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S.1	Synthesis	of	porphyrins	

Six	porphyrin	derivatives	were	considered	here:	P1	(R	=	t-Bu),	l-P2	(R	=	t-Bu),	c-P6	(R	=	THS	and	R	=	

C8H17),	c-P6•T6	(R=THS)	and	l-P6	(R=THS).	The	R	groups	are	attached	at	the	meta	positions	of	the	aryl	

rings	 (Main	 article	 Figure	 1).	 c	 and	 l	 denote	 cyclic	 and	 linear	 assemblies	 respectively.	 Porphyrin	

compounds	were	prepared	using	previously	described	protocols.1–3		

	

Figure	S1	Full	structures	for	the	six	porphyrin	derivatives	considered.		
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S.2	Relaxation	Measurements	

Relaxation	measurements	 for	α	and	β	 coupled	 spin	where	 carried	out	on	7.1	T	 (300	MHz),	 14.1	T	

(600	MHz),	17.6	T	(750	MHz)	and	22.3	T	(950	MHz)	narrow	bore	solution-state	NMR	spectrometers.	

All	spectrometers	were	equipped	with	room	temperature	probes	and	the	experiments	were	carried	

out	 at	 298	 K.	 The	 spectrometers	 were	 operating	 with	 Varian,	 GE	 Omega	 and	 Bruker	 operating	

systems	 and	 so	 pulse	 sequences	 for	 all	 formats	 are	 available	 on	 request.	 The	 number	 of	 CPMG	

elements	(n)	for	each	sample	was	varied	so	that	for	the	highest	value	of	n	the	intensity	of	the	peaks	

dropped	to	approximately	!
!
	of	their	maximum	value.	A	typical	experiment	employed	a	recycle	delay	

of	2	s,	acquisition	time	2	s,	16	dummy	scans,	8	transients	per	1D	and	16	different	values	for	n.	Some	

values	of	n	are	repeated	for	error	analysis	and	the	order	in	which	the	values	of	n	were	carried	out	

was	 randomized	 to	 minimise	 any	 systematic	 effects.	 All	 spectra	 were	 phased	 and	 Fourier	

transformed	using	NMRPipe4	and	exported	for	analysis.	

S.3	Data	Analysis	

It	 is	 not	 possible	 to	 obtain	 reliable	 intensities	 through	 summing	 the	 signal	 due	 to	 the	 degree	 of	

overlap	between	 the	 two	components	of	 the	doublet	 (Figure	S2B).	 Instead	we	note	 that	 the	peak	

function	describing	the	central	position	of	the	resonance	and	its	shape	will	not	vary	with	n.	To	this	

end,	we	represent	the	doublets	as	the	sum	of	two	Pseudo-Voigt	functions	P(ω,ω0,Δ,f)	in	which	each	

is	characterised	by	three	parameters;	a	peak	centre	ω,	a	peak	width	Δ	and	a	Gauss-to-Lorentz	mixing	

factor	f.		

z(ω ,ω 0,Δ) =
ω −ω 0

Δ
, L(ω ,ω 0,Δ) =

1
1+ z(ω ,ω 0,Δ)

2 , G(ω ,ω 0,Δ) = e
− ln(2)z(ω ,ω0 ,Δ )

2

P(ω ,ω 0,Δ, f ) = ( fL(ω ,ω 0,Δ)+ (1− f )G(ω ,ω 0,Δ)
	

The	decay	of	the	two	peaks	is	then	modelled	by	multiplying	each	function	with	a	single	exponential	

decay	constant	such	that	the	spectrum	at	any	given	time	is	given	by:		

S(ω ,t) = P(ω ,ω I−Sα
,Δ I−Sα

, fI−Sα )e
− tR2

I−Sα + P(ω ,ω I−Sβ
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The	entire	dataset	of	spectra	as	a	function	of	frequency	and	time	is	analysed	globally	to	obtain	the	6	

peak	shape	parameters	and	2	rate	constants.	This	procedure	is	 illustrated	in	Figure	S2	showing	the	

comparison	between	raw	and	simulated	data	for	two	time	points	of	one	experiment	(A).	The	decay	

of	 the	peaks	obtained	 from	 this	method	differs	 from	 the	more	usual	method	of	 simply	 taking	 the	



integral.	The	difference	between	the	two	rates	is	illustrated	in	(B).	Code	to	process	data	in	this	way	

was	written	in	python	and	is	available	on	request.	

