Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Preparation of difluoromethylthioethers through difluoromethylation of disulfides using TMS-CF₂H

Joseph L. Howard, Christiane Schotten, Stephen Alston and Duncan L. Browne*

School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff CF10 3AT, UK

dlbrowne@cardiff.ac.uk

eneral Methods	S2
Synthesis of difluoromethyltrimethylsilane (TMSCF ₂ H)	S2
Synthesis of thiols Synthesis of disulfides	S3
Spectroscopic Data	
Disulfides	
Difluoromethylthioethers	S27
References	S39

General Methods

Reactions were performed in oven-dried glassware under a nitrogen atmosphere.

Caesium fluoride was dried at 200 °C, 5 mbar for 12 h prior to use. N-Methyl-2-pyrrolidone (NMP) was dried over oven-dried molecular sieves (4 Å) prior to use. Diglyme was distilled from calcium hydride before use. If not stated below, chemicals were commercially available and used without further purification.

¹H and ¹³C NMR spectra were obtained on Bruker 400 UltrashieldTM and Bruker 500 MHz spectrometers with chloroform-d as deuterated solvent. These were performed without ¹⁹F decoupling, so fluorine coupling is observed. ¹⁹F NMR spectra were obtained using an Oxford Instruments 300 MHz spectrometer. The obtained chemical shifts δ are reported in ppm and are referenced to the residual solvent signal. Spin-spin coupling constants J are given in Hz.

High resolution mass spectral (HRMS) data were obtained on a Thermo Scientific LTQ Orbitrap XL by the EPSRC UK National Mass Spectrometry Facility at Swansea University or on a Waters MALDI-TOF mx.

Infrared spectra were recorded on a Shimadzu IR-Affinity-1S FTIR spectrometer

Melting points were measured using a Gallenkamp apparatus and are reported uncorrected.

The microwave used for the synthesis of thiols was a CEM Discover SP.

Synthesis of difluoromethyltrimethylsilane (TMSCF₂H)

Following a known procedure¹ trimethylsilanetrifluoromethane (24.0 g, 169 mmol) was added slowly over 20 min to an ice cold solution of sodium borohydride (2.22 g, 59 mmol, 0.43 eq) in dry diglyme (50 mL). After 2 h the ice bath was removed and the reaction stirred for another 18 h. The reaction mixture was distilled twice at atmospheric pressure (set temperature 170 °C and 90 °C) to yield 13.1 g (62%, 105.4 mmol) of TMSCF₂H. Data in accordance with literature values.²

¹H NMR (400 MHz, CDCl₃) δ 5.84 (t, *J* = 46.2 Hz, 1H), 0.17 (s, 9H).

¹³C NMR (300 MHz, CDCl₃) δ 124.1 (t, J = 253.7 Hz), -5.4.

¹⁹F NMR (283 MHz, CDCl₃) δ -139.79 (d, *J* = 46.0 Hz).

IR: 1256, 1080, 991, 862 cm⁻¹

Synthesis of thiols

Following a modified literature procedure³, a microwave vial was charged with the corresponding alkyl bromide (35 mmol), thiourea (1.2 eq, 42 mmol, 3.2 g) and ethanol (15 mL) and irradiated to 140 °C for 30 min. Then NaOH (3 eq, 4.2 g, 105 mmol) and water (7 mL) were added and the solution was heated again to 140 °C for 10 min. The reaction mixture was neutralised with aqueous HCl and the product extracted with diethylether (3 x 50 mL). The organic layers were combined and washed with water (20 mL), dried over anhydrous MgSO₄ and the solvent removed under reduced pressure. The product was further purified by column chromatography (SiO₂ petroleum ether/ ethyl acetate).

2-bromobenzylmercaptan (3.026 g, 43 %, 14.9 mmol)

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.37 – 7.31 (m, 1H), 7.28 – 7.22 (m, 1H), 7.11 – 7.05 (m, 1H), 3.80 (d, J = 8.2 Hz, 2H), 1.99 (t, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 133.1, 130.1, 128.8, 128.0, 123.6, 29.7. IR: 1466, 1435, 1026, 748, 725 cm⁻¹. HRMS calcd for C₇H₆Br₁S₁ [M-H]⁺: 200.9368, found: 200.9366.

