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EXPERIMENTAL SECTION 25 

Chemicals. All reagents were purchased commercially and used without further purification. 26 

All chemicals, such as terephthalic acid (HOOCC6H4COOH, 99 %), 2-amino terephthalic acid 27 

(HO2C-C6H3NH2-CO2H), N,N-dimethylformamide ((CH3)2NCHO), aluminum chloride 28 

hexahydrate (AlCl3·6H2O), aluminum nitrate nonahydrate (Al(NO3)3·9H2O), aqueous hydrofluoric 29 

acid (HF, 40 %) , ethanol amine, ferric nitrate (Fe(NO3)3·9H2O), hydrochloric acid (HCl, 35 30 

wt. %), ethanol, benzene (C6H6, 99.5%), acetonitrile (MeCN, 99% ), hydrogen peroxide (H2O2, 31 

30%) and dichloromethane (CH2Cl2, 99.5%) were of analytical grade and were purchased from 32 

Sinopharm chemical Reagent Co, China. All experiment solutions were prepared from deionized 33 

water manufactured by a self-made RO-EDI system, in which ion concentration was analyzed and 34 

controlled by IRIS Intrepid ICP and Metrohm 861Compact IC. 35 

Synthesis of NH2-MIL-101(Al). The NH2-MIL-101(Al) was synthesized by means of a 36 

solvothermal treatment involving N, N-dimethylformamide (DMF) as solvent. Starting reactants 37 

were aluminum chloride hexahydrate, 2-amino terephthalic acid and N, N-dimethylformamide. 38 

The reactants were placed into a 50 mL Teflon-lined autoclave and heated for 72 h at 403 K in an 39 

oven under static conditions. The resulting yellow powders were isolated under centrifugation and 40 

washed with acetone. To remove organic species trapped within the pores, the samples were 41 

stirred in methanol overnight and dried at 353 K after washed by methanol for several times.  42 

Synthesis of NH2-MIL-53(Al). In a typical synthesis, aluminum chloride hexahydrate and 43 

2-amino terephthalic acid were dissolved in a certain amount of N,N-dimethylformamide, while 44 

the volume of solvent was kept constant at 30 mL. The mixture was introduced into a 50 mL 45 

Teflon-lined steel autoclave and placed in an oven at 423 K for 24h under static conditions. After 46 
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cooling down, the yellow solid products were isolated by centrifugation. Then the products were 47 

activated in DMF for 5h in a Teflon-lined steel autoclave in order to remove the remaining water 48 

molecules or unreacted ligands trapped in the pores. Finally, the product was isolated by repeated 49 

centrifugation and washed with dimethyl ketone for 3 times. The resulting solids were all white 50 

and dried overnight at 353 K. 51 

Synthesis of MIL-53(Al). The synthesis was carried out under mild hydrothermal conditions 52 

using aluminum nitrate nonahydrate, 1,4-benzenedicarboxylic acid and deionized water. The 53 

reaction was performed in Teflon-lined stainless steel under autogenous pressure for 3 days at 493 54 

K. The molar composition of the starting gels was 1 Al (1.30 g): 0.5 BDC (0.288 g): 80 H2O. The 55 

white product was centrifugated and cleaned with deionized water and dried at 353 K. 56 

Synthesis of CFH@Al-MOFs. In a typical synthesis, NH2- MIL-101(Al), NH2-MIL-53(Al) or 57 

MIL-53(Al) was activated at 353 K under vacuum, and 1 g of which was dispersed on glass plate. 58 

The deionized water solution containing Fe(NO3)3 (0.007 mol L
-1

) and a certain amount of critic 59 

acid (The molar composition of the starting gels was 1 Fe
3+

: 1.5 CA) were sprayed on the 60 

Al-MOFs under certain temperature. The obtained powders were washed with distilled water for 61 

three times and dried under 353 K to acquire CFH@NH2-MIL-101(Al). Then the as-synthesized 62 

samples were treated in a stream of air at 473 K for 4h to yield the CFH@NH2-MIL-101(Al), 63 

