## **Supplementary Materials**

# Tandem Rh-Catalysis: Decarboxylative $\beta$ -Keto Acid and Alkyne Cross-Coupling

Faben A. Cruz, Zhiwei Chen, Sarah I. Kurtoic, Vy M. Dong\*

Department of Chemistry, University of California Irvine, California 92697-2025 (USA)

\*To whom correspondence should be addressed at e-mail: dongv@uci.edu

| of Contents:                                     | Page                                                                                                                                              |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials and Methods                            | 2                                                                                                                                                 |
| Ketone Synthesis                                 | 3                                                                                                                                                 |
| Substrate Preparation                            | 13                                                                                                                                                |
| Mechanistic Experiments                          | 16                                                                                                                                                |
| Enantioselective Alkyne and β-keto acid Coupling | 17                                                                                                                                                |
| NMR Spectra                                      | 18                                                                                                                                                |
|                                                  | Materials and Methods<br>Ketone Synthesis<br>Substrate Preparation<br>Mechanistic Experiments<br>Enantioselective Alkyne and β-keto acid Coupling |

## 1. Materials and Methods

All reactions were run in oven-dried or flame-dried glassware under an atmosphere of  $N_2$ . Tetrahydrofuran, dichloromethane, toluene and diethyl ether were purified using an Innovative Technologies Pure Solv system, degassed by three freeze-pump-thaw cycles, and stored over 3A MS within an N<sub>2</sub> filled glove box. 1,4-Dioxane, 1,2dimethoxyethane and dimethylsulfoxide were refluxed with CaH<sub>2</sub> and distilled prior to use. The molarity of organolithium reagents was determined by titration with iso-propanol/1,10-phenanthroline. Reactions were monitored either via gas chromatography using an Agilent Technologies 7890A GC system equipped with an Agilent Technologies 5975C inert XL EI/CI MSD or by analytical thin-layer chromatography on EMD Silica Gel 60 F254 plates. Visualization of the developed plates was performed under UV light (254 nm) or using either KMnO4 or p-anisaldehyde stain. Column chromatography was performed with Silicycle Silia-P Flash Silica Gel using glass columns. Automated column chromatography was performed using either a Biotage SP1 or Teledyne Isco CombiFlash Rf 200 purification system. <sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectra were recorded on a Bruker DRX-400 (400 MHz <sup>1</sup>H, 100 MHz <sup>13</sup>C, 376.5 MHz <sup>19</sup>F), GN-500 (500 MHz <sup>1</sup>H, 125.7 MHz <sup>13</sup>C) or CRYO-500 (500 MHz <sup>1</sup>H, 125.7 MHz <sup>13</sup>C) spectrometer. <sup>1</sup>H NMR spectra were internally referenced to the residual solvent signal or TMS. <sup>13</sup>C NMR spectra were internally referenced to the residual solvent signal. Data for <sup>1</sup>H NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). Infrared spectra were obtained on a Thermo Scientific Nicolet iS5 FT-IR spectrometer equipped with an iD5 ATR accessory. High resolution mass spectra (HRMS) was performed by the University of California, Irvine Mass Spectrometry Center.

#### 2. Ketone Synthesis

General Procedure for Alkyne and  $\beta$ -keto acid Coupling

$$\begin{array}{c} 0 \\ R_1 \\ \end{array} \\ O \\ OH \end{array} + \begin{array}{c} R_2 \\ \end{array} \\ R_2 \\ \end{array} \\ \begin{array}{c} 4\% \ [Rh(cod)Cl]_2 \\ 8\% \ DPEphos \\ \hline 2-MeTHF \ (0.5 \ M) \\ 60 \ ^{\circ}C \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_2 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \hline 3 \\ \end{array} \\ \begin{array}{c} 0 \\ R_1 \\ \end{array} \\ \\ \begin{array}{c} 0 \\ R_1 \\ \end{array} \\ \\ \begin{array}{c} 0 \\ R_1 \\ \end{array} \\ \end{array}$$

To a 1 dram vial equipped with a magnetic stir bar was added  $[Rh(cod)Cl]_2$  (3.9 mg, 0.008 mmol), DPEphos (8.6 mg, 0.016 mmol),  $\beta$ -keto acid (0.40 mmol), alkyne (0.20 mmol), and 2-MeTHF (0.40 mL). In some cases, benzoic acid was added (12.2 mg, 0.10 mmol). The vial was then sealed with a Teflon-lined screw cap and heated to 60 °C for 24 hours. The resulting mixture was then cooled to room temperature. Chemo- and regioselectivities were determined by analysis of the crude reaction mixture by <sup>1</sup>H NMR spectroscopy. Ketone products were isolated by flash column chromatography or preparatory TLC.

#### 1,3-diphenylpent-4-en-1-one (Figure 1, 3a)

The title compound was synthesized according to the general procedure using [Rh(cod)Cl]<sub>2</sub> (2.0 mg, 0.004 mmol, 4 mol%), DPEphos (4.3 mg, 0.008 mmol, 8 mol%), benzoylacetic acid (32.8 mg, 0.2 mmol, 2 equiv), 1-phenyl-1-propyne (12.5  $\mu$ L, 0.1 mmol, 1 equiv) and 2-MeTHF (200  $\mu$ L, 0.5 M). After stirring at 60 °C for 7 hours, the yield was determined by GC-FID analysis using 1,3,5-trimethoxybenzene as an internal standard and branched to linear selectivity was determined by <sup>1</sup>H NMR analysis of the crude reaction mixture (97% yield, >20:1 branched:linear). <sup>1</sup>H NMR (400 MHz, CDCl3)  $\delta$  8.03 – 7.91 (m, 2H), 7.64 – 7.56 (m, 1H), 7.53 – 7.44 (m, 2H), 7.41 – 7.30 (m, 4H), 7.30 – 7.19 (m, 1H), 6.12 (ddd, *J* = 17.1, 10.4, 6.8 Hz, 1H), 5.12 (tt, *J* = 17.2, 1.3 Hz, 2H), 4.21 (q, *J* = 6.7 Hz, 1H), 3.47 (qd, *J* = 16.6, 7.1 Hz, 2H).

