Supporting Information

Exceptionally Large Two- and Three-Photon Absorption Cross-Sections by OPV Organometalation

Beibei Gao,^[a] Leszek Mazur,^[b] Mahbod Morshedi,^[c] Adam Barlow,^[c] Huan Wang,^[a] Cristóbal Quintana,^[c] Chi Zhang,^[a] Marek Samoc,^[b] Marie P. Cifuentes,^[a,c] and Mark G. Humphrey*^[a,c]

[a]	B. Gao, H. Wang, Prof. C. Zhang, Prof. M. P. Cifuentes, Prof. M. G. Humphrey School of Chemical and Material Engineering, Jiangnan University Wuxi 214122, Jiangsu Province (P. R. China) E-mail: mark.humphrey@jiangnan.edu.cn
[b]	Dr L. Mazur, Prof. M. Samoc Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw (Poland)
[c]	Dr M. Morshedi, Dr A. Barlow, A/Prof. M. P. Cifuentes, Prof. M. G. Humphrey Research School of Chemistry, Australian National University, Canberra, ACT 2601 (Australia) Fax: (+61)2-6125-0750 E-mail: <u>mark.humphrey@anu.edu.au</u>

Contents:	Page
Materials and instrumentation	S2
Syntheses	S3
NMR spectra	S9
UV-vis spectra	S32
Cyclic voltammetry studies	
Spectroelectrochemistry studies	
Z-scan studies	

Materials and instrumentation

Materials. All reactions were performed under a nitrogen atmosphere with the use of standard Schlenk techniques unless otherwise stated. Tetrahydrofuran and toluene were dried by distilling over sodium/benzophenone, dichloromethane and chloroform were dried and distilled over calcium hydride. NEt₃ was deoxygenated prior to use; other solvents were used as received. Triethylphosphite (Aldrich) was distilled before use. Petrol refers to a fraction of petroleum spirits with a boiling range 60-90 °C. The following compounds were synthesized by literature procedures: 4-bromo-2,5-bis(hexyloxy)benzaldehyde,¹ 2,5-bis(hexyloxy)-1,4-phenylenebis(methylphosphonate diethyl ester),² diethyl(4-(5,5-dimethyl-1,3-dioxan-2-yl)benzyl)phosphonate,³ 4-[(trimethylsilyl)ethynyl]benzaldehyde,⁴ diethyl(4-[(trimethylsilyl)ethynyl]benzyl)phosphonate,⁵ and [RuCl(dppe)₂]PF₆⁶. All other reagents were obtained from commercial sources and used as received. Chromatography was on silica gel (200-300 mesh) or basic alumina. All commercially available materials were used as received.

Instrumentation. NMR spectra were recorded using a Bruker AVANCE III-400 FT-NMR spectrometer, and are referenced to residual chloroform (¹H, 7.26 ppm), CDCl₃ (¹³C, 77.0 ppm) or external 85% H₃PO₄ (³¹P, 0.0 ppm). UV-vis-NIR spectra were recorded as CH₂Cl₂ solutions in 1 cm quartz cells using a Lambda TU1901 spectrophotometers, and are reported as λ_{max} nm (ϵ 10⁴ M⁻¹ cm⁻¹). Vibrational spectra were recorded using a Thermo Fisher Nicolet 6700 ATR FT-IR spectrometer. Electrospray ionization mass spectra (low resolution and high resolution) were recorded using a Micromass/Waters LC-ZMD single quadrupole liquid chromatography MS, and electron impact mass spectra (low resolution and high resolution) were recorded using a Fisons 3-Sector VG AutoSpec MS at the Australian National University. All mass spectrometry peaks are reported as *m/z* (assignment, relative intensity). Microanalyses were carried out at the Science Centre, London Metropolitan University. Electrochemical measurements were recorded using a Zahner IM6 potentiostat. Electrochemical solutions contained 0.1 M [Bu₄N][PF₆] and *ca*. 10⁻³ M analyte in CH₂Cl₂, and were purged and maintained under N₂. Analytes were internally referenced to the ferrocene/ferrocenium redox couple, which was located at 0.56 V (Δ E = 0.9 - 1.0 V). Scan rates were typically 100 mV s⁻¹.

UV-vis spectroelectrochemical measurements were carried out using a Lambda 9 spectrophotometer and a bespoke low-temperature optically transparent thin-layer electrochemical (OTTLE) cell. The cell utilized platinum working- and auxilliary- eletrodes, and a silver wire reference electrode; solutions were typically 10^{-4} M analyte in CH₂Cl₂.

Syntheses.

Synthesis of 2-(4-bromo-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane (5).

A solution of 4-bromo-2,5-bis(hexyloxy)benzaldehyde (5.00 g 13.02 mmol), 2,2-dimethylpropane-1,3-diol (5.40 g, 52.08 mmol), and *p*-TsOH (50 mg, 0.26 mmol) in toluene (80 ml) was heated at reflux for 48 h using a Dean-Stark trap. After cooling to room temperature, the solution was evaporated to dryness. The crude residue was taken up in CH₂Cl₂, washed with water, stirred over anhydrous MgSO₄, filtered and the filtrate taken to dryness. Column chromatography (SiO₂, petrol) afforded a main yellow band that was collected and the solvent removed to give **5** as a light yellow oil (4.9 g,10.4 mmol, 80%). R_f = 0.5 (CH₂Cl₂:petrol 1:1); ¹H-NMR (400 MHz, CDCl₃): δ = 7.20 (s, 1H), 7.07 (s, 1H), 5.68 (s, 1H), 4.01 (t, *J*_{HH} = 6.5 Hz, 2H), 3.91 (t, *J*_{HH} = 6.5 Hz, 2H), 3.74 (d, *J*_{HH} = 11 Hz, 2H), 3.64 (d, *J*_{HH} = 10 Hz, 2H), 1.78 (m, 4H), 1.41 (m, 15H), 0.91 (m, 6H), 0.79 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ = 150.49, 149.92, 127.16, 117.81, 113.11, 112.56, 96.77, 77.85, 70.10, 69.63, 31.53, 31.51, 30.26, 29.23, 29.21, 25.70, 25.67, 23.20, 22.63, 22.59, 21.85, 14.01 ppm; IR: 1206 v(C-O), 1096 v(C-O-C) cm⁻¹; HRMS: C₂₄H₃₉O₄^{79/81}Br expected 470.2032/ 472.2003, Found 470.2032 / 472.2003.