4-bromobenzylmercaptan (1.910 g, 27 %, 9.4 mmol)

¹H NMR (400 MHz, CDCl³) δ 7.50 - 7.44 (m, 1H), 7.26 – 7.19 (m, 2H), 3.72 (d, J = 3.7 Hz, 2H), 1.84 (t, J = 7.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 140.0, 131.6 (d, J = 18.0 Hz), 129.7 (d, J = 21.5 Hz), 120.7, 28.3.

IR: 1481, 1072, 1011, 818, 494 cm⁻¹.

HRMS calcd for $C_7H_6Br_1S_1 [M-H]^+$: 200.9368, found: 200.9366.

Synthesis of disulfides

Standard procedure for the synthesis of disulfides from the corresponding thiol:

Following a modified literature procedure⁴, a suspension of 1,3-dibromo-5,5dimethylhydantoin (1.073 g, 3.75 mmol) in chloroform (10 mL) was added dropwise to a solution of the thiol (15 mmol) in chloroform (5 mL). The suspension was stirred at room temperature for 1 h and then washed with a saturated NaHCO₃ solution (2 x 15 mL) and brine (15 mL). The organic layer was dried over anhydrous MgSO₄ and the solvent removed under reduced pressure to yield the corresponding disulfide.

Bis(3-methoxyphenyl)disulfide⁵ (2.040 g, 97%, 7.3 mmol), colourless oil ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 2H), 7.19 – 7.10 (m, 4H), 6.89 – 6.75 (m, 2H), 3.82 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 138.7, 130.4, 120.0, 113.6, 113.0, 55.8 IR: 2932, 2924, 1568, 1468, 1221, 851, 766 cm⁻¹ HRMS (EI): [C₁₄H₁₄O₂S₂] calc. 278.0435, found 278.0434

Bis(4-methoxyphenyl)disulfide⁵ (1.815 g, 87%, 6.5 mmol), brown oil

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.9 Hz, 4H), 6.88 (d, *J* = 8.9 Hz, 4H), 3.84 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 160.3, 133.1, 128.8, 115.0, 55.8 IR: 2932, 2832, 1587, 1485, 1171, 1028, 817, 520 cm⁻¹ HRMS (EI): [C₁₄H₁₄O₂S₂] calc. 278.0435, found 278.0438

Bis(3-(trifluoromethyl)phenyl)disulfide⁶ (2.382 g, 89%, 6.7 mmol), yellow oil

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 2H), 7.67 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.45 (t, *J* = 7.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.1, 132.1 (q, *J* = 32.7 Hz), 131.0, 130.1, 124.7 (dd, *J* = 6.5, 3.7 Hz), 124.6 - 124.8 (m).

¹⁹F NMR (283 MHz, CDCl₃) δ -63.14 (s).

IR: 1317, 1119, 1098, 791, 692 cm⁻¹

HRMS (EI): [C₁₄H₈S₂F₆] calc353.9972, found 353.9973

Bis(4-chlorophenyl)disulfide⁵ (1.944 g, 91%, 6.8 mmol), white solid (mp: 74-75 $^{\circ}$ C, chloroform)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (m, 4H), 7.33 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 135.5, 134.1, 129.8, 129.7.

IR: 1468, 1377, 810, 486 cm⁻¹

HRMS (EI): [C12H8S2Cl2] calc 285.9444, found 285.9446

Bis(4-bromophenyl)disulfide⁵ (2.601 g, 92%, 6.9 mmol), white solid (mp: 91-93 °C, chloroform)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (m, 4H), 7.38 (m, 4H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 136.1, 132.7, 129.8, 122.0.

IR: 1464, 1377, 1067, 810, 494 cm⁻¹

Bis(3-fluorophenyl)disulfide (1.680 g, 88%, 6.6 mmol), colourless oil ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.10 (m, 6H), 6.88 – 6.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, J = 249.5 Hz), 139.2 (d, J = 7.1 Hz), 131.0 (d, J = 8.4 Hz), 123.0 (d, J = 3.0 Hz), 114.8 (d, J = 21.4 Hz), 114.4 (d, J = 24.2 Hz). ¹⁹F NMR (283 MHz, CDCl₃) δ -111.40 (s). IR: 1578, 1470, 1213, 872, 772, 673, 494 cm⁻¹ HRMS (EI): [C₁₂H₈F₂S₂] calc. 254.0036, found 254.0036