#### 5-phenylhept-6-en-3-one (Figure 2, 3b)

The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a yellow oil (33.8 mg, 90% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>1</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.27 (m, 2H), 7.22–7.18 (m, 3H), 5.97 (ddd, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.07–4.99 (m, 2H), 3.93 (q, *J* = 7.2 Hz, 1H), 2.89–2.76 (m, 2H), 2.44–2.25 (m, 2H), 0.98 (d, *J* = 14.6 Hz, 3H).

#### 2-methyl-5-phenylhept-6-en-3-one (Figure 2, 3c)

Ph

The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H MR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the

<sup>&</sup>lt;sup>1</sup> E. C. Burger, J. A. Tunge, *Org. Lett.*, 2004, **6**, 2603.

branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a yellow oil (32.4 mg, 80% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>2</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31–7.27 (m, 2H), 7.20 (t, *J* = 7.1 Hz, 3H), 5.98 (ddd, *J* = 17.1, 10.4, 6.8 Hz, 1H), 5.06–4.99 (m, 2H), 3.96 (q, *J* = 7.1 Hz, 1H), 2.93–2.81 (m, 2H), 2.50 (7, *J* = 6.9 Hz, 1H), 1.04 (d, *J* = 6.9 Hz, 3H), 0.98 (d, *J* = 6.9 Hz, 3H).

#### 2,2-dimethyl-5-phenylhept-6-en-3-one (Figure 2, 3d)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a yellow oil (36.5 mg, 85% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>3</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.31–7.27 (m, 2H), 7.21–7.17 (m, 3H), 5.98 (ddd, *J* = 17.1, 10.4, 6.8 Hz, 1H), 5.06–4.99 (m, 2H), 3.99 (q, *J* = 7.0 Hz, 1H), 2.96–2.84 (m, 2H), 1.05 (s, 9H).

#### 1,4-diphenylhex-5-en-2-one (Figure 2, 3e)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a yellow oil (30.6 mg, 61% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>4</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.26 (m, 5H), 7.25–7.18 (m, 1H), 7.16–7.13 (m, 2H), 7.11–7.09 (m, 2H), 5.93 (ddd, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.05–4.95 (m, 2H), 3.93 (q, *J* = 7.1 Hz, 1H), 3.60 (d, *J* = 1.3 Hz, 2H), 2.92–2.82 (m, 2H).

#### 4-phenyl-1-(phenylsulfonyl)hex-5-en-2-one (Figure 2, 3f)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a yellow oil (57.9 mg, 92% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71–7.62 (m, 3H), 7.52–7.48 (m, 2H), 7.34–7.30 (m, 2H), 7.27–7.21 (m, 3H), 5.97 (ddd, *J* = 17.2, 10.4, 6.8 Hz, 1H), 5.10–5.03 (m, 2H), 4.06 (q, *J* = 13.4 Hz, 2H), 3.89 (q, *J* = 7.1 Hz, 1H), 3.20 (qd, *J* = 17.6, 7.4 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.5, 142.2, 140.1, 138.3, 134.4, 129.4, 128.8, 128.4, 128.0, 127.0, 115.2, 67.4, 49.6, 44.2. IR (ATR): 3062, 1721, 1447, 1320, 1310, 1151, 1085, 912, 734, 686 cm<sup>-1</sup>. HRMS calculated for C<sub>18</sub>H<sub>18</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup> 337.0874, found 337.0881.

<sup>&</sup>lt;sup>2</sup> G. W. Daub, M. A. McCoy, M. G. Sanchez, J. S. Carter, *J. Org. Chem.*, 1983, 48, 3876.

<sup>&</sup>lt;sup>3</sup> T. Hirao, T. Fujii, Y. Oshiro, *Tetrahedron* 1994, **50**, 10207.

<sup>&</sup>lt;sup>4</sup> E. C. Burger, J. A. Tunge, *Chem. Commun.*, 2005, **22**, 2835.

#### 1-(4-chlorophenyl)-3-phenylpent-4-en-1-one (Figure 2, 3g)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a yellow oil (38.1 mg, 70% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 

7.87 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.34–7.30 (m, 2H), 7.28–7.20 (m, 3H), 6.06 (ddd, J = 17.2, 10.4, 6.8 Hz, 1H), 5.11–5.02 (m, 2H), 4.13 (q, J = 6.8 Hz, 1H), 3.38 (qd, J = 16.5, 7.7 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.3, 143.1, 140.7, 139.7, 135.6, 129.7, 129.1, 128.8, 127.9, 126.9, 115.0, 44.8, 44.2. IR (ATR): 3028, 1684, 1588, 1488, 1399, 1202, 1090, 987, 815, 699 cm<sup>-1</sup>. HRMS calculated for C<sub>17</sub>H<sub>19</sub>CINO [M+NH<sub>4</sub>]<sup>+</sup> 288.1155, found 288.1154.

#### 1-(4-bromophenyl)-3-phenylpent-4-en-1-one (Figure 2, 3h)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl

acetate in hexanes) as a colorless oil (47.6 mg, 76% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 8.7 Hz, 2H), 7.64 (d, *J* = 8.9 Hz, 2H), 7.38–7.35 (m, 2H), 7.32–7.25 (m, 3H), 6.10 (ddd, *J* = 17.2, 10.4, 6.7 Hz, 1H), 5.15–5.08 (m, 2H), 4.18 (q, *J* = 6.9 Hz, 1H), 3.42 (qd, *J* = 16.5, 7.6 Hz, 2H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 143.1, 140.7, 136.0, 132.1, 130.0, 128.8, 128.4, 127.9, 126.8, 115.0, 44.7, 44.2. **IR** (ATR): 3028, 1685, 1568, 1484, 1396, 1201, 1070, 987, 811, 699 cm<sup>-1</sup>. **HRMS** calculated for C<sub>17</sub>H<sub>15</sub>BrONa [M+Na]<sup>+</sup> 337.0204, found 337.0211.