CFH@NH2-MIL-53(Al) and CFH@MIL-53(Al) subsequently. 64 

Synthesis of FH@Al-MOFs. The pathway used to fabricate FH@MOFs was similar to the 65 

synthesis of CFH@Al-MOFs but without CA in the sparing solution. The final samples were 66 

marked as FH@ MIL-53(Al), FH@NH2-MIL-53(Al) and FH@MIL-53(Al), respectively. 67 

Synthesis of CFH@ P25, Clay, and meso NH2-SiO2 sphere. The route used to fabricate 68 
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CFH@ P25, Clay, and meso NH2-SiO2 is similar to the synthesis of CFH@Al-MOFs. 69 

Characterization. The surface morphology of the prepared samples was evaluated by Hitachi 70 

JEM-1200EX transmission electron microscopy (Hitachi, Japan) and JEM-2100 transmission 71 

electron microscopy (Jeol, Japan) and Tecnai G2 F30 S-Twin high resolution transmission electron 72 

microscopy (Philips-FEI, Holland). Fourier Transform Infrared (FTIR) spectrophotometers of the 73 

samples were recorded by the KBr disk technique with Nicole 6700 Fourier transform infrared 74 

spectrometer (Thermo, USA). The X-ray diffraction (XRD) of the nanocomposites was 75 

determined by X’Pert PRO X-ray diffractometer (PNAlytical, Cu Kα radiation). Nitrogen 76 

adsorption-desorption isotherms were obtained by an ASAP 2020 surface area and porosity 77 

analyzer (Micromeritics, USA) at 77 K. Energy dispersive spectroscopy (Hitachi, S-3700N, Japan) 78 

was taken for the composition detection of different samples. The X-ray photoelectron 79 

spectroscopy (XPS) experiments were carried out on a RBD upgraded PHI-5000C ESCA system 80 

(Perkin Elmer) with Mg K radiation (h=1253.6eV), and binding energies were calibrated by 81 

using the containment carbon (C1s=284.6eV). The compositional analysis of catalysts was 82 

performed by ICP-AES in an Optima 2000 instrument (PerkinElmer, USA) after the samples 83 

microwave digestion in acid solution. 84 

Catalytic experiments. The generation of ·OH radicals was analyzed by the direct 85 

hydroxylation of benzene to phenol. The experiments were initiated by adding 6 mL MeCN, 4.0 86 

mL H2O2, 1.8 mL benzene and 0.01 g prepared catalysts under visible light irradiation (200 W 87 

halogen lamp, emission wavelength: 350-450 nm) and stirred for 5 h at 333 K. 0.5 mL of 88 

suspension was sampled and filtered through microfiltration membrane to separate catalysts, and 89 

which was then extracted by CH2Cl2. The mixture was analyzed by HPLC (Shimadzu, GC2014). 90 
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 91 

Table S1 Corresponding EDS results of the different samples 92 

Sample Element  Atom % Element WT % 

CFH@MIL-53(Al) 

C-K 58.12 48.77 

O-K 36.15 40.40 

Al-K 5.73 10.80 

Fe-K 0.01 0.004 

CFH@NH2-MIL-53(Al) 

C-K 55.14 45.14 

O-K 37.75 41.17 

Al-K 6.79 12.40 

Fe-K 0.31 1.20 

CFH@NH2-MIL-101(Al) 

C-K 60.25 50.84 

O-K 34.78 39.09 

Al-K 4.65 8.81 

Fe-K 0.32 1.25 
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 107 

Table S2 Compositions of Fe nanoclusters for sample [Fe-O-C]@NH2-MOF 108 

Fe nanoclusters composition CFH@NH2-MIL-53 CFH@NH2-MIL-101 

Fe (wt. %) 0.550 1.66 

C (wt. %) 0.0868 0.260 

O (wt. %) 0.329 0.982 
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 129 

Table S3 Surface area, textural data and metal compositions for different samples. 130 