	

Figure	S2	A.	Fitted	(solid	 lines)	and	raw	(dotted	 lines)	spectra	of	an	 I	spin	doublet	at	two	different	
relaxation	times.	B.	The	expected	signal	intensities	from	the	fitting	(solid)	are	not	in	agreement	with	
the	 intensities	 obtained	 from	 taking	 the	 peak	 height	 (dotted).	 The	 fitted	 intensities	 are	 the	more	
reliable	intensity	measure	as	overlap	effects	are	removed.	

	

S.4	Rectangular	Pulses	for	semi-selective	refocusing	

In	 this	 study	 semi-selective	 refocusing	 is	 achieved	 through	 the	 use	 of	 low	 power	 rectangular	

(constant	amplitude)	pulses	rather	than	shaped	pulses.	Rectangular	pulses	are	able	to	achieve	a	180°	

flip	in	much	shorter	time	than	shaped	pulses	and	consequently	a	larger	range	of	time	points	may	be	

interrogated	 before	 the	 transverse	 coherence	 decays.	 The	 difference	 in	 time	 for	 on	 resonance	

inversion	 is	 compared	 in	 Figure	 S3A	 and	 B.	 The	 selective	 rectangular	 pulses	 will	 be	 ca.	 6	 times	

shorter	than	optimised	inversion	pulses	such	Q3	or	REBURP1	(Figure	S3B).	

The	pulses	are	calibrated	such	 that	 the	on-resonance	pulse	undergoes	a	180°	 flip	whilst	 the	scalar	

coupled	partner	undergoes	a	null	pulse	(Figure	S3C).	This	is	achieved	by	setting	the	pulse	time	(pwsel)	

of	the	selective	180°	pulse	according	to	𝑝𝑤!"# = 3/2𝛥𝜈 where	∆𝜈	is	the	difference	in	frequency	(in	

Hz)	between	 the	 spin	of	 interest	 and	 its	 scalar	 coupled	partner.	 The	pulse	 is	placed	on	 resonance	

with	 the	 spin	of	 interest	and	 the	power	must	be	calibrated	 so	 that	 the	 spin	undergoes	a	180°	 flip	

during	 a	 pulse	 of	 this	 length	 (Figure	 S3D,	 E	 and	 F).	 A	 soft	 rectangular	 pulse	 of	 this	 type	will	 have	

residual	effects	on	 the	spectrum	outside	 the	 region	of	 interest,	but	 it	will	effectively	decouple	 the	



spins	 of	 interest.	 Pulse	 times	 employed	 for	 the	 selective	 180°	 pulses	 depend	 on	 the	 frequency	

difference	of	 the	samples	 investigated,	but	were	approximately	1.7	ms	at	600	MHz,	1.4	ms	at	750	

MHz	and	1.1	ms	at	950	MHz.	

	