#### 1-(4-fluorophenyl)-3-phenylpent-4-en-1-one (Figure 2, 3i)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a colorless oil (46.4 mg, 91% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd,

J = 8.9, 5.4 Hz, 2H), 7.40–7.37 (m, 2H), 7.35–7.32 (m, 2H), 7.30–7.27 (m, 1H), 7.18 (t, J = 8.6 Hz, 2H), 6.13 (ddd, J = 17.2, 10.4, 6.9 Hz, 1H), 5.17–5.09 (m, 2H), 4.21 (q, J = 6.9 Hz, 1H), 3.45 (qd, J = 16.7, 7.6 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 165.9 (d, J = 253.9 Hz), 143.2, 140.8, 133.7 (d, J = 2.9 Hz), 130.9 (d, J = 9.0 Hz), 128.8, 127.9, 126.8, 115.8 (d, J = 21.6 Hz), 115.0, 44.8, 44.1. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -105.7. IR (ATR): 3028, 1683, 1596, 1505, 1408, 1232, 1155, 989, 829, 699 cm<sup>-1</sup>. HRMS calculated for C<sub>17</sub>H<sub>15</sub>FONa [M+Na]<sup>+</sup> 277.1005, found 277.0999.

#### 3-phenyl-1-(o-tolyl)pent-4-en-1-one (Figure 2, 3j)



The title compound was synthesized according to the general, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a yellow oil

(35.1 mg, 70% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>5</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56–7.54 (m, 1H), 7.34 (dd, J = 7.5, 1.3 Hz, 1H), 7.32–7.28 (m, 2H), 7.24–7.19 (m, 5H), 6.04 (ddd, J = 17.1, 10.3, 6.8 Hz, 1H), 5.09–5.02 (m, 2H), 4.08 (q, J = 7.1 Hz, 1H), 3.39–3.27 (m, 2H), 2.35 (s, 3H).

#### 3-phenyl-1-(4-(trifluoromethyl)phenyl)pent-4-en-1-one (Figure 2, 3k)



The title compound was synthesized according to the general, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (38.2 mg, 63% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, *J* = 8.2

Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.34–7.30 (m, 2H), 7.28–7.20 (m, 3H), 6.06 (ddd, J = 17.2, 10.4, 6.7 Hz, 1H), 5.12–5.03 (m, 2H), 4.14 (q, J = 6.8 Hz, 1H), 3.43 (qd, J = 16.7, 7.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 143.0, 140.54, 140.53, 139.9 (q, J = 0.9 Hz), 134.5 (q, J = 32.6 Hz), 128.9, 128.6, 127.9, 126.9, 125.9 (q, J = 3.8Hz), 115.2, 44.7, 44.5. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –63.5. IR (ATR): 3029, 1692, 1511, 1410, 1322, 1167, 1126, 1065, 846, 700 cm<sup>-1</sup>. HRMS calculated for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>O [M+H]<sup>+</sup> 305.1153, found 305.1153.

#### 1-(4-methoxyphenyl)-3-phenylpent-4-en-1-one (Figure 2, 3l)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a yellow oil (32.4 mg, 61% yield). The <sup>1</sup>H NMR spectrum is in

accordance with the literature.<sup>6</sup> <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.94–7.91 (m, 2H), 7.32–7.25 (m, 4H), 7.22–7.18 (m, 1H), 6.94–6.90 (m, 2H), 6.05 (ddd, *J* = 17.1, 10.4, 6.8 Hz, 1H), 5.08–5.00 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 1H), 3.86 (s, 3H), 3.35 (qd, *J* = 16.3, 7.1 Hz, 2H).

#### 1-(furan-2-yl)-3-phenylpent-4-en-1-one (Figure 2, 3m)

The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H
NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in

hexanes) as a colorless oil (40.7 mg, 90% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (s, 1H), 7.31–7.25 (m, 4H), 7.20 (t, J = 7.0 Hz, 1H), 7.15 (d, J = 3.2 Hz, 1H), 6.04 (ddd, J = 17.0, 10.2, 7.0 Hz, 1H), 5.08–5.04 (m, 2H), 4.11 (q, J = 6.8 Hz, 1H), 3.29 (dd, J = 15.7, 7.9 Hz, 1H), 3.21 (dd, J = 15.7, 6.6 Hz, 1H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  187.7, 153.1, 146.5, 143.0, 140.6, 128.7, 127.9, 126.8, 117.3, 115.0, 112.4, 44.7, 44.0. **IR** (ATR): 3028, 1671, 1567, 1466, 1393, 1268, 1156, 915, 759, 699 cm<sup>-1</sup>. **HRMS** calculated for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 249.0892, found 249.0895.

<sup>&</sup>lt;sup>5</sup> S. Chen, G. Lu, C. Cai, *Chem. Commun.*, 2015, **51**,11512.

<sup>&</sup>lt;sup>6</sup> H. He, X.-J. Zheng, Y. Li, L.-X. Dai, S.-L. You, Org. Lett., 2007, 9, 4339.

#### 3-phenyl-1-(thiophen-2-yl)pent-4-en-1-one (Figure 2, 3n)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a

colorless oil (43.2 mg, 89% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 3.9 Hz, 1H), 7.60 (d, J = 5.4 Hz, 1H), 7.32-7.25 (m, 4H), 7.20 (t, J = 6.9 Hz, 1H), 7.09 (t, J = 3.7 Hz, 1H), 6.05 (ddd, J = 17.0, 10.3, 6.8 Hz, 1H), 5.09-5.04 (m, 2H), 4.13 (q, J = 6.9 Hz, 1H), 3.36 (dd, J = 15.9, 7.8 Hz, 1H), 3.28 (dd, J = 15.9, 6.6 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 191.3, 144.7, 143.0, 140.5, 133.9, 132.0, 128.8, 128.3, 127.9, 126.8, 115.1, 45.0. **IR** (ATR): 3081, 3027, 1657, 1413, 1258, 1061, 916, 857, 723, 699 cm<sup>-1</sup>. **HRMS** calculated for  $C_{15}H_{14}OSNa [M+Na]^+$ 265.0663, found 265.0667.