Synthesis of 4-(5,5-dimethyl-1,3-dioxan-2-yl)-2,5-bis(hexyloxy)benzaldehyde (6).

n-BuLi (9 mL of 1.6 M solution in hexane, 14 mmol) was added dropwise to a solution of **5** (4.50 g, 9.57 mmol) in THF (60 mL) at -78 °C under argon. The solution was stirred at -78 °C for 2 h, then dried DMF (2 mL) was added quickly and the mixture was stirred at room temperature for 2 h before being poured into water. The product was extracted with diethylether and the organic layer washed with water and brine and stirred over anhydrous MgSO₄. The solvent was removed and the residue subjected to column chromatography (SiO₂, petrol/CH₂Cl₂ 4:1). The main yellow band was collected and the solvent removed to give **6** as a yellow oil (3.2 g, 7.63 mmol, 80%). R_f = 0.3 (CH₂Cl₂:petrol 1:1); ¹H-NMR (400 MHz, CDCl₃): δ = 10.46 (s, 1H, CHO), 7.30 (s, 2H), 5.73 (s, 1H), 4.09 (t, *J*_{HH} = 6 Hz, 2H), 3.98 (t, *J*_{HH} = 6 Hz, 2H), 3.76 (d, *J*_{HH} = 11 Hz, 2H), 3.66 (d, *J*_{HH} = 11 Hz, 2H) 1.80 (m, 4H), 1.39 (m, 15H), 0.91 (m, 6H), 0.81 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ = 189.58, 156.31, 150.14, 134.64, 125.29, 112.13, 110.27, 96.53, 77.88, 69.16, 69.13, 31.50, 30.34, 29.16, 29.12, 25.73, 25.69, 23.21, 22.62, 22.55, 21.84, 14.00, 13.98 ppm; IR: 2857 v(=C-H), 1681 v(-C=O), 1205 v(C-O), 1094 v(C-O-C) cm⁻¹; HRMS: Calc. for C₂₅H₄₀O₅ 420.2876, Found 420.2873.

Synthesis of Synthesis of 2-(4-(bromomethyl)-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane (8).

Compound 6 (3.00 g, 7.14 mmol) was dissolved in THF (60 mL) and stirred at 0 °C for 10 min. LiAlH₄ (0.42 g, 11.07 mmol) was added and the mixture was stirred for 4 h. Methanol was added to quench the LiAlH₄ and CH₂Cl₂ (100 mL) was added. The mixture was extracted with water (2 x 50 mL) and brine (50 mL). The organic layer was stirred over anhydrous MgSO₄, and the mixture filtered through a silica pad. The solvent volume was reduced and the residue subjected to column chromatography (SiO₂, CH₂Cl₂/petrol 3:2). The main pale yellow band was collected and the solvent removed to give (4-(5,5-dimethyl-1,3-dioxan-2-yl)-2,5-bis(hexyloxy)phenyl)methanol (7) as a yellow oil (2.45 g, 5.80 mmol, 81%). Rf = 0.5 (EtOAc); ¹H-NMR (400 MHz, CDCl₃): δ = 7.15 (s, 1H), 6.84 (s, 1H), 5.74 (s, 1H), 4.65 (s, 2H), 4.03 (t, J_{HH} = 6 Hz, 2H), 3.94 (t, J_{HH} = 6 Hz, 2H), 3.75 (d, J_{HH} = 11 Hz, 2H), 3.65 (d, J_{HH} = 11 Hz, 2H), 1.77 (m, 4H), 1.39 (m, 15H), 0.90 (s, 6H), 0.79 (s, 3H) ppm; IR: 3476 v(-OH), 1197 v(C-O), 1092 v(C-O-C) cm⁻¹. Compound **7** was then used in the synthesis of compound 8. CBr₄ (2.45 g, 7.4 mmol) and PPh₃ (1.94 g, 7.4 mmol) were added to a solution of compound 7 (2.35 g, 5.56 mmol) in THF (60 mL) at 0° C. The mixture was stirred for 4 h. CH₂Cl₂ (100 mL) was added and the mixture was extracted with water (2 x 50 mL) and brine (50 mL). The organic layer was stirred over anhydrous MgSO4 and the volume of the solvent reduced. The residue was purified by silica gel chromatography (CH2Cl2/petrol 1:4). The main pale yellow band was collected and the solvent removed to give 8 as a yellow oil (1.23 g, 2.5 mmol, 51%). $R_f = 0.7$ $(CH_2CI_2:petrol 1:1);$ ¹H-NMR (400 MHz, CDCI₃): δ = 7.15 (s, 1H), 6.86 (s, 1H), 5.71 (s, 1H), 4.53 (s, 2H), 4.03 (t, J_{HH} = 6 Hz, 2H), 3.94 (t, J_{HH} = 6 Hz, 2H), 3.75 (d, J_{HH} = 11 Hz, 2H), 3.65 (d, J_{HH} = 11 Hz, 2H), 1.79 (m, 4H), 1.39 (m, 15H), 0.89 (m, 6H), 0.79 (s, 3H) ppm; HRMS m/z (%): Calc. for C₂₄H₃₉O₄^{79/81}Br 470.2032/472.2011, found 470.2032/472.2003. This compound proved to be unstable to thin layer chromatography, forming the aldehyde, and was used without further purification in the next step.