Figure	S3	A.	The	effects	of	applying	pulses	of	various	shapes	on	a	single	spin	initially	at	equilibrium	as	
a	function	of	offset	Ω	and	B1	field	for	commonly	used	pulse	shapes.	The	REBURP1	and	Q3	are	more	
selective	 than	 SEDUCE	 or	 rectangular	 pulses.	 B.	 The	 offset	 between	 spins	 where	 on	 resonance	
experiences	inversion,	and	1%	excitation	is	felt	at	the	specified	offset,	as	a	function	of	pulse	duration	
for	 the	 various	pulse	 shapes.	 The	 selective	 rectangular	 pulses	have	 a	duration	 ca.	 5x	 shorter	 than	
those	 with	 more	 complex	 shapes	 making	 them	 highly	 amenable	 to	 measurements	 of	 this	 type,	
particularly	 when	 rapid	 relaxation	 is	 expected.	 C.	 The	 trajectory	 of	 magnetisation	 in	 the	 rotating	
frame	during	a	rectangular	pulse	as	a	function	of	frequency	offset.	The	on	resonance	spin	undergoes	
a	180o	flip	whereas	the	spin	which	is	off	resonance	by	the	optimal	value	effectively	experiences	no	
pulse.	D.	 A	 pulse	 sequence	 used	 to	 ensure	 that	 the	 selective	 pulse	 has	 been	 calibrated	 correctly	
consists	of	a	selective	180o	pulse	(shown	in	red)	and	a	‘hard’	rectangular	90o	pulse	(black)	executed	
at	 maximum	 power	 and	 minimum	 duration.	 As	 shown	 in	 E.	 and	 F.	 when	 the	 selective	 pulse	 is	
calibrated	correctly	and	placed	on	resonance	with	one	of	the	spins	of	 interest	there	will	be	a	180o	
phase	shift	between	the	two	spins	as	the	off	resonance	spin	effectively	experiences	a	null	during	the	
first	pulse.		
	

	

	



S.5	Summary	of	Redfield	calculations	of	relaxation	rates	for	AXn	spin	systems	

Relaxation	 rates	 of	 the	 difference	 coherences	 can	 be	 calculated	 as	 follows	 using	 the	 approach	 of	

Redfield.	 We	 consider	 here	 dipolar	 and	 CSA	 interactions	 between	 spins	 ½	 and	 the	 correlations	

between	the	two.	The	strengths	of	the	two	interactions	are	given	respectively	by:	

𝑑 = !!!!!!ℏ
!!!!"

! 	and	𝑐 =  𝛾!𝐵!Δ𝜎		

Table	 1	 Summary	 of	
the	 spin	 state	 terms	
contained	 in	 the	
dipolar	 and	 chemical	
shift	 anisotropy	
Hamiltonians.	

	

	

	

	

	

	

	

where	 𝛾	 is	 the	 gyromagnetic	 ratio	 of	 the	 relevant	 spin,	 𝜇!	 is	 the	 magnetic	 constant,	 𝑟!"	 is	 the	

distance	between	spins	I	and	S,	𝛥𝜎	is	the	chemical	shift	anisotropy	(CSA)	in	ppm	and	B0	is	the	static	

magnetic	field	strength.	The	relaxation	rate	of	a	given	coherence	ρi,	such	as	Iz	or	Ix	due	to	another,	

ρj,is	obtained	from	Redfield’s	equation:	

Rρiρ j
=∑k ,l

1
2
Sl
†Sk

< ρi | [Al
†[Ak ,ρ j ]]>

< ρi | ρ j >
Fl
†FkJ(ω (Ak )) 		

The	sum	here	extends	to	all	combinations	of	spin	operators	in	the	appropriate	Hamiltonian,	subject	

to	the	secular	approximation	that	requires	ω(Ak)+ω(Al)=0	where	ω(Ak)=-ω(Ak
d),	and	Fl=Fk*.	In	the	case	

of	dipolar	and	CSA	interactions,	the	relevant	terms	are	summarised	in	table	1.	For	an	AX	spin	system,	

as	is	considered	here,	there	will	be	12	terms	in	the	combined	chemical	shift	anisotropy	and	dipolar	

Hamiltonians,	 leading	to	the	sum	extending	over	144	possible	contributions	to	the	relaxation	rate.	