#### 3-(3-fluorophenyl)-1-phenylpent-4-en-1-one (Figure 3, 3o)



The title compound was synthesized according to the general, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (15.8 mg, 68% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95–7.92 (m, 2H), 7.58–7.54 (m, 1H), 7.48-7.43 (m, 2H), 7.29-7.23 (m, 1H), 7.05 (dddd, J = 7.7, 1.6, 1.0, 0.5 Hz, 1H), 6.99-6.95 (m, 1H), 6.89 (tdd, J = 7.7, 1.6, 1.0, 0.5 Hz, 1H), 7.29-7.23 (m, 2H), 7.29-7.23 (m, 2H 8.4, 2.5, 0.9 Hz, 1H), 6.02 (ddd, J = 17.1, 10.4, 6.8 Hz, 1H), 5.11–5.03 (m, 2H), 4.15 (q, J = 6.9 Hz, 1H), 3.39 (qd, J = 14.5, 7.1 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -113.5. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ 198.0, 164.3, 161.9, 145.92, 145.85, 140.2, 137.1, 133.3, 130.19, 130.11, 128.8, 128.2, 123.61, 123.58, 115.4, 114.9, 114.7, 113.7, 113.5, 77.2, 44.3, 43.9. **HRMS** calculated for C17H19FON [M+NH<sub>4</sub>]<sup>+</sup> 272.1451, found 272.1449. **IR** (ATR): 3061, 2927, 1684, 1588, 1447, 1260, 1239, 988, 912, 784, 756, 732, 688 cm<sup>-1</sup>.

#### 3-(4-chlorophenyl)-1-phenylpent-4-en-1-one (Figure 3, 3p)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a colorless oil (40.6 mg, 75% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>7</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): § 7.91–7.89 (m, 2H), 7.56–7.52 (m, 1H), 7.46–7.41 (m, 2H), 7.27–7.23 (m,

3H), 7.19–7.16 (m, 2H), 6.00 (ddd, J = 17.1, 10.4, 6.7 Hz, 1H), 5.09–4.99 (m, 2H), 4.11 (q, J = 6.9 Hz, 1H), 3.36 (qd, J = 15.3, 7.1 Hz, 2H).

<sup>&</sup>lt;sup>7</sup> S. Chen, G. Lu, C. Cai, *Chem. Commun.*, 2015, **51**,11512.

#### 3-(4-bromophenyl)-1-phenypent-4-en-1-one (Figure 3, 3q)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a colorless oil (38.5 mg, 57% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93–7.91 (m, 2H), 7.58–7.54 (m, 1H), 7.47–7.40 (m, 4H), 7.16–7.12 (m, 2H), 6.01 (ddd, *J* = 17.1, 10.4, 6.7 Hz, 1H), 5.11–5.01

(m, 2H), 4.11 (q, J = 6.9 Hz, 1H), 3.38 (qd, J = 15.3, 7.1 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 142.3, 140.3, 137.1, 133.3, 131.8, 129.7, 128.8, 128.2, 120.5, 115.3, 77.2, 43.99, 43.90. HRMS calculated for C<sub>1</sub>7H<sub>16</sub>BrO [M+H]<sup>+</sup> 315.0396, found 315.0385. **IR** (ATR): 1683, 1487, 1010, 989, 908, 823, 750, 729, 688, 648 cm<sup>-1</sup>.

#### 1-phenyl-3-(4-trifluoromethyl-phenyl)pent-4-en-1-one (Figure 3, 3r)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a colorless oil (49.4 mg, 81% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>8</sup> <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>):  $\delta$  7.95–7.92 (m, 2H), 7.58–7.54 (m, 3H), 7.48–7.38 (m, 4H), 6.04 (ddd, *J* =

 $17.1,\,10.4,\,6.7~\text{Hz},\,1\text{H}),\,5.14\text{--}5.04~(\text{m},\,2\text{H}),\,4.25\text{--}4.20~(\text{m},\,1\text{H}),\,3.50\text{--}3.37~(\text{m},\,2\text{H}).$ 

#### 3-(4-methoxyphenyl)-1-phenylpent-4-en-1-one (Figure 3, 3s)



The title compound was synthesized according to the general, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a colorless oil (29.0 mg, 55% yield). The <sup>1</sup>H NMR spectrum is in accordance with the literature.<sup>9</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.94–7.92 (m, 2H), 7.57–7.53 (m, 1H), 7.46–7.43 (m, 2H), 7.19–7.16 (m,

2H), 6.87–6.83 (m, 2H), 6.04 (ddd, *J* = 17.1, 10.4, 6.7 Hz, 1H), 5.07–4.99 (m, 2H), 4.10 (q, *J* = 7.0 Hz, 1H), 3.78 (s, 3H), 3.37 (qd, *J* = 14.9, 7.2 Hz, 2H).

#### 4-(2-oxo-2-phenylethyl\_hex-5-en-1-yl 4-methylbenzenesulfonate (Figure 3, 3t)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (20% ethyl acetate in

hexanes) as a yellow oil (60.4 mg, 85% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): δ 7.93–7.90 (m, 2H), 7.79–7.76 (m, 2H), 7.58–7.54 (m, 1H), 7.48–7.43 (m, 2H), 7.33 (dd, *J* = 8.6, 0.6 Hz, 2H), 5.64–5.55 (m, 1H), 4.99 (s, 1H), 4.96 (ddd, *J* = 6.5, 1.6, 0.8 Hz, 1H), 4.06–3.97 (m, 2H), 2.94 (qd, *J* = 14.6, 6.8 Hz, 2H), 2.73–2.64 (m, 1H), 2.43 (s, 3H), 1.78–1.66 (m, 1H), 1.65–1.59 (m, 1H), 1.57–1.44 (m, 1H), 1.41–1.30 (m, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>): δ

<sup>&</sup>lt;sup>8</sup> T. Graening, J. F. Hartwig, J. Am. Chem. Soc., 2005, **127**, 17192.

<sup>&</sup>lt;sup>9</sup> T. Graening, J. F. Hartwig, J. Am. Chem. Soc., 2005, **127**, 17192.

198.9, 144.8, 140.7, 137.3, 133.3, 133.2, 130.0, 128.8, 128.2, 128.03, 115.8, 70.7, 43.9, 39.3, 30.4, 26.8, 21.8. **HRMS** calculated for  $C_{21}H_{24}O_4SNa$  [M+Na]<sup>+</sup> 395.1293, found 395.1282. **IR** (ATR): 1682, 1355, 1174, 913, 813, 689, 661 cm<sup>-1</sup>.