Sample SBET (m
3
/g)

a
 SLangmuir (m

3
/g)

b
 Vmeso(cm

3
/g)

c
 

Fe loaded 

(mg/g)
d
 

MIL-53(Al) 1008.1 1436.1 0.35 - 

CFH@MIL-53(Al) 920.7 1211.3 0.32 0.16 

NH2-MIL-53(Al) 961.7 1169.2 0.24 - 

CFH@NH2-MIL-53(Al) 601.2 839.2 0.19 5.50 

NH2-MIL-101(Al) 1240.4 1810.7 0.69 - 

CFH@NH2-MIL-101(Al) 960.8 1210.7 0.36 16.60 

a SBET is the BET specific surface area. 131 

b SLangmuir is the Langmuir specific surface area. 132 

c Vmeso is the specific mesopore volume obtained from the BJH cumulative specific adsorption volume of pores 133 

of 1.70-300.00 nm in diameter. 134 

d Analysis of ICP–MS. 135 
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 150 

 151 

 152 

Figure S1 Structure of NH2- MIL-101 (a), NH2- MIL-53 (b), and MIL-53 (c). 153 
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 177 

Figure S2 EDS analysis of Fe based nanoclusters 178 
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 195 

 196 

Figure S3 HRTEM images of CFH@MIL-53 (a); CFH@NH2-MIL-53 (b), and 197 

CFH@NH2-MIL-101 (c). 198 
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STEM HAADF Detector C-K N-K O-K

Fe-K Fe-LAl-K

 210 

(a) 211 

STEM HAADF Detector C-K N-K O-K

Fe-K Fe-LAl-K

 212 

(b) 213 

Figure S4 STEM-HAADF image of as synthesized [Fe-O-C]@NH2-MIL-53 (a) and 214 

[Fe-O-C]@NH2-MIL-101 (b), and TEM elemental mapping of C, N, Al, O and Fe. 215 
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 217 

 218 

Figure S5 XRD spectrum of the different samples. 219 
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 221 

 222 

Figure S6 Nitrogen adsorption/desorption isotherms and of different samples. 223 
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 225 
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Figure S7 XPS spectra of different samples. 227 
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 230 

Figure S8 Concentration of •OH radicals in the oxidation system with different catalysts. 231 

 232 

To better explore the influence of introduction of CA on activity of the catalysts, we also 233 

prepared FH@NH2-MIL-53 or NH2-MIL-101 and investigated their photocatalytic ability. After 234 

Fe-only loading treatment, an evident reduction in the production of ·OH was observed for these 235 

two samples. It was surprisingly found that the leaching content of Fe ions for both samples was 236 

over 0.60 mg·L
-1

, several times larger than that with CA adding. It well confirmed that the 237 

addition of CA can not only greatly improved catalytic activity for splitting of H2O2, but also 238 

provided strong binding force between metallic site and free amine moiety on Al-based MOFs. 239 
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Figure S9 Concentration of ·OH with different conditions and catalysts  249 

(L= visible light; H= H2O2). 250 
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 266 

Figure S10 Effect of the different supports decorated with Fe-C oxides NPs  267 

on the generation of ·OH. 268 
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 284 

Figure S11 UV−visible diffuse reflectance spectra of the different prepared samples. 285 
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 303 

Figure S12 Reusability of the CFH@MIL-53 (a) and CFH@MIL-101 (b) after subsequent 304 

reactions (concentration (blue for 5 h) and generation rate (black for 0.5 h and red for 5 h)  305 

of •OH radicals). 306 

 307 

During three catalytic runs, no significant loss in activity was presented for sample 308 

NH2-MIL-101 and NH2-MIL-53 after careful washings with methanol and drying (Fig. S12 ESI†). 309 

XRD and FTIR analysis reveals that the crystalline structure and surface properties of MOFs were 310 

not destroyed after photocatalytic splitting (Fig. S13 ESI†). TEM images also pointed out NPs 311 

uniformly deposited inside MOFs by multiple uses in catalysis, which demonstrates that the 312 

covalent bonding between amine groups and Fe-CA complex made catalysts intensely oppose 313 

photo-corrosion (Fig. S14 ESI†).  314 
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 322 

Figure S13 FTIR and XRD spectrums of the samples reused. 323 
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   338 

 339 

Figure S14 TEM investigations of the reused samples. 340 

RE-CFH@NH2-MIL-53(Al) RE-CFH@NH2-MIL-101(Al) 