Ak	 Al
d	 Fk	 Sk/l	 w(Ak)	

IZSZ	 IzSz	 	(1-3cos2(θ))	 d	 0	

I+S-	 I-S+	 ¼(1-3cos2(θ))	 d	 ωI-ωS	

I+S-	 I-S+	 ¼(1-3cos2(θ))	 d	 ωI-ωS	

IzS+	 IzS-	 3/2	sin(θ)cos(θ)exp(-iφ)	 d	 ωS	

IzS-	 IzS+	 3/2	sin(θ)cos(θ)exp(+iφ)	 d	 ωS	

I+Sz	 I-Sz	 3/2	sin(θ)cos(θ)exp(-iφ)	 d	 ωI	

I-Sz	 I+Sz	 3/2	sin(θ)cos(θ)exp(+iφ)	 d	 ωI	

I+S+	 I-S-	 ¾	sin2	(θ)	exp(-2iφ)	 d	 ωI+ωS	

I-S-	 I+S+	 ¾	sin2	(θ)	exp(2iφ)	 d	 ωI+ωS	

IZ	 IZ	 1/3(1-3cos2	(θ))	 c	 0	

I+	 I-	 ¼	sin(2θ)exp(-iφ)	 c	 ωI	

I-	 I+	 ¼	sin(2θ	)exp(+iφ)	 c	 ωI	



Each	 individual	 term	 (Ak)	 is	 evaluated	with	 respect	 to	 the	Hermitian	 conjugate	 (Al
d)	 of	 all	 possible	

terms.	A	normalised	spectral	density	function	for	isotropic	rotational	motion	is:	

J(ω ) = 2
5

τ c
1+ω 2τ c

2 		

and	the	ensemble	averaged	spatial	terms	are	evaluated	from	

Fl
†Fk =

1
4π

Fl
†Fk sinθ dθ dφ

0

π

∫
0

2π

∫ 		

In	general,	the	auto	relaxation	rate	where	ρi=ρj	for	any	single	quantum	coherence	from	an	AXn	spin	

system	where	the	‘A’	is	a	single	quantum	coherence	and	the	‘X’	are	the	complete	set	of	α	and	β	spin	

states	that	can	accompany	the	coherence	will	be	given	by	the	following	result:	

R2
S− ∏ Iα /β = 1+ 2 j2

jmax
−1

⎛
⎝⎜

⎞
⎠⎟
P2
0 (cosθDD )

⎛

⎝⎜
⎞

⎠⎟
2 jmaxRD

2 + RC
2 + 4 jP2

0 (cosθCS )RDRC
⎛

⎝⎜
⎞

⎠⎟
f + 2 jmaxRD

2 fADD
	

where	we	make	use	of	the	following	4	definitions:	

RD = d
2 5

, RC = c
3 5

, f = 4J(0)+ 3J(ω S ), fADD = 3J(ω I )+ J(ω S −ω I )+ 6J(ω S +ω I ) 	

and	 P2
0 (x) = 1

2
3x2 −1( ) 	,	θDD	is	the	angle	between	dipolar	vectors	(assumed	constant	here)	and	θCS	

is	the	angle	between	the	principal	axis	of	the	chemical	shift	tensor	and	the	inter	nuclear	vector	for	

the	dipolar	coupling.			The	net	spin	of	the	coupled	spins	for	the	coherence	of	interest	is	j	and	jmax	is	

maximum	possible	angular	momentum	for	 the	coupled	spins.	For	example,	 for	a	coherence	of	 the	

form	S-IαIαIβ,	jmax	would	be	3/2	and	j	would	be	½.	In	the	present	manuscript,	the	method	is	applied	to	

an	AX	spin	system,	and	so	S-Iα	and	S-Iβ	are	the	relevant	relaxation	rates	where	jmax=1/2	and	j=+1/2	or	

-1/2.	 Using	 this	 equation,	 the	 method	 can	 be	 applied	 to	 any	 spin	 system	 of	 the	 type	 AmXn.	 The	

relaxation	rates	will	need	to	be	further	modified	for	more	complicated	spin	systems	and	additional	

dynamics	such	as	methyl	group	rotation.	