#### 6-((*tert*-butyldimethylsilyl)oxy)-1-phenyl-3-vinylhexan-1-one (Figure 3, 3u)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (2% ethyl acetate in hexanes) as a yellow oil (38.5 mg, 58% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (dd, *J* = 7.2, 1.1 Hz, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 5.72–5.63 (m, 1H), 5.02–4.97 (m, 2H), 3.61–3.58 (m, 2H), 2.99–2.97 (m, 2H), 2.79–2.72 (m, 1H), 1.61–1.47 (m, 3H), 1.43–1.37 (m, 1H), 0.88 (s, 9H), 0.03 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.5, 141.5, 137.5, 133.0, 128.7, 128.2, 115.1, 63.2, 44.1, 39.7, 31.0, 30.5, 26.1, 18.5, -5.1. HRMS calculated for C<sub>20</sub>H<sub>33</sub>O<sub>2</sub>Si [M+H]<sup>+</sup> 333.2250, found 333.2257. IR (ATR): 2928, 2856, 1683, 1448, 1250, 1095, 914, 833, 774, 688 cm<sup>-1</sup>.

#### 6-hydroxy-1-phenyl-3-vinylhexan-1-one (Figure 3, 3v)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (40% ethyl acetate in hexanes) as a yellow oil (22.1 mg, 53% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95–7.92 (m, 2H), 7.58–7.54 (m, 1H), 7.46 (tt, *J* = 7.5, 1.4 Hz, 2H), 5.69 (ddd, *J* = 17.1, 10.3, 8.3 Hz, 1H), 5.05–4.99 (m, 2H), 3.66 (t, *J* = 6.1 Hz, 2H), 3.01 (dd, *J* = 6.8, 1.8 Hz, 2H), 2.78 (s, 1H), 1.72 (d, *J* = 17.3 Hz, 1H), 1.68–1.52 (m, 3H), 1.45–1.38 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.5, 141.3, 137.4, 133.2, 128.7, 128.2, 115.3, 62.8, 44.0, 39.2, 30.7, 30.2. HRMS calculated for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 241.1205, found 241.1197. **IR** (ATR): 3367, 2927, 1681, 1596, 1448, 1211, 1055, 1000, 914, 751, 688, 657 cm<sup>-1</sup>.

#### 2-(2-oxo-2-phenylethyl)but-3-en-1-yl benzoate (Figure 3, 3w)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in hexanes) as a yellow oil (30.1 mg, 51% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.01–7.94 (m, 4H), 7.58–7.53 (m, 2H), 7.47–7.40 (m, 4H), 5.89 (ddd, *J* = 17.3, 10.4, 7.5 Hz, 1H), 5.23–5.13 (m, 2H), 4.45–4.34 (m, 2H), 3.40–3.32 (m, 1H), 3.19 (qd, *J* = 18.5, 6.7 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  198.3, 166.5, 137.6, 137.1, 133.3, 133.1, 130.2, 129.7, 128.8, 128.5, 128.2, 117.0, 67.1, 40.2, 38.6. HRMS calculated for C<sub>19</sub>H<sub>19</sub>O<sub>3</sub> [M+H]<sup>+</sup> 295.1334, found 295.1324. IR (ATR): 1716, 1683, 1268, 1112, 752, 733, 710, 687 cm<sup>-1</sup>.

#### **3-((benzyloxy)methyl)-1-phenylpent-4-en-1-one** (Figure 3, **3x**)

OBn

The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (5% ethyl acetate in

hexanes) as a colorless oil (50.5 mg, 90% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.96–7.94 (m, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 7.34–7.25 (m, 5H), 5.85 (ddd, *J* = 17.4, 10.4, 7.4 Hz, 1H), 5.14–5.06 (m, 2H), 4.51 (s, 2H), 3.57–3.46 (m, 2H), 3.28 (dd, *J* = 16.2, 5.8 Hz, 1H), 3.20–3.11 (m, 1H), 3.00 (dd, *J* = 16.2, 7.3 Hz, 1H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.3, 138.7, 138.5, 137.4, 133.1, 128.7, 128.5, 128.3, 127.7, 123.0, 116.0, 73.2, 73.0, 40.4, 39.7. **HRMS** calculated for C<sub>19</sub>H<sub>21</sub>O<sub>2</sub> [M+H]<sup>+</sup> 281.1541, found 281.1537. **IR** (ATR): 1682, 1448, 1359, 1208, 1099, 1001, 915, 750, 689, 655 cm<sup>-1</sup>.

#### 2-(2-(2-oxo-2-phenylethyl)but-3-en-1-yl)isoindoline-1,3-dione (Figure 3, 3y)

The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (20% ethyl acetate in hexanes) as a white solid (33.0 mg, 52% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.91–7.89 (m, 2H), 7.82–7.79 (m, 2H), 7.72–7.67 (m, 2H), 7.56–7.52 (m, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 5.81–5.72 (m, 1H), 5.08–5.00 (m, 2H), 3.85–3.76 (m, 2H), 3.41–3.32 (m, 1H), 3.11 (d, *J* = 6.7 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  198.1, 168.5, 138.1, 137.1, 134.1, 133.2, 132.1, 128.7, 128.2, 123.4, 117.4, 41.8, 41.3, 39.0. HRMS calculated for C<sub>20</sub>H<sub>17</sub>NO<sub>3</sub>Na [M+Na]<sup>+</sup> 342.1106, found 342.1107. **IR** (ATR): 1771, 1707, 1392, 1357, 753, 723, 713, 689 cm<sup>-1</sup>.

