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1. Materials and methods

All reagents were commercially available and used as supplied without further 

purification. Compound CBPQT4+·4Cl− H, M and G were synthesized according 

to literature procedures.S1,S2 Solvents were either employed as purchased or dried 

according to procedures described in the literature. 1H NMR and 13C NMR spectra 

were recorded on a Bruker Avance DMX 400 spectrophotomete. The 2D NOESY 

NMR spectrum was recorded on a Bruker Avance DMX 400 spectrophotometer 

with TMS as the internal reference. UV-vis spectroscopy was performed on a 

Shimadzu UV-2550 instrument at room temperature. Dynamic light scattering 

measurements were performed on a Nano-ZS ZEN3600 instrument. 
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2. 2D COSY NMR and HMBC spectra of Htrans-M, cis-M and Hcis-M.

Fig. S1 Partial 2D 1H-1H COSY spectrum (400 MHz, D2O, 298 K) of Htrans-M.

Fig. S2 Partial HMBC spectrum (400 MHz, D2O, 298 K) of Htrans-M.
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Fig. S3 Partial 2D 1H-1H COSY spectrum (400 MHz, D2O, 298 K) of cis-M.

Fig. S4 Partial HMBC spectrum (400 MHz, D2O, 298 K) of cis-M.
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Fig. S5 Partial 2D 1H-1H COSY spectrum (400 MHz, D2O, 298 K) of Hcis-M.

3. 2D NOESY NMR spectrum of Hcis-M

Fig. S6. Partial NOESY NMR spectrum (500 MHz, D2O, room temperature) of Hcis-M 
(10.0 mM).
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4. Stoichiometry determination for the complexation between H and M

Fig. S7 Mole ratio plot for the complexation between H and trans-G, indicating a 1:1 binding 
stoichiometry.
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5. ITC investigations of host−guest complexation between H and trans-M (or cis-M)

Fig. S8. Microcalorimetric titration of trans-M (2.00 mM, 10 µL per injection) with H (0.100 
mM) in water at 298.15 K.
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Fig. S9. Microcalorimetric titration of cis-M (2.00 mM, 10 µL per injection) with H (0.100 
mM) in water at 298.15 K.
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Table S1. Association constants (Ka), enthalpy changes (∆H°) and entropy changes (∆S°) 
obtained from ITC experiments for the 1:1 complexes of H with trans-M and cis-M.a

Ka (M−1) ∆H (J/mol) ∆S (J/mol/deg)

trans-M (1.07 ± 0.14)E6 –(1.28 ± 0.17)E4 73.1

cis-M (2.51 ± 0.25)E5 –(1.56 ± 0.23)E4 51.3

a Microcalorimetric titration experiments were conducted in water at 298.15 K.

6. Critical aggregation concentration (CAC) determinations of Htrans-G

Fig. S10 The concentration-dependent conductivity of Htrans-G (H/trans-G = 1:4, molar 

ratio). The critical aggregation concentration (CAC) was determined to be 2.62 × 10−6 M 

(based on the concentration of G).
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7. Dynamic light scattering (DLS) results of G and Hcis-G
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Mean with +/-1 Standard Deviation error barFig. S11 DLS result of trans-G (5.00 × 10–5 M). The average diameter of the nanoparticles 

was determined to be 65 nm.
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to be 161 nm.

8. Atomic Force Microscope (AFM) image of nanosheets formed by Htrans-G 

Fig. S13 Atomic Force Microscope (AFM) image of nanosheets formed by Htrans-G. The 

thickness was measured to be 3.0 nm.
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9. Calculation of the transformation rate.

Fig. S14 1H NMR of trans-M after irradiation at 365 nm for 10 min.

The transformation rate (T) was calculated by the intergral (I) : T = Icis/(Icis + Itrans) = 1/(0.21 + 

1) = 83%.

Fig. S15 1H NMR of trans-M after irradiation at 365 nm for 10 min and further irradiation at 

435 nm for 1 h. 
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The transformation rate (T) was calculated by the intergral (I) : T = Itrans/(Icis + Itrans) = 1/(0.12 

+ 1) = 89%.

10. The measurement of the best molar ratio between H and G.

Fig. S16 DLS count rates of H and G at different charge ratios. The concentration of H was 

fixed at 1.25 × 10−5 M.
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11. The NMR and MS spectra for G and M guests.

Fig. S17 The 1H NMR spectrum (500 MHz, D2O, room temperature) of M.

Fig. S18 The 13C NMR spectrum (125 MHz, D2O, room temperature) of M.
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Fig. S19 Electrospray ionization mass spectrum of M. Assignment of main peaks: m/z 305.4 

[M − Na] –

Fig. S20 The 1H NMR spectrum (400 MHz, DMSO-d6, room temperature) of G.
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Fig. S21 The 13C NMR spectrum (100 MHz, DMSO-d6, room temperature) of G.

Fig. S22 Electrospray ionization mass spectrum of G. Assignment of main peaks: m/z 417.5 

[M − Na] –.

12. References:

S1. B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and D. 

J. Williams, Angew. Chem. Int. Ed., 1988, 27, 1547–1550.

S2.  J. Yang, L. Shao and G. Yu, Chem. Commun., 2016, 52, 3211–3214.