	

	

	



S.6	Global	analysis	of	relaxation	data	

A	 set	 of	 R2	 measurements	 for	 I-Sα,	 I-Sβ,	 IαS-	 and	 IβS-	 were	 obtained	 as	 described	 above	 for	 each	

porphyrin	 sample	 as	 a	 function	 of	 magnetic	 field	 strength.	 The	 relaxation	 rates	 can	 be	 back	

calculated	from	the	appropriate	relaxation	equations	as	a	function	of	τc	and	ΔσCSA	of	the	S	spin	and	

σCSA	of	the	I	spin,	and	the	angle	between	the	dipolar	vector	and	CSA	principal	axis.	These	parameters	

were	 globally	 minimised	 to	 obtain	 the	 fitted	 curves	 (Figure	 3,	 Figure	 S4A).	 An	 additional	 term	

corresponding	to	R’D2fADD	was	also	included	to	account	for	dipolar	relaxation	due	to	remote	protons,	

where	the	distance	in	used	to	calculate	RD	is	defined	by	the	relevant	inter-proton	distance.		

Uncertainties	 in	 parameters	 were	 determined	 using	 a	 bootstrapping	 procedure.	 This	 involves	

creating	a	number	of	synthetic	datasets	by	randomly	selecting	data	points	from	the	original	sample	

with	replacement.	The	same	optimisation	is	then	run	on	the	synthetic	dataset	to	give	values	for	the	

fitting	parameters.	This	process	is	then	repeated	ca.	1000	times	enabling	a	histogram	of	fitted	values	

can	be	plotted.	The	standard	deviation	in	the	bootstrap	values	for	the	fitting	parameters	can	be	used	

as	 an	 estimate	 for	 the	 error	 (Figure	 S4B).	 In	 the	 analysis	 we	 obtain	 the	 cosine	 of	 the	 angle.	 The	

specific	angle	stated	is	the	solution	between	90	and	180o	for	numerical	convenience.	

	

Figure	S4	A.	Relaxation	rates	as	a	function	of	magnetic	field	strength,	and	global	fits	for	monomeric	
and	 dimeric	 porphyrins.	B.	 The	 uncertainty	 distributions	 in	 parameters	 from	 a	 bootstrap	 analysis.	
The	standard	deviation	of	the	histogram	is	an	estimate	of	the	uncertainty	in	the	fitting	parameter.		

	

S.7	NMR	Translational	diffusion	measurements	



The	diffusion	coefficients	were	measured	at	11.74	T	(500	MHz)	on	an	AVII	spectrometer	(Bruker)	at	

298	 K.	 A	 convection-compensating	 double-stimulated	 echo	 experiment	 (DSTE)	 using	 bipolar	

gradients	was	used.	The	diffusion	time	∆	was	235.40	ms,	and	the	gradient	pulse	length	was	3	ms.	A	

linear	gradient	 increment	was	used.	The	sample	contained	P1,	 l-P6	and	c-P6•T6	 in	CDCl3.	Diffusion	

coefficients	 were	 determined	 by	 an	 exponential	 fit	 to	 the	 integrated	 area	 of	 resonances	 of	 each	

component	using	the	Stejskal-Tanner	equation.5	

𝑆! =  𝑆!𝑒
!!!!!!!(!!!!)!! 	

Where	 Si	 is	 the	 measured	 signal	 intensity,	 S0	 is	 the	 maximum	 signal	 intensity	 in	 the	 absence	 of	

gradient	dephasing,	γ	is	the	gyromagnetic	ratio,	Δ	is	the	diffusion	time,	δ	is	the	gradient	pulse	length	

and	G	is	the	gradient	field	strength.	A	representative	decay	curve	is	shown	in	Figure	S5B.	

	

Figure	 S5	 A.	 DOSY	 spectrum	 from	 which	 P1,	 l-P6	 and	 c-P6•T6	 can	 be	 identified.	 B.	 Example	 of	
intensity	decrease	with	 increased	gradient	 field	strength	(G)	 from	which	a	diffusion	coefficient	can	
be	fitted	for	each	of	the	molecules.		