Synthesis of diethyl(4-(5,5-dimethyl-1,3-dioxan-2-yl)-2,5-bis(hexyloxy)benzyl)phosphonate (9).

A mixture of **8** (0.32 g, 0.59 mmol) and triethylphosphite (0.12 g, 0.71 mmol) was heated at 150 °C for 4 h. After allowing to cool to room temperature, the excess triethylphosphite was removed by vacuum distillation. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂), and the main band collected and the solvent removed to give **9** as a yellow oil (0.28 g, 0.52 mmol, 89%). $R_f = 0.3$ (EtOAc); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.13$ (s, 1H), 6.94 (d, J = 3 Hz, 1H), 5.72 (s, 1H), 3.99 (m, 8H), 3.75 (d, J = 11 Hz, 2H), 3.65 (d, J = 11 Hz, 2H), 3.23 (d, J = 22 Hz, 2H), 1.76 (m, 4H), 1.33 (m, 15H), 1.23 (t, J = 8 Hz, 6H), 0.91 (m, 6H), 0.79 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta = 150.93$, 150.85, 149.76, 149.72, 126.38, 126.34, 121.70, 121.61, 115.90, 115.85, 110.37, 110.34, 97.07, 77.84, 69.40, 68.85, 61.99, 61.81, 61.75, 53.37, 31.56, 31.52, 29.42, 29.29, 25.78, 25.71, 23.18, 22.60, 22.55, 16.35, 16.29, 13.96 ppm; ³¹P NMR (162 MHz, CDCl₃): $\delta = 26.94$ ppm; HRMS *m/z* (%): Calc. for C₂₉H₅₁O₇P 542.3372, Found 542.3373.

Synthesis of compound 11.

t-BuOK (0.35 g, 3.16 mmol) was added to a solution of 2,5-bis(hexyloxy)-1,4-phenylenebis(methylphosphonate diethyl ester) (0.46 g, 0.79 mmol) and compound 6 (0.70 g, 1.67 mmol) in THF at 0 °C. The mixture was stirred for 1 h, and then the solvent was evaporated to dryness and the residue taken up in CH₂Cl₂. The organic layer was washed with H₂O, stirred over anhydrous MgSO4, filtered and the filtrate evaporated to dryness. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂:petrol 1:1), and the major band was collected and taken to dryness to give 10 as a mixture of E:Z isomers. The E:Z mixture was dissolved in toluene (15 mL) and I₂ (0.010 g, 0.039 mmol) was added. The reaction was heated at reflux for 12 h and then allowed to cool to room temperature. The solution was washed with aqueous 0.3 M Na₂S₂O₃ and water, stirred over anhydrous MgSO₄, filtered and the filtrate evaporated to dryness. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂:petrol 1:2) to give **10** as a yellow solid (0.73 g, 0.067 mmol, 83%). R_f = 0.4 (CH₂Cl₂:petrol 2:1); ¹H-NMR (400 MHz,CDCl₃): δ = 7.45 (d, J = 2 Hz, 4H), 7.15 (m, 6H), 5.75 (s, 2H), 4.03 (m, 12H), 3.77 (d, J = 11 Hz, 4H), 3.67 (d, J = 11 Hz, 4H), 1.82 (m, 12H), 1.43 (m, 42H), 0.91 (m, 18H), 0.80 (s, 6H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ = 151.07, 150.35, 128.60, 127.36, 127.06, 123.70, 123.39, 111.51, 110.58, 97.14, 77.91, 77.34, 77.23, 77.02, 76.71, 69.54, 69.51, 69.39, 31.67, 31.66, 31.61, 30.31, 29.51, 29.46, 29.44, 25.96, 25.92, 25.84, 23.25, 22.68, 21.92, 14.06 ppm; IR: 1610 v(-C=C), 1199 v(C-O), 1097 v(C-O-C) 22.66. cm⁻¹. Compound **10** was then used in the synthesis of compound **11**. A mixture of compound **10** (0.73 g, 0.066 mmol) and CF₃CO₂H (10 mL) in a mixture of CH₂Cl₂ and water (1:1, 40 mL) was stirred at room temperature for 4 h. The organic layer was then washed with water, stirred over anhydrous MgSO₄, filtered and the filtrate evaporated to dryness. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂:petrol 1:2), and the main band was collected and reduced in volume to give compound **11** as an orange solid (0.56 g, 0.059 mmol, 90%). $R_f = 0.7$ (CH₂Cl₂:petrol = 2:1); ¹H-NMR (400 MHz, CDCl₃): δ = 10.45 (s, 2H, CHO), 7.60 (d, *J* = 16 Hz, 2H), 7.51 (d, *J* = 16 Hz, 2 H), 7.33 (s, 2H), 7.21 (s, 2 H), 7.16 (s, 2 H), 4.08 (m, 12 H), 1.87 (m, 12H), 1.45 (m, 36H), 0.91 (q, J = 7 Hz, 18H) ppm; ¹³C-NMR (101MHz, CDCl₃): $\delta = 189.14, \, 156.30, \, 151.41, \, 150.78, \, 135.02, \, 127.54, \, 126.94, \, 124.25, \, 123.23, \, 110.85, \, 110.51, \, 110.21, \, 77.34, \, 77.02, \, 76.71, \, 110.21, \, 110$ 69.48, 69.25, 69.20, 69.15, 31.66, 31.61, 31.57, 29.47, 29.28, 29.26, 25.96, 25.87, 25.82, 22.67, 22.62, 22.60, 14.07, 14.04, 14.01 ppm; IR: 1676, 2854 v(-CHO), 1595 v(-C=C) cm⁻¹; HRMS: Calc. for C₆₀H₉₀O₈ 938.6636, Found 938.6641.