Dicyclopentyldisulfide (1.411 g, 89%, 6.7 mmol), colourless oil

¹H NMR (400 MHz, CDCl₃) δ 3.28 (dq, *J* = 7.1, 5.5 Hz, 2H), 2.10 – 1.86 (m, 4H), 1.84 – 1.49 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 50.8, 33.5, 25.1

IR: 2955, 2862, 1443, 1235, 481 cm⁻¹

HRMS (EI): $[C_{10}H_{10}S_2]$ calc. 202.0850, found 202.0850

Bis(4-chlorobenzyl)disulfide⁷ (2.199 g, 93%, 7.0 mmol), white solid (mp: 62-63 °C, chloroform)

¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 4H), 7.16 (m, 4H), 3.57 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2, 133.8, 131.1, 129.1, 42.9

IR: 1489, 1088, 1015, 837, 505, 494 cm⁻¹

Bis(2-bromobenzyl)disulfide⁸ (1.164 g, 82%, 2.88 mmol), white solid (mp: 86-87 °C, chloroform) ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.21 – 7.16 (m, 4H), 7.11 – 7.02 (m, 2H), 3.71 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 133.5, 132.1, 129.6, 127.8, 125.0, 44.1 IR: 1435, 1026, 756 648, 571, 440 cm⁻¹ HRMS (EI): [C₁₄H₁₂S₂Br₂] calc. 401.8747, found 401.8752

Didecyldisulfide⁸ (1.238 g, 90%, 3.6 mmol), colourless oil

1,3-dibromo-5,5-dimethylhydantoin (0.574 g, 2 mmol) was added slowly to a solution of 1decanethiol (1.394 g, 8 mmol) in chloroform (8 mL). The suspension was stirred at room temperature for 2 h, filtered and the solvent removed under reduced pressure to yield didecyldisulfide.

¹H NMR (400 MHz, CDCl₃) δ 2.80 – 2.65 (m, 4H), 1.71 (dt, *J* = 14.9, 7.2 Hz, 4H), 1.48 – 1.20 (m, 28H), 0.92 (t, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 39.6, 32.4, 30.0, 30.0, 29.8, 29.7, 29.7, 29.0, 23.1, 14.6. IR: 2922, 2847, 1454, 762 cm⁻¹

HRMS (EI): [C₂₀H₄₂S₂] calc. 346.2728, found 346.2727

Bis(2,4-dimethylphenyl)disulfide (1.932 g, 93%, 7.0 mmol), yellow oil ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.9 Hz, 2H), 7.07 (s, 2H), 7.01 (d, *J* = 7.5 Hz, 2H), 2.45 (s, 6H), 2.37 (s, 6H). ^{13}C NMR (101 MHz, CDCl₃) δ 138.7, 138.3, 132.8, 131.7, 130.9, 127.8, 21.5, 20.6 IR: 1472, 1045, 806, 546 cm $^{-1}$ HRMS (EI): [C₁₆H₁₈S₂] calc. 274.0850, found 274.0852

Bis(2-bromophenyl)disulfide (0.895 g, 80%, 2.4 mmol), white solid (mp: 95-96 °C, chloroform)

A suspension of 1,3-dibromo-5,5-dimethylhydantoin (0.429 g, 1.5 mmol) in chloroform (5 mL) was added dropwise to a solution of 2-bromothiophenol (1.126 g, 6 mmol) in chloroform (3 mL). The suspension was stirred at room temperature for 1 h and then washed with a saturated NaHCO₃ solution (2 x 15 mL) and brine (15 mL). The organic layer was dried over anhydrous MgSO₄ and solvent removed under reduced pressure to yield Bis(2-bromophenyl)disulfide.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (m, 4H), 7.23 – 7.15 (m, 2H), 7.00 (td, *J* = 7.8, 1.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 136.5, 133.4, 128.7, 128.4, 127.3, 121.4

IR: 1420, 1011, 733, 648 cm⁻¹

HRMS (EI): [C₁₂H₈S₂Br₂] calc. 373.8434, found 373.8437

$$\begin{split} \textbf{Bis(4-bromobenzyl)disulfide} & (0.9703 \text{ g}, 98\%, 2.4 \text{ mmol}), \text{ colourless oil} \