	

S.8	Calculation	of	rotational	correlation	times	for	linear	l-P6	from	translational	diffusion	

To	obtain	a	correlation	time	for	the	linear	molecule	I-P6,	it	was	necessary	to	include	a	correction	to	

account	for	 its	anisotropic	diffusion.	The	diffusion	constant	for	a	molecule	 is	related	to	the	friction	

factor,	F,	through	the	relationship:	



𝐷 = !!!
!
	where	for	a	rod	of	length	L	and	radius	R	the	friction	factor	is	given	by:	𝐹 = 3𝜋𝜂𝐿(ln !

!
−

0.3)!!.	 The	 radius	 of	 a	 rod-like	 molecule	 can	 be	 determined	 from	 a	 known	 length	 and	 its	

translational	 diffusion	 coefficient	 from	𝑅 = 𝐿(exp 0.3 + !!"#$
!"

)!!.	 By	 equating	 the	 volume	 of	 a	

sphere	to	the	volume	of	the	rod,	we	can	obtain	the	effective	spherical	radius	of	the	rod,	in	terms	of	

the	viscosity,	the	observed	diffusion	coefficient	(D)	and	the	length	of	the	rod.	

rsphere = L
3
4
exp − 6

10
− 6πηLD

kT
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
1/3

		

From	the	effective	spherical	radius,	a	correlation	time	can	be	determined.	The	viscosity	of	CDCl3	at	

298	K	is	0.542	mPa.6	

	

S.9	Solid-state	NMR	determination	of	13C	CSA	

For	 the	monomeric	porphyrin,	 it	was	possible	 to	 independently	measure	 the	CSA	using	 solid-state	

NMR	 spectroscopy	 as	 described	 in	 the	 main	 text.	 The	 intensity	 of	 the	 spinning	 side	 bands	 was	

measured	as	a	function	of	spinning	rate.	A	cross-polarisation	(CP)	element	was	used	to	enhance	13C	

sensitivity	and	spectra	were	recorded	at	magic	angle	spinning	(MAS)	frequencies	of	1	kHz,	3	kHz	and	

10	kHz.		

Individual	13C	resonances	from	the	carbon	nuclei	attached	to	I	and	S	protons	could	be	resolved	in	the	
13C	MAS	spectra	(Main	article	Figure	4E)	and	were	correlated	to	the	appropriate	1H	resonance	using	

a	 1H-13C	HSQC	spectrum.	For	 the	Herzfeld-Berger	analysis	 the	3	kHz	spinning	speed	was	chosen	as	

the	overlap	between	resonances	was	minimal	while	yet	still	enabling	resolution	of	a	number	of	side	

band	resonances.		

By	fitting	the	sideband	pattern	associated	with	a	particular	resonance	in	a	solid-state	NMR	spectrum	

using	a	Herzfeld-Berger	analysis7	it	is	possible	to	derive	the	CSA	of	that	resonance.	Solid-state	NMR	

experiments	were	carried	out	on	a	P1	sample	(with	t-Bu	side	groups)	with	a	9.4	T	(400	MHz)	Bruker	

Avance	III	HD	spectrometer	equipped	with	a	room-temperature	4	mm	MAS	probe.	The	CSAs	of	the	

carbon	nuclei	attached	to	the	I	and	S	protons	were	found	to	be	124.0±6.3	ppm	and	124.8±2.7	ppm	

respectively.	 	 These	 values	 compare	 favourably	 to	 those	 from	DFT	 calculations	 (section	 S.10).	 The	

same	measurements	were	not	possible	directly	on	1H	due	to	resonance	overlap.		

	



S.10	DFT	Calculations	

The	chemical	shift	tensor	was	estimated	using	DFT	calculations.	Using	the	software	Gaussian098,	an	

optimised	structure	is	generated.	Once	the	geometry	is	optimised,	the	shielding	tensor	is	calculated,	

enabling	isotropic	and	anisotropic	components	to	be	determined.	All	DFT	calculations	were	carried	

out	using	the	B3LYP	density	functional	with	the	6-31G(d)	basis	set.		