Synthesis of compound 12.

t-BuOK (0.14 g, 1.28 mmol) was added to a solution of compound **11** (0.30 g, 0.32 mmol) and compound **9** (0.38 g, 0.70 mmol) in THF (50 mL) at 0 °C. The mixture was stirred for 4 h, the solvent was evaporated to dryness and the residue was taken up in CH₂Cl₂. The organic layer was washed with water, stirred over anhydrous MgSO₄, filtered and the filtrate evaporated to dryness. The residue was subjected to column chromatography (SiO₂, CH₂Cl₂:petrol = 1:1), and the major band was collected and taken to dryness to give compound **12** as a mixture of *E*:*Z* isomers. The *E*:*Z* mixture was dissolved in toluene (15 mL) and I₂ (4.10 mg, 0.016 mmol) was added and the solution was heated at reflux for 12 h. The reaction was allowed to cool to room temperature, then washed with an aqueous 0.3 M Na₂S₂O₃ solution and water, and stirred over anhydrous MgSO₄. The mixture was filtered and the solvent evaporated. The residue was subjected to

column chromatography (SiO₂, CH₂Cl₂:petrol 1:1), and the main band was collected and reduced in volume to give compound **12** as an orange solid (0.34 g, 0.020 mmol, 61%). $R_f = 0.4$ (CH₂Cl₂:petrol 2:1); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.48$ (d, J = 12 Hz, 8H), 7.17 (t, J = 10 Hz, 10H), 5.76 (s, 2H), 4.02 (m, 20H), 3.77 (d, J = 10 Hz, 4H), 3.67 (d, J = 10 Hz, 4H), 1.83 (m, 20H), 1.42 (m, 66H), 0.91 (d, J = 2 Hz, 30H), 0.81 (s, 6H) ppm; ¹³C-NMR (101 MHz, CDCl₃): = 151.12, 150.38, 128.61, 127.53, 127.38, 127.10, 123.70, 123.41, 123.30, 111.55, 110.59, 97.15, 77.92, 77.35, 77.03, 76.71, 69.54, 69.40, 31.70, 31.67, 31.62, 30.31, 29.54, 29.48, 29.45, 25.98, 25.93, 25.85, 23.26, 22.69, 21.92, 14.07 ppm; IR: 1611 v(-C=C), 1201 v(C-O), 1099 v(C-O-C) cm⁻¹; HRMS: Calc for C₁₁₀H₁₇₀O₁₄ 1715.2591, Found 1715.2582.

Synthesis of compound 13.

A mixture of compound **12** (0.34 g, 0.20 mmol) and CF_3CO_2H (10 ml) in a mixture of CH_2Cl_2 and water (1:1, 40 mL) was stirred at room temperature for 4 h. The organic layer was then washed with water, stirred over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was subjected to column chromatography (CH_2Cl_2 : petrol = 1:2), and the main band was collected and reduced in volume to give **13** as a red solid (0.27 g, 0.017 mmol, 88%). R_f = 0.3 (CH_2Cl_2 :petrol 2:1); ¹H-NMR (400 MHz, CDCl₃): δ = 10.45 (s, 2H, CHO), 7.64 (d, *J* = 16 Hz, 2H), 7.53 (d, *J* = 16 Hz, 6H); 7.33 (s, 2H), 7.18 (m, 8H), 4.08 (m, 20H), 1.87 (m, 20H), 1.47 (m, 60H), 0.91 (s, 30H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ = 189.11, 156.31, 151.48, 151.19, 151.07, 150.71, 135.22, 128.53, 127.52, 127.10, 126.54, 124.08, 123.87, 123.24, 122.61, 110.93, 110.59, 110.43, 110.37, 110.13, 77.34, 77.02, 76.70, 69.56, 69.53, 69.43, 69.20, 69.12, 31.69, 31.61, 31.57, 29.53, 29.51, 29.49, 29.27, 29.26, 25.97, 25.87, 25.82, 22.68, 22.66, 22.60, 14.06, 14.04, 14.01 ppm; IR: 1591 v(-C=C), 1678, 2854 v(-CHO) cm⁻¹; HRMS: Calc. for $C_{100}H_{150}O_{12}$ 1543.1127, Found 1543.1100.