#### Tert-butyl (4-(2-oxo-2-phenylethyl)hex-5-en-1-yl)(tosyl)carbamate (Figure 3, 3z)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (55.0 mg, 59% yield). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>):  $\delta$  7.95–7.93 (m, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 7.29–7.27 (m, 2H), 5.69 (ddd, *J* = 17.1, 10.3, 8.3 Hz, 1H), 5.05–5.00 (m, 2H), 3.84–3.79 (m, 2H), 3.00 (d, *J* = 6.8 Hz, 2H), 2.84–2.77 (m, 1H), 2.42 (s, 3H), 1.87–1.70 (m, 2H), 1.58–1.50 (m, 1H), 1.47–1.38 (m, 1H), 1.32 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.3, 151.1, 144.1, 141.0, 137.6, 137.4, 133.1, 129.3, 128.7, 128.2, 127.9, 115.6, 84.2, 47.2, 44.0, 39.5, 31.7, 28.0, 27.9, 21.7. HRMS calculated for C<sub>26</sub>H<sub>33</sub>NO<sub>5</sub>SNa [M+Na]<sup>+</sup> 494.1977, found 494.1985. **IR** (ATR): 1720, 1683, 1352, 1283, 1255, 1153, 1087, 914, 813, 753, 722, 689, 671, 597 cm<sup>-1</sup>.

#### 4-methyl-N-(4-(2-oxo-2-phenylethyl\_hex-5-en-1-yl)benzenesulfonamide (Figure 3, 3aa)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (20% ethyl

acetate in hexanes) as a yellow oil (60.6 mg, 82% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.92–7.89 (m, 2H), 7.75–7.73 (m, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 7.29–7.26 (m, 2H), 5.63–5.54 (m, 1H), 4.96–4.92 (m, 2H), 2.99–2.87 (m, 4H), 2.69–2.61 (m, 1H), 2.39 (s, 3H), 1.56–1.39 (m, 3H), 1.33–1.25 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.3, 143.4, 140.8, 137.19, 137.16, 133.2, 129.8, 128.7, 128.2, 127.2, 115.5, 43.9, 43.0, 38.8, 31.2, 27.1, 21.6. HRMS calculated for C<sub>21</sub>H<sub>25</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup> 394.1453, found 394.1449 IR (ATR): 1679, 1324, 1155, 1092, 911, 813, 730, 689, 660 cm<sup>-1</sup>.

#### 6-bromo-1-phenyl-3-vinylhexan-1-one (Figure 3, 3ab)

The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (20% ethyl acetate in hexanes) as a

colorless oil (34.5 mg, 61% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95–7.92 (m, 2H), 7.58–7.54 (m, 1H), 7.49–7.44 (m, 2H), 5.67 (ddd, J = 17.1, 10.3, 8.4 Hz, 1H), 5.06–5.01 (m, 2H), 3.45–3.35 (m, 2H), 3.07–2.94 (m, 2H), 2.83–2.74 (m, 1H), 1.97–1.80 (m, 2H), 1.69–1.60 (m, 1H), 1.53–1.43 (m, 1H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.1, 140.9, 137.3, 133.2, 128.8, 128.2, 115.7, 44.0, 39.2, 33.9, 33.2, 30.6. **HRMS** calculated for C<sub>14</sub>H<sub>18</sub>BrO [M+H]<sup>+</sup> 281.0541, found 281.0537. **IR** (ATR): 1682, 1447, 1210, 1000, 914, 751, 734, 688, 657 cm<sup>-1</sup>.

#### N-methoxy-N-methyl-4-(2-oxo-2-phenylethyl)hex-5-enamide (Figure 3, 3ac)



The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (30% ethyl acetate in hexanes) as a yellow oil (43.5 mg, 79% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.94–7.91 (m, 2H), 7.57–7.52 (m, 1H), 7.47–7.42 (m, 2H), 5.67 (ddd, *J* = 17.1, 10.3, 8.5

Hz, 1H), 5.06–5.00 (m, 2H), 3.66 (s, 3H), 3.15 (s, 3H), 3.02 (d, J = 6.7 Hz, 2H), 2.84–2.76 (m, 1H), 2.48–2.42 (m, 2H), 1.86 (dddd, J = 13.7, 9.6, 6.4, 4.3 Hz, 1H), 1.74-1.64 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  199.1, 140.8, 137.4, 133.1, 128.7, 128.2, 123.1, 115.9, 61.4, 44.1, 39.7, 29.9, 29.4. HRMS calculated for C<sub>16</sub>H<sub>21</sub>NO<sub>3</sub>Na [M+Na]<sup>+</sup> 298.1419, found 298.1417. **IR** (ATR): 1682, 1659, 1447, 1179, 994, 916, 752, 732, 690 cm<sup>-1</sup>.

## (8*R*,9*S*,13*S*,14*S*)-13-methyl-3-((2-(2-oxo-2-phenylethyl)but-3-en-1-yl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (Figure 3, 3ad)



The title compound was synthesized according to the general procedure, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (40.4 mg, 46% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.99–7.96 (m, 2H), 7.58–7.54 (m, 1H), 7.48–7.44 (m, 2H), 7.19–7.17 (m, 1H), 6.70 (dd, *J* = 8.6, 2.8 Hz,

1H), 6.63 (d, J = 2.6 Hz, 1H), 5.93 (ddd, J = 17.4, 10.3, 7.2 Hz, 1H), 5.20–5.11 (m, 2H), 4.06–4.02 (m, 1H), 3.95

(ddd, J = 9.3, 6.3, 3.2 Hz, 1H), 3.37 (dd, J = 16.0, 5.9 Hz, 1H), 3.33–3.28 (m, 1H), 3.10 (dd, J = 16.2, 6.7 Hz, 1H), 2.88–2.86 (m, 2H), 2.53–2.47 (m, 1H), 2.40–2.36 (m, 1H), 2.27–2.21 (m, 1H), 2.18–1.93 (m, 4H), 1.65–1.42 (m, 6H), 0.90 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  221.1, 198.9, 157.0, 138.1, 137.9, 137.3, 133.2, 132.3, 128.7, 128.3, 126.5, 116.5, 114.7, 112.3, 70.3, 50.6, 48.2, 44.1, 40.2, 39.1, 38.5, 36.0, 31.7, 29.8, 26.7, 26.1, 21.7, 14.0. **HRMS** calculated for C<sub>30</sub>H<sub>34</sub>O<sub>3</sub>Na [M+Na]<sup>+</sup> 465.2406, found 465.2416. **IR** (ATR): 2924, 1587, 2359, 1736, 1683, 1608, 1233, 1002, 917, 753, 689 cm<sup>-1</sup>.