The	experimental	and	calculated	isotropic	chemical	shifts	of	a	database	of	small	organic	compounds	

are	 shown	 together	 with	 values	 calculated	 for	 P1	 (Figure	 S6).	 The	 correlation	 between	 the	 two	

values	is	excellent	over	this	range.	

Calculations	were	 performed	on	 the	 range	 of	 side	 groups	 used	 in	 the	NMR	 study	 to	 confirm	 that	

these	have	a	limited	impact	on	the	measured	CSAs	(Table	S2).	There	is	excellent	agreement	between	

the	 experimental	 13C	 CSA	 measurements	 (section	 S.9)	 and	 those	 calculated	 using	 this	 method,	

validating	 the	 calculation	 method.	 The	 agreement	 between	 the	 1H	 CSA	 determined	 using	 the	

relaxation	measurements	 that	 are	 the	main	 focus	 of	 this	 paper	 (Figure	 4)	 and	 the	 calculations	 is	

similarly	excellent.	

	

Figure	S6	A.	Correlation	plot	of	calculated	and	experimental	isotropic	chemical	shifts	using	DFT	with	
B3LYP	/	6-31G(d).	Blue	dots	indicate	experimental	and	calculated	chemical	shifts	for	24	small	organic	
molecules	 where	 experimental	 chemical	 shifts	 are	 taken	 form	 the	 Spectral	 Database	 for	 Organic	
Compounds.9	Red	dots	 indicate	experimental	and	calculated	chemical	 shifts	 for	P1	 (R	=	 t-Bu).	B/C.	
Ellipsoid	representations	of	the	calculated	CSA	tensors	of	the	I	(blue)	and	S	(red)	spins	.	The	ellipsoids	
are	rotated	to	align	with	the	eigenvectors	of	the	chemical	shielding	tensor	and	their	axes	are	scaled	
to	 the	 corresponding	eigenvalue.	Eigenvalues	and	eigenvectors	are	 calculated	 from	 the	 symmetric	
component	 of	 the	 computed	 chemical	 shielding	 tensor	 and	 eigenvalues	 are	 subtracted	 from	 the	
isotropic	shift	of	TMS	calculated	at	the	same	level	of	theory.	The	most	deshielded	component	of	the	
tensor	 for	 I	and	S	spins	 is	perpendicular	 to	 the	plane	of	 the	porphyrin.	The	CSA	 from	the	DFT	and	



that	 measured	 experimentally	 from	 the	 relaxation	 interference	 measurements	 are	 in	 excellent	
agreement	(Figure	4).		

	

R	=	 I	1H	CSA	/	ppm	 S	1H	CSA	/	ppm	 I	13C	CSA	/	ppm	 S	13C	CSA	/	ppm	

t-Bu**	 16.5±0.1	 12.9±0.4	 131.317±0.138	 126.6±0.2	

t-Bu	 15.3±0.1	 12.1±0.1	 132.495±0.035	 128.4±0.1	

THS	 14.1±0.4	 13.0±0.1	 132.368±0.227	 128.3±0.5	

OC8H17	 14.8±0.1	 11.8±0.1	 132.820±0.185	 128.2±0.1	

**Includes	 THS	 groups	 on	 the	 terminal	 acetylenes	 –	 in	 all	 other	 cases	 this	 was	 replaced	 with	 a	
hydrogen	atom.	

Table	2	List	of	DFT	derived	CSAs	in	both	1H	and	13C	in	the	presence	of	different	R	groups.	

	

S.11	Calculation	of	Intensity	Ratios	

Assuming	 lorentzian	 lineshapes,	 the	 normalised	 intensity	 of	 a	 peak	 as	 a	 function	 of	 frequency	 is	

given	by:	

𝐼 =  
𝑅!