Synthesis of compound 14.

t-BuOK (0.10 g, 0.92 mmol) was added to a solution of diethyl(4-(5,5-dimethyl-1,3-dioxan-2-yl)benzyl)phosphonate (0.22 g, 0.64 mmol) and compound 13 (0.35 g, 0.23 mmol) in THF (50 mL) at 0 °C. The mixture was stirred overnight at 45 °C, and then allowed to cool to room temperature. The solvent was evaporated to dryness and the residue taken up with CH₂Cl₂.The organic layer was washed with water, stirred over anhydrous MgSO₄, filtered and the solvent evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂: petrol = 2:1), The main band was collected and taken to dryness to give 14 as a E:Z isomer mixture. The mixture was dissolved in toluene (15 mL) and I₂ was added. The reaction was heated at reflux for 12 h and then cooled to room temperature. The solution was then washed with aqueous 0.3 M Na₂S₂O₃ and water, stirred over anhydrous MgSO₄, filtered and the solvent evaporated to dryness. The residue (0.25 g, 0.13 mmol) was stirred with CF₃CO₂H (10 mL) in a mixture of CH₂Cl₂ and water (1:1, 40 mL) at room temperature for 4 h. The organic layer was then washed with water, stirred over anhydrous MgSO₄, filtered and the solvent evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂: petrol 1:1). The main band was collected and reduced in volume to give **14** as a dark red solid (0.20 g, 0.11 mmol, 49%). R_f = 0.2 (CH₂Cl₂:petrol 2:1); ¹H-NMR (400 MHz, CDCl₃): δ = 9.99 (s, 2H), 7.87 (d, J = 8 Hz, 4H), 7.66 (m, 6H), 7.51 (s, 8H), 7.17 (t, J = 14 Hz, 12H), 4.07 (t, J = 6 Hz, 20H), 1.89 (s, 20H), 1.51 (m, 60H), 0.93 (d, J = 6 Hz, 30H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta = 191.64$, 151.57, 151.20, 151.14, 151.10, 151.00, 144.29, 135.05, 130.26, 128.86, 127.76, 127.49, 127.21, 127.10, 126.81, 125.62, 124.11, 123.44, 123.25, 123.01, 110.89, 110.59, 110.52, 110.46, 110.35, 77.35, 77.03, 76.71, 69.62, 69.52, 69.47, 69.42, 31.70, 31.65, 29.53, 29.49, 29.46, 25.99, 22.70, 14.09, 14.05 ppm; IR: 2855, 1697 v(-CHO), 1594 v(-C=C) cm⁻¹; HRMS: Calc. for $C_{106}H_{162}O_{12}$ 1747.2066, Found 1747.2094.

Synthesis of compound 15.

NaOMe (excess) was added to a solution of 2,5-bis(hexyloxy)-1,4-phenylenebis(methylphosphonate diethyl ester) (320 mg, 0.54 mmol) in THF (30 mL) and the mixture was stirred at 0°C for 30 min. 4-[(Trimethylsilyl)ethynyl]benzaldehyde (240 mg, 1.19 mmol) was added and the mixture was stirred at 0°C for 30 min, and then at room temperature for a further 30 min. Water (30 mL) and MeOH (12 mL) were added to the mixture to afford a yellow precipitate. This was collected, washed (H₂O/MeOH mixture) and dried in vacuo to afford **15** as a yellow powder (215 mg, 0.41 mmol, 75%). ¹H NMR: (400 MHz, CDCl₃): δ = 7.49 (m, 10H), 7.11 (m, 4H), 4.05 (t, *J*_{HH} = 6 Hz, 4H), 3.13 (s, 2H, ≡CH), 1.88 (m, 4H), 1.54 (m, 4H), 1.39 (m, 8H) ppm, 0.92 (t, *J*_{HH} = 6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ = 151.24, 138.49, 132.45, 128.08, 126.88, 126.35, 124.71, 120.80, 110.70, 83.88, 77.85, 76.71, 69.59, 31.65, 29.46, 25.97, 22.67, 14.04 ppm; IR: 3260 v(≡C-H), 2097v(-C≡C), 1597v(-C=C) cm⁻¹; UV-Vis: 409 (3.4); HRMS: Calc. for C₃₈H₄₂O₂ 530.3185, Found 530.3188; elemental analysis (%) calcd for C₃₈H₄₂O₂: C 85.99, H 7.98, found C 85.83, H 7.96.

Synthesis of compound 16.

t-BuOK (0.14 g, 1.28 mmol) was added to a solution of diethyl(4-[(trimethylsilyl)ethynyl]benzyl)phosphonate (0.21 g, 0.64 mmol) and compound **11** (0.30 g, 0.32 mmol) in THF (50 mL) at 0 °C. The mixture was stirred overnight, the solvent evaporated to dryness and the residue taken up with CH₂Cl₂.The organic layer was washed with water, stirred over anhydrous MgSO₄, filtered and the solvent evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂:petrol 1:2). The main band was collected and reduced in volume to give **16** as an orange solid (0.17 g, 0.15 mmol, 47%). R_f = 0.7 (CH₂Cl₂:petrol 2:1); ¹H-NMR (400 MHz, CDCl₃): δ = 7.50 (m, 14H), 7.13 (m, 8H), 4.06 (t, *J*_{HH} = 6 Hz, 12H), 3.14 (s, 2H, ≡CH), 1.87 (m, 12H), 1.43 (m, 34H), 0.92 (m, 20H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ = 151.32, 151.15, 151.04, 138.60, 132.43, 128.17, 127.68, 127.49, 126.30, 126.24, 124.84, 123.70, 123.22, 120.66, 110.77, 110.57, 110.48, 83.91, 77.77, 69.63, 69.50, 31.68, 31.66, 29.53, 29.51, 26.00, 25.98, 25.96, 22.69, 22.67, 14.07, 14.04 ppm; IR: 2110 v(-C≡C), 3321 v(≡C-H), 1592 v(-C=C) cm⁻¹; UV-Vis: 458 (10.3); elemental analysis (%) calcd for C₇₈H₁₀₂O₆: C 82.49, H 9.05, found C 82.40, H 8.92.

