18 mg, 0.5 eq) and mesitylene (1 mL) was heated at 100 °C for 4 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:3) to give the product. Procedure for C:

A mixture of compound **1a** (0.2 mmol, 1.0 eq), **2m** (0.6 mmol, 3.0 eq), $Pd(OAc)_2$ (4.5 mg, 10 mol%), AgOAc (50 mg, 1.5 eq), norbornene (18.8 mg, 1.0 eq), 1-AdCO₂H (18 mg, 0.5 eq), AcOD (from 2.0 eq to 10.0 eq) and mesitylene (1 mL) was heated at 100 °C for 24 hours. The reaction mixture was cooled to room temperature, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (Ethyl acetate/Petroleum ether = 1:3) to give the product **[D]-3m**.

Plausible catalytic cycle for meta arylation

S30

10. References

- [1] G. Xu, S. R. Gilbertson, Org. Lett. 2005, 7, 4605.
- [2] J. Han, P. Liu, Wang, Q. Wang, J.-Y. Zhang, Y. Zhao, D.-Q, Shi, Z.-B. Huang, Y.-S. Zhao, Org. Lett. 2014, 16, 5682
- [3] M.-Y. Guan, C.-P. Chen, J.-Y. Zhang, R.-S. Zeng, Y.-S. Zhao, Chem. Commun. 2015, 51, 12103.
- [4] C. Wang, C.-P. Chen, J.-Y. Zhang, J. Han,; Q. Wang, K. Guo, P. Liu, M.-Y. Guan, Y.-M. Yao, Y.-S. Zhao, Angew. Chem., Int. Ed. 2014, 53, 9884.

11. The structure determination of 3a, 3g, 3k, 3m, 4g, 4j and 5 according to HMBC spectrum

S36

12. ¹H and ¹³C NMR spectra

S83

