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1. Materials and characterization.
The ligand 1,3,5-benzenetrisbenzoic acid (H3BTB) was obtained from Ji’nan 

Henghua Company and used as received. All other reagents and solvents were 
commercially available and used without further purification. Nd(NO3)3•6H2O (87.6 
mg, 0.2 mmol), H3BTB (87.6 mg, 0.2 mmol) were dissolved in N,N’-
dimethylformamide (DMF, 20 mL) in a 25 mL Teflon-lined steel autoclave. The 
autoclave was sealed and placed in an oven at 120 oC for three days. The resulting 
crystals were collected by filtration and washed by DMF several times. The other 
MOFs were synthesized by the same procedure using the corresponding lanthanide 
nitrate. Powder X-ray diffraction (PXRD) patterns were performed using Cu Kα (λ = 
1.542 Å) radiation on an X’Pert PRO diffractometer and recorded in the range of 2θ = 
5−50 ° at room temperature. Thermogravimetric analysis (TGA) was carried out on a 
Netzsch TG209F3 instrument at a heating rate of 5 oC/min under a N2 atmosphere. 
Inductively coupled plasma spectroscopy (ICP) was performed on a Thermo IRIS 
Intrepid II XSP spectrometer. The scanning electron microscopy (SEM) images were 
obtained using a field-emission scanning electron microscopy (FE-SEM, Hitachi 
S4800). The temperature dependence of the emission spectra were observed on an 
Edinburgh Instrument F920 spectrometer with an external NIR laser of 808 nm. The 
slit width of emission spectra for the MOF samples is 2.0 nm, and the scan speed is 1 
nm/s.
2. Excited state calculation

The molecular geometry optimization and frequency analysis of H3BTB were 
performed using density functional theory (DFT) at the B3LYP/6-31+G(d,p) level,1 
and the optimized geometry was shown in Figure S1. Based on the optimized result, 
the energy of the lowest triplet excited state of the H3BTB were calculated to be 
2.8893 eV (23304 cm-1) by the time-dependent DFT approach.2 All calculations were 
performed using Gaussian 09 software.3

Fig. S1 The optimized geometry of free ligands H3BTB



3. Cytotoxicity, Imaging of Nd0.866Yb0.134BTB：
The MTT assay is an easy and reproducible colorimetric assay for evaluation of 

cell viability. In this study, rat pheochromocytoma (PC12) cells were incubated in 
Dulbecco’s Modified Eagle’s Medium (DMEM, Neuronbc) with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin (P/S, Boster) for 2-3 days in a 
humidified incubator (37 °C, 5% CO2). The cytotoxicity of Nd0.866Yb0.134BTB was 
evaluated by using standard MTT assay in a 96-well plate to assess the viability of 
cultured cells. After 24 h cell incubation in the humidified incubator, 
Nd0.866Yb0.134BTB with different concentrations (20, 50, 100, 150, and 200 μg/mL) 
were added to the wells and incubated with the PC 12 cells for another 24 h in the 
incubator. After that, 1× MTT solutions were added to each tested wells and 
incubated for 4 h. All media were removed, and 150 μL of dimethyl sulfoxide was 
added to the wells. The absorbance of each sample at 490 nm was measured using a 
microplate reader, and the morphologies of all cells were observed using an optical 
microscopy. The cell viability was calculated as the ratio of the absorbance of the 
sample well to that of the cell control and expressed as a percentage. All experiments 
were sextuplicated, and the results were averaged.

For imaging experiments, the cells (104 cells/mL) were seeded in a 24-well plate 
with a coverslip (0.17 mm in thickness) at the bottom of each well for 24 h incubation. 
Then 20 μg/mL Nd0.866Yb0.134BTB probes were added to the wells and incubated with 
the PC 12 cells for 6 h in the incubator. After that, cells were washed three times with 
1× phosphate buffered solution (PBS, pH = 7.4) and fixed with 4% paraformaldehyde 
for about 15 min at room temperature, followed by DAPI (1 μg/mL, Sigma-Aldrich) 
staining for 5 min to examine the effect of Nd0.866Yb0.134BTB on the nuclear DNA. 
Imaging of cells was carried out using a confocal laser scanning microscopes with a 
20× objective at room temperature in a two channel mode of bright-field and laser 
excitation wavelengths of 405 nm for DAPI.

Table S1. The molar ratio of the starting Nd/Yb salt and that in the synthesized 
product calculated by ICP analysis

sample The molar ratio of the starting 
Nd/Yb salt

The Nd/Yb ratios calculated by 
ICP analysis

Nd0.866Yb0.134BTB 0.90:0.10 0.866:0.134
Nd0.811Yb0.189BTB 0.80:0.20 0.811:0.189
Nd0.568Yb0.432BTB 0.60:0.40 0.568:0.432
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Fig. S2 PXRD patterns of the MOF NdBTB, YbBTB and Nd0.866Yb0.134BTB. 
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Fig. S3 TGA curve of YbBTB.
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Fig. S4 FTIR spectra of NdBTB, YbBTB, Nd0.866Yb0.134BTB.

Fig. S5 SEM image of Nd0.866Yb0.134BTB.
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Fig. S6 Excitation and emission spectra of the ligand H3BTB.
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Fig. S7 Emission spectra of NdBTB (a) and Nd0.866Yb0.134BTB (b) at room 
temperature excited at 808 nm



Fig. S8 (a) Schematic energy-level diagrams of Nd3+ and Yb3+. (b) Illustration of 
energy transfer process from Nd3+ to Yb3+ in Nd0.866Yb0.134BTB (excited at 808 nm). 
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Fig. S9 (a) Emission spectra of NdBTB recorded between 303 and 333 K excited at 

808 nm; (b) Temperature-dependent intensity of the 4F3/2→4I11/2 transition of NdBTB.
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Fig. S10 The normalized intensity ratio of Nd3+ (1060 nm) to Yb3+ (980 nm) for 
Nd0.866Yb0.134BTB in cycles of heating and cooling.
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Fig. S11 Emission spectra of (a) Nd0.568Yb0.432BTB and (b) Nd0.811Yb0.189BTB 
recorded between 303 and 333 K excited at 808 nm; (c) Temperature-dependent 

intensity ratio of Nd3+ (1060 nm) to Yb3+ (980 nm) and the fitted curve for 
Nd0.568Yb0.432BTB and Nd0.811Yb0.189BTB (excited at 808 nm).
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Fig. S12 PXRD patterns of Nd0.866Yb0.134BTB and Nd0.866Yb0.134BTB immersed in 

H2O for 2 h.
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