Synthesis of compound 17.

t-BuOK (0.12 g, 1.04 mmol) was added to a solution of diethyl(4-[(trimethylsilyl)ethynyl)benzyl]phosphonate (0.18 g, 0.54 mmol) and compound **13** (0.40g, 0.26 mmol) in THF (50 mL) at 0 °C. The mixture was stirred overnight, the solvent evaporated to dryness and the residue taken up with CH₂Cl₂. The organic layer was washed with water, stirred over anhydrous MgSO₄, filtered and the solvent evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂: petrol 3:2). The main band was collected and reduced in volume to give **17** as a red solid (0.23 g, 0.13 mmol, 50%). R_f = 0.7 (CH₂Cl₂:petrol 2:1); ¹H-NMR (400 MHz, CDCl₃): δ = 7.51 (m, 18H), 7.13 (m, 12H), 4.06 (t, *J*_{HH} = 6 Hz, 20H), 3.14 (s, 2H, ≡CH), 1.88 (m, 20H), 1.45 (m, 60H), 0.93 (m, 30H) ppm; ¹³C-NMR (101MHz, CDCl₃): δ = 151.32, 151.15, 138.61, 132.43, 127.65, 126.30, 124.83, 123.36, 120.66, 110.52, 83.91, 77.77, 69.64, 69.54, 69.51, 31.70, 31.66, 29.54, 29.51, 29.50, 25.99, 25.97, 22.69, 22.67, 14.08, 14.04 ppm; IR: 2106 v(-C≡C), 3318 v(≡C-H), 1588 v(-C=C) cm⁻¹; UV-Vis: 476 (14.4); elemental analysis (%) calcd for C₁₁₈H₁₆₂O₁₀: C 81.43, H 9.38, found C 81.38 H 9.40.

Synthesis of compound 18.

t-BuOK (80 mg, 0.69 mmol) was added to a solution of diethyl(4-[(trimethylsilyl)ethynyl)benzyl]phosphonate (120 mg, 0.36 mmol) and compound **14** (0.30 g, 0.17 mmol) in THF (50 mL) at 0 °C. The mixture was stirred overnight and then water (30 mL) and MeOH (12 mL) were added to afford a yellow precipitate. This was collected, washed (H₂O/MeOH mixture) and dried in vacuo to afford compound **18** as a red powder (268 mg, 0.14 mmol, 81%). ¹H-NMR (400 MHz, CDCl₃): δ = 7.52 (m, 26H), 7.14 (m, 16H), 4.07 (t, J_{HH} = 6 Hz, 20H), 3.14 (s, 2H, ≡CH), 1.87 (m, 20H), 1.55 (m, 60H), 0.93 (m, 30H) ppm; IR: 2105 (-C≡C), 3310 v(≡C-H), 1589 v(-C=C) cm⁻¹; UV-Vis: 478 (14.3). This compound was found to be too insoluble to obtain a ¹³C NMR spectrum.

Synthesis of complex 1.

A mixture of **15** (30 mg, 0.057 mmol) and [RuCl(dppe)₂]PF₆ (244 mg, 0.21 mmol) in distilled CH₂Cl₂ (50 mL) was stirred and heated at reflux for 2 days. The reaction mixture was reduced in volume on a rotary evaporator, and added dropwise to pentane (50 mL). The resulting solid was collected, washed with pentane and dried. The solid was dissolved in CH₂Cl₂ and NEt₃ (1 mL) was added, resulting in a colour change to light red, and the solution was stirred for 2 min. The solution was filtered through a pad of Celite directly into rapidly stirring MeOH. The resulting precipitate was collected, washed with MeOH and pentane, and dried to afford **1** as an orange powder (60 mg, 0.025 mmol, 44%). ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (m, 16H), 7.40 (d, *J*_{HH} = 16 Hz, 2H), 7.30 (m, 20H), 7.19 (m, 16H), 7.14 (s, 2H), 7.10 (d, *J*_{HH} = 16 Hz, 2H), 6.99 (m, 32H), 6.65 (d, *J* = 8 Hz, 4H), 4.08 (t, *J* = 6.5 Hz, 4H), 2.70 (m, 16H), 1.96 – 1.86 (m, 4H), 1.65 – 1.53 (m, 4H), 1.45 (m, 8H), 0.98 (t, *J*_{HH} = 6.9 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 151.09, 136.68, 136.58, 136.48, 135.75, 135.66, 135.56, 134.43, 134.32, 132.45, 130.26, 129.69, 128.94, 128.84, 128.79, 127.24, 126.95, 125.83, 121.19, 114.81, 110.63, 69.77, 31.76, 30.85, 30.73, 30.61, 29.71, 29.61, 26.06, 22.74, 14.13 ppm; ³¹P-NMR (162 MHz, CDCl₃): δ = 49.43 ppm; IR: 2049 v(-C≡C), 1589v(C=C) cm⁻¹; UV-Vis: 463 [7.7]; HRMS Calc. for C₁₄₄H₁₃₉P₈N³⁵ClO₂Ru₂: 2400.6482, Found 2400.6548 ([M-CI+CH₃CN]⁺); elemental analysis (%) calcd for C₁₄₂H₁₃₆Cl₂O₂P₈Ru₂: C 71.20 H 5.72, found C 71.02, H 5.80.

Synthesis of complex 2.