𝑅!! + (𝜔 − 𝜔!)!
	

Where	 the	 peak	 is	 centered	 at	 frequency	 ω0.	 The	 maximum	 intensity	 of	 a	 peak	 is	 thefore	

proportional	to	 !
!!
	.	The	𝑅!	contains	a	contribution	from	both	intrinsic	relaxation	and	magnetic	field	

inhomogeneity.	In	the	case	of	a	doublet	(e.g.	𝐼!𝑆!	and		𝐼!𝑆!)	the	ratio	of	the	maximum	intensities		is	

given	by:	
!!
!!!!

!!
!!!!	.	

As	 shown	 in	 Figure	 S7,	 in	 the	 presence	 of	 magnetic	 field	 inhomogeneity	 the	 intensity	 difference	

expected	due	to	relaxation	interference	is	largely	obscured	for	small	molecules	that	have	correlation	

times	on	the	picosecond	timescale.	However	for	large	supramolecular	assemblies	that	tumble	on	the	

nanosecond	timescale,	as	exemplified	by	the	porphyrin	oligomers,	significant	differences	in	intensity	

can	be	detected	by	inspection	of	spectra,	given	a	reasonably	high	CSA.	The	magnitude	of	the	effect	is	

amplified	when	using	a	higher	static	field	strength	(Figure	S7	and	main	article	Figure	3).	Due	to	the	

dependence	 of	 the	 effect	 on	 correlation	 time,	 any	 factors	 that	 affect	 this	 e.g.	 a	 change	 in	

temperature,	solvent	viscosity	or	presence	of	local	motion	will	also	affect	the	ratio	of	intensities.		



	

Figure	 S7	 Heat	 maps	 showing	 the	 ratio	 of	 signal	 intensities	 for	 a	 single	 scalar	 coupled	 doublet	
intensities	 !!

!!
	 for	 a	 range	 of	 molecules/substituents	 at	 magnetic	 field	 strengths	 corresponding	 to	

proton	 Lamor	 frequencies	 of	 300,	 600	 and	 950	 MHz.	 The	 relaxation	 rate	 is	 calculated	 using	 the	
equations	 in	 the	 text	 assuming	 dipolar	 coupling	 to	 another	 proton	 at	 a	 distance	 of	 2.5	 Å	with	 an	
angle	 of	 90o	 between	 the	 dipolar	 and	 CSA	 principal	 axes,	 as	 was	 the	 case	 for	 the	 porphyrin	
oligomers.	1	s-1	 inhomogeneous	broadening	has	been	added	to	reflect	a	typical	experimental	case,	
and	so	for	a	broad	range	of	parameter	space,	the	two	components	are	of	equal	 intensity	 (yellow).	
Specific	 CSA	 values	 for	 specific	 protons	 in	 functional	 groups	 are	 indicated	 (lines),	 including	 a	 CH3	
group,	 aromatic	 protons	 in	 a	 substituted	 benzene	 ring,	 two	porphyrins	 used	 in	 this	 study,	 and	 an	
amide	 proton,	 as	 frequently	 encounted	 in	 the	 context	 of	 proteins.	 The	 specific	 combinations	 of	
correlation	 time	 and	 CSA,	 for	 specific	 molecules	 are	 expliticlty	 numbered.	 The	 magnitude	 of	 the	
effect	will	vary	with	the	molecule	but	these	values	serve	as	a	qualitative	guide	for	when	the	effect	
should	be	anticipated.	 In	 general,	 increasing	 the	effective	 correlation	 time	above	 the	point	where	
the	 line	width	 is	 limited	by	 inhomogeneous	broadening	will	 render	 relaxation	 interference	directly	
observable	 in	 NMR	 spectra.	 This	 can	 be	 accomplished	 by,	 for	 example,	 reducing	 local	 internal	
dynamics,	 increasing	 the	overall	molecular	weight	of	 the	molecule,	decreasing	 the	 temperature	or	
increasing	the	viscosity.	
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