#### 4-((2-(2-oxo-2-phenylethyl)but-3-en-1-yl)oxy)benzaldehyde (Figure 3, 3ae)



The title compound was synthesized according to the general procedure with benzoic acid, <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (20% ethyl acetate in hexanes) as a colorless oil (35.8 mg, 61% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.88 (s, 1H), 7.99–7.96 (m, 2H), 7.83–7.80

(m, 2H), 7.59–7.55 (m, 1H), 7.49–7.45 (m, 2H), 7.01–6.97 (m, 2H), 5.94 (ddd, J = 17.4, 10.4, 7.0 Hz, 1H), 5.23– 5.15 (m, 2H), 4.16–4.08 (m, 2H), 3.38–3.32 (m, 2H), 3.16 (q, J = 9.4 Hz, 1H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  198.6, 190.9, 163.9, 137.6, 137.1, 133.4, 132.1, 130.2, 128.8, 128.2, 123.0, 117.0, 115.0, 70.6, 39.9, 38.8. HRMS calculated for C<sub>19</sub>H<sub>18</sub>O<sub>3</sub>Na [M+Na]<sup>+</sup> 317.1154, found 317.1161. **IR** (ATR): 2926, 1682, 1597, 1576, 1500, 1252, 1213, 1157, 1001, 831, 752, 689, 648, 615 cm<sup>-1</sup>.

## 3. Substrate Preparation

## **Preparation of β-Keto Acids**



 $\beta$ -Keto acids **1a-1n** were prepared from the corresponding  $\beta$ -Keto esters according to literature procedure.<sup>10</sup>

## Preparation of Alkynes and 1-Phenylallene

Alkynes  $2a - d_3$  and 2o - 2s were prepared from the corresponding terminal alkyne according to literature procedure.<sup>11</sup> 1-Phenylallene was prepared from styrene according to literature procedure.<sup>12</sup>



<sup>&</sup>lt;sup>10</sup> D. A. Evans, S. Mito, D. Seidel, J. Am. Chem. Soc. 2007, **129**, 11583.

<sup>&</sup>lt;sup>11</sup> T. Fujihara, Y. Tani, K. Semba, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed., **2012**, *51*, 11487.

<sup>&</sup>lt;sup>12</sup> T. Kippo, T. Fukuyama, I. Ryu, *Org. Lett.*, **2011**, *13*, 11487.



Alkyne  $2u^{13}$  and  $2ab^{14}$  were prepared according to literature procedure from 2v. Alkyne 2v was prepared according to literature procedure from 5-hexyn-1-ol.<sup>15</sup> Alkyne  $2w^{16}$  and  $2x^{17}$  were prepared according to literature procedure from 2-butyn-1-ol. Alkyne 2ac was prepared according to literature procedure from hex-4-ynoic acid.<sup>18</sup> Alkyne 2ae was prepared according to literature procedure from 4-hydroxy benzaldehyde.<sup>19</sup>

Prepared according to literature procedure from alcohol 2v in 69% yield as a colorless oil.<sup>20</sup>

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.81–7.79 (m, 2H), 7.35–7.33 (m, 2H), 4.13 (t, *J* = 6.2 Hz, 2H), 2.45 (s, 3H), 2.18 (tq, *J* = 6.9, 2.4 Hz, 2H), 1.79 (quintet, *J* = 6.5 Hz, 2H), 1.68 (t, *J* = 2.6 Hz, 3H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  144.8, 133.2, 129.9, 128.1, 123.1, 76.9, 69.3, 28.3, 21.8, 15.1, 3.5. HRMS calculated for C<sub>13</sub>H<sub>16</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup> 275.0718, found 275.0713. **IR** (ATR): 1597, 1439, 1357,1173, 1096, 970, 927, 813, 661, 574 cm<sup>-1</sup>.



To a solution of alcohol 2v (500 mg, 5.1 mmol, 1.0 equiv.) in THF (20 mL, 0.3 M) at room temperature under nitrogen was added N-[(tert-butoxy)carbonyl]-4-methylbenzenesulfonamide (1.52 g, 5.6 mmol, 1.1 equiv.) and triphenyl phosphine (1.47 g, 5.6 mmol, 1.1 equiv.). The resulting mixture was cooled to 0° C. Diisopropyl azodicarboxylate was added at 0° C, then the reaction mixture was allowed to warm to room temperature. After

<sup>&</sup>lt;sup>13</sup> H. Guo, G. A. O'Doherty, *Org. Lett.*, 2005, **7**, 3921.

<sup>&</sup>lt;sup>14</sup> G. Zheng, S. P. Sumithran, A. G. Deaciuc, L. P. Dwoskin, P. A. Crooks, *Bioorg. Med. Chem. Lett.*, 2007, **24**, 6701.

<sup>&</sup>lt;sup>15</sup> S. Hoetline, B. Haberlag, M. Tamm, J. Collatz, P. Mack, J. L. M. Steidle, M. Venes, S. Schulz, *Chem. Eur. J.*, 2014, **11**, 3183.

<sup>&</sup>lt;sup>16</sup> F. R. Wuest, M. Berndt, J. Label Compd. Radiopharm., 2006, 49, 91.

<sup>&</sup>lt;sup>17</sup> K. Semba, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Eur. J.*, 2012, **14**, 4179.

<sup>&</sup>lt;sup>18</sup> H. Kusama, K. Ishida, H. Funami, N. Iwasawa, *Angew. Chem. Int. Ed.*, 2008, **26**, 4903.

<sup>&</sup>lt;sup>19</sup> K. Bera, S. Sarkar, S. Biswas, S. Maiti, U. Jana, *J. Org. Chem.*, 2011, **9**, 3539.