A mixture of compound **16** (50 mg, 0.044 mmol) and [RuCl(dppe)₂]PF₆ (190 mg, 0.176 mmol) in CH₂Cl₂ (50 mL) was heated at reflux for 2 days. The reaction mixture was reduced on a rotary evaporator, and added dropwise to pentane (50 mL). The resulting solid was collected, washed with pentane and dried in vacuo. The solid was dissolved in CH₂Cl₂ (15 mL) and NEt₃ (1 mL) was added, resulting in a colour change to light red. The mixture was stirred for 2 min, then filtered through a pad of Celite directly into rapidly stirring MeOH (60 mL). The resulting precipitate was collected, washed with MeOH and pentane, and dried to afford complex **2** as a dark red powder (67 mg, 0.022 mmol, 50%). ¹H NMR (400 MHz, CDCl₃): $\delta = \delta 7.58 - 7.48$ (m, 20H), 7.40 (d, *J* = 16 Hz, 2H), 7.30 (m, 20H), 7.19 (m, 20H), 7.14 (s, 2H), 7.10 (d, *J*_{HH} = 16 Hz, 2H), 6.99 (m, 32H), 6.65 (d, *J*_{HH} = 8 Hz, 4H), 4.08 (t, *J*_{HH} = 6 Hz, 12H), 2.70 (s, 16H), 1.90 (m, 12H), 1.57 (m, 10H), 1.42 (m, 26H), 1.02 - 0.87 (m, 18H) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 151.11$, 151.01, 136.61, 136.51, 136.41, 135.68, 135.58, 135.48, 134.40, 134.28, 132.35, 130.24, 129.70, 129.03, 128.82, 128.78, 127.49, 127.44, 127.22, 127.12, 126.94, 125.83, 123.25, 123.11, 121.09, 114.76, 110.60, 110.50, 110.40, 77.22, 69.61, 69.53, 31.74, 31.70, 30.81, 30.69, 30.57, 30.45, 29.58, 29.53, 26.06, 25.98, 22.73, 22.70, 14.12, 14.10 ppm; ³¹P-NMR (162 MHz, CDCl₃): $\delta = 49.4$ ppm; IR: 2050 v(-C≡C), 1587 v(-C=C) cm⁻¹; UV-Vis: 476 (11.8); MS: 3010 ([M - 2CI + 2MeCN]⁺), 1505 ([M - 2CI + 2MeCN]²⁺); HRMS Calc. for C₁₈₆H₂₀₂N₂O₆P₈Ru₂: 1507.0895, Found 1507.1837 ([M - 2CI + 2CH₃CN]²⁺); elemental analysis (%) calcd for C₁₈₂H₁₉₆Gl₂O₆P₈Ru₂: C 72.86, H 6.58, found C 72.42, H 6.50.

Synthesis of complex 3.

A mixture of compound **17** (60 mg, 0.034 mmol) and [RuCl(dppe)₂]PF₆ (148 mg, 0.14 mmol) in CH₂Cl₂ (50 mL) was stirred and heated at reflux for 2 days. The reaction mixture was reduced in volume on a rotary evaporator, and added dropwise to stirring pentane (50 mL). The resulting solid was collected, washed with pentane and dried in vacuo. The solid was dissolved in CH₂Cl₂ (15 mL) and NEt₃ (1 mL) added, resulting in a colour change to light red. The mixture was stirred for 2 min, and then filtered through a pad of Celite directly into rapidly stirring MeOH (60 mL). The resulting precipitate was collected, washed with MeOH and pentane, and dried to afford complex **3** a dark red powder (61 mg, 0.017 mmol, 50%). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 – 7.46 (m, 23H), 7.40 (m, 3H), 7.29 (m, 20H), 7.20 (m, 23H), 7.14 (m, 2H), 7.10 (m, 3H), 6.99 (m, 32H), 6.65 (d, *J*_{HH} = 8 Hz, 4H), 4.07 (t, *J*_{HH} = 6 Hz, 20H), 2.70 (m, 16H), 1.90 (m, 20H), 1.57 (m, 20H), 1.42 (m, 40H), 0.96 (m, 30H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 151.13, 151.02, 136.62, 136.52, 136.42, 135.69, 135.59, 135.49, 134.40, 134.28, 132.35, 130.24, 129.70, 129.04, 128.82, 128.79, 127.54, 127.50, 127.46, 127.22, 127.12, 126.94, 125.84, 123.28, 123.11, 121.10, 114.76, 110.62, 110.52, 110.42, 77.23, 69.62, 69.53, 31.74, 31.70, 30.81, 30.70, 30.58, 30.46, 29.70, 29.58, 29.54, 26.06, 25.99, 22.73, 22.70, 14.12, 14.09 ppm; ³¹P-NMR (162 MHz, CDCl₃): δ 49.4 ppm; IR: 2050 v(-C=C), 1587 v(-C=C) cm⁻¹; UV-Vis: 487 (17.5); MS: 3616 ([M - 2CI + 2MeCN]⁺), 1808 ([M - 2CI + 2MeCN]²⁺); HRMS Calc for C₂₂₂₆H₂₆₂N₂O₁₀P₈Ru₂: 1809.3146, Found 1809.4150 ([M - 2CI + 2CH₃CN]²⁺); elemental analysis (%) calcd for C₂₂₂₂H₂₅₆Cl₂O₁₀P₈Ru₂: C 73.96, H 7.16, found C 73.96, H 6.94.

Synthesis of complex 4.