<sup>&</sup>lt;sup>20</sup> F. Fang, M. Vogel, J. V. Hines, S. C. Bergmeier, *Org. Biomol. Chem.*, 2012, **10**, 3080.

stirring for 24 hours at room temperature, the crude reaction mixture was concentrated *in vacuo*. The resulting residue was purified by column chromatography using 30% ethyl acetate in hexanes to yield 2z as a white solid (1.5 g, 4.3 mmol, 84% yield). <sup>1</sup>**H NMR** (400 MHz; CDCl<sub>3</sub>):  $\delta$  7.78–7.75 (m, 2H), 7.29–7.27 (m, 2H), 3.88 (dd, *J* = 8.2, 6.8 Hz, 2H), 2.42 (s, 3H), 2.19 (tq, *J* = 7.1, 2.5 Hz, 2H), 1.91 (quintet, *J* = 7.4 Hz, 2H), 1.75 (t, *J* = 2.5 Hz, 3H), 1.33 (s, 9H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>):  $\delta$  151.0, 144.2, 137.5, 129.3, 127.9, 84.2, 77.9, 76.3, 46.6, 29.5, 28.0, 21.7, 16.4, 3.6. **HRMS** calculated for C<sub>18</sub>H<sub>25</sub>NO<sub>4</sub>SNa [M+Na]<sup>+</sup> 374.1402, found 374.1409. **IR** (ATR): 1716, 1355, 1288, 1157, 1085, 990, 670 cm<sup>-1</sup>.

To a solution of alkyne 2z (703 mg, 2 mmol, 1 equiv.) in DCM (10 mL, 0.2 M) at room temperature was added trifluoroacetic acid (3.1 mL, 40 mmol, 20 equiv.). After stirring for 45 minutes at room temperature, a saturated aqueous solution of NaHCO<sub>3</sub> was added. The aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried with anhydrous MgSO<sub>4</sub>, filter, and concentrated *in vacuo*. The resulting residue was purified by column chromatography using 20% ethyl acetate in hexanes to yield **2aa** as a pale yellow solid (360 mg, 72% yield). Spectroscopic data were in accordance with the literature.<sup>21</sup>



Prepared using a literature procedure from estrone and 1-bromo-2-butyne in 62% yield.<sup>22</sup> <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.21 (d, J = 8.2 Hz, 1H), 6.78 (dd, J = 8.6, 2.8 Hz, 1H), 6.70 (d, J = 2.8 Hz, 1H), 4.61 (q, J = 2.3 Hz, 2H), 2.92–2.88 (m, 2H), 2.50 (dd, J = 18.7, 8.4 Hz, 1H), 2.40 (ddd, J = 9.1, 7.0, 4.3 Hz, 1H), 2.29–2.22 (m, 1H), 2.19–1.93 (m, 4H), 1.86 (d, J = 4.7 Hz, 3H), 1.68–1.38 (m, 6H), 0.91 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  221.0, 156.0, 137.9, 132.7, 126.4, 115.0, 112.4, 83.6, 74.3, 56.4, 50.5, 48.1, 44.1, 38.4, 36.0, 31.7, 29.8, 26.6, 26.0, 21.7, 14.0, 3.9. HRMS calculated for C<sub>22</sub>H<sub>26</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 345.1830, found 345.1836. IR (ATR): 2916, 1737, 1609, 1572, 1494, 1371, 1282, 1254, 1155, 1005, 869, 806, 776 cm<sup>-1</sup>.

<sup>&</sup>lt;sup>21</sup> F.-T. Luo, R.-T. Wang, *Tetrahedron Lett.*, 1992, **33**, 6835.

<sup>&</sup>lt;sup>22</sup> P. Ramirez-Lopez, M. C. De La Torre, H. E. Montenegro, M. Asenjo, M. A. Sierra, Org. Lett., 2008, 16, 3555.

#### 4. Mechanistic Experiments

Procedure for the Coupling of Benzoylacetic acid 1a and 1-Phenylallene 5a



To a 1 dram vial equipped with a magnetic stir bar was added  $[Rh(cod)Cl]_2$  (3.9 mg, 0.008 mmol), DPEphos (8.6 mg, 0.016 mmol),  $\beta$ -keto acid **1a** (0.40 mmol), 1-phenylallene **5a** (0.20 mmol), and 2-MeTHF (0.40 mL). The vial was then sealed with a Teflon-lined screw cap and heated to 60 °C for 24 hours. The resulting mixture was then cooled to room temperature. <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (24.6 mg, 52% yield).

Procedure for the Coupling of Benzoylacetic acid 1a and Deuterated 1-Phenyl-1-propyne 2a-d<sub>3</sub>



To a 1 dram vial equipped with a magnetic stir bar was added  $[Rh(cod)Cl]_2$  (3.9 mg, 0.008 mmol), DPEphos (8.6 mg, 0.016 mmol),  $\beta$ -keto acid **1a** (0.40 mmol), deuterated 1-phenyl-1-propyne **2a**- $d_3$  (0.20 mmol), and 2-MeTHF (0.40 mL). The vial was then sealed with a Teflon-lined screw cap and heated to 60 °C for 24 hours. The resulting mixture was then cooled to room temperature. <sup>1</sup>H NMR analysis of the crude reaction mixture showed >20:1 regioselectivity in favor of the branched isomer. The title compound was isolated via preparatory TLC (10% ethyl acetate in hexanes) as a colorless oil (34.3 mg, 73% yield). <sup>1</sup>H NMR (400 MHz, CDCl3)  $\delta$  8.03 – 7.96 (m, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.30 (m, 4H), 7.30 – 7.22 (m, 1H), 6.13 (ddd, *J* = 22.4, 10.4, 6.7 Hz, 0.92H), 5.18 – 5.03 (m, 1.43H), 4.22 (q, *J* = 6.9 Hz, 0.87H), 3.47 (qd, *J* = 16.6, 7.1 Hz, 1.65H). <sup>13</sup>C NMR (101 MHz, CDCl3)  $\delta$  198.5, 143.4, 140.9, 133.2, 128.78, 128.78, 128.3, 127.9, 126.8, 123.5, 114.9, 44.7, 44.2. <sup>2</sup>H NMR (61 MHz, CDCl<sub>3</sub>)  $\delta$  6.24, 5.24, 4.28, 3.57.

## 5. Enantioselective Alkyne and β-keto acid Coupling



# 6. NMR Spectra










































