A mixture of compound **18** (60 mg, 0.031 mmol) and $[RuCl(dppe)_2]PF_6$ (133 mg, 0.12 mmol) in CH₂Cl₂ (50 mL) was heated at reflux for 2 days. The reaction mixture was reduced on a rotary evaporator, and added dropwise to stirring pentane (50 mL). The resulting solid was collected, washed with pentane and dried in vacuo. The solid was dissolved in CH₂Cl₂ (15 mL) and NEt₃ (1 mL) was added, resulting in a colour change to light red. The mixture was stirred for 2 min, and then filtered through a pad of Celite directly into rapidly stirring MeOH (60 mL). The resulting precipitate was collected, washed with MeOH and pentane, and dried to afford **4** as a dark red powder (55 mg, 0.014 mmol, 47%). ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (m, 32H), 7.28 (m, 22H), 7.23 – 7.12 (m, 28H), 7.07 (m, 5H), 7.00 (m, 31H), 6.65 (d, *J*_{HH} = 7 Hz, 4H), 4.08 (s, 20H), 2.70 (s, 16H), 1.89 (m, 20H), 1.57 (m, 20H), 1.40 (m, 40H), 1.01 – 0.88 (m, 30H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 151.20, 151.13, 151.10, 137.11, 136.91, 136.60, 136.50, 136.40, 135.69, 135.59, 135.49, 134.40, 134.27, 131.70, 130.28, 129.93, 128.84, 128.79, 128.30, 127.73, 127.56, 127.51, 127.45, 1223, 126.95, 126.83, 126.53, 125.98, 125.82, 123.44, 123.30, 123.22, 123.14, 114.72, 110.53, 77.23, 69.63, 69.52, 31.70, 30.81, 30.69, 30.57, 29.70, 29.54, 26.01, 25.98, 22.69, 14.08 ppm; ³¹P-NMR (162 MHz, CDCl₃): δ 49.4 ppm; IR: 2050 δ (-C=C), 1586 v(-C=C) cm⁻¹; UV-Vis: 484 (18.0); MS: 1910 ([M - 2Cl + 2MeCN]²⁺); HRMS Calc for C₂₄₂H₂₇₄N₂O₁₀P₈Ru₂: 1911.3617, Found 1911.0660 ([M - 2Cl + 2CH₃CN]²⁺); elemental analysis (%) calcd for C₂₃₈H₂₆₈Cl₂O₁₀P₈Ru₂: C 75.04, H 7.09, found C 74.90, H 6.97.

NMR spectra

2-(4-bromo-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane (5)

4-(5,5-dimethyl-1,3-dioxan-2-yl)-2,5-bis(hexyloxy)benzaldehyde (6)

2-(4-(bromomethyl)-2,5-bis(hexyloxy)phenyl)-5,5-dimethyl-1,3-dioxane (8)

Diethyl(4-(5,5-dimethyl-1,3-dioxan-2-yl)-2,5-bis(hexyloxy)benzyl)phosphonate (9)

S15

S17

S19

S22

Linear optical data.^[a]

Complex	$λ_{max}$ (nm) ε (10 ⁴ M ⁻¹ cm ⁻¹)
1	463 [7.7]
2	476 [11.8]
3	487 [17.5]
4	484 [18.0]
15	406 [5.3]
16	458 [10.3]
17	476 [14.2]
18	478 [14.5]

^[a] Solutions in CH₂Cl₂. [Ru] = *trans*-RuCl(dppe)₂

Cyclic voltammetry.

Measurements were carried out in CH₂Cl₂ at room temperature using Pt disc working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, such that the ferrocene/ferrocenium redox couple was located at 0.56 V ($i_{pa}/i_{pc} = 1, \Delta E_p \sim 0.09$ V).

Spectroelectrochemistry studies.

Z-scan studies.

Complexes **1** and **2** were dissolved in dichloromethane at concentrations equal to 0.2% (w/w), whereas **3** and **4** were dissolved in the same solvent at concentrations equal to 0.1% (w/w). The solutions were placed in 1 mm path length optical glass cells. The measurements were carried out in a relative manner, calibrating all the data against Z-scans carried out on a fused silica plate and taking into account the nonlinear signals obtained on a cell containing pure solvent, as described in reference ⁷. The tunable excitation was achieved by directing the beam from a Quantronix Integra Ti:sapphire regenerative amplifier (output wavelength 800 nm, pulse duration 130 fs, repetition rate 1 kHz) to an optical parametric amplifier (OPA, a Quantronix Palitra). The open-aperture (OA) scans were fitted with theoretical traces, corresponding to two-photon absorption (2PA) in the range 700-1000 nm and to three-photon absorption (3PA) in the range 1050-1500 nm.

The real (blue) and imaginary (red) parts of the third-order hyperpolarizability of complex 1

The real (blue) and imaginary (red) parts of the third-order hyperpolarizability of complex 2

The real (blue) and imaginary (red) parts of the third-order hyperpolarizability of complex 4

- 1. F. Langa, M. J. Gomez-Escalonilla and J.-M. Rueff, *Chem. Eur. J.*, 2005, **11**, 4405 4415.
- 2. X. Zhu, M. C. Traub and D. A. van den Bout, *Macromolecules*, 2012, 45, 5051 5057.
- 3. N. Armaroli, G. Accorsi and J. N. Clifford, Chem. Asian J., 2006, 1, 564 574.
- 4. W. B. Austin, N. Bilow, W. J. Kelleghan and K. S. Y. Lau, J. Org. Chem., 1981, 46, 2280-2286.
- 5. S. Chakraborty, A. Keightley and V. Dusevich, *Chem. Mater.*, 2010, 22, 3995-4006.
- (a) H. Zhao, P. V. Simpson, A. Barlow, G. J. Moxey, M. Morshedi, N. Roy, R. Philip, C. Zhang, M. P. Cifuentes and M. G. Humphrey, *Chem. Eur. J.*, 2015, **21**, 11843-11854; (b) M. Morshedi, P. V. Simpson, B. Babgi, K. A. Green, M. S. Jennaway, M. P. Cifuentes and M. G. Humphrey, *Inorg Synth*, in press.
- L. Mazur, R. Kolkowski, K. Matczyszyn, F. Mathevet, P. Rannou, A.-J. Attias and M. Samoc, *Opt. Mater.*, 2012, 34, 1682-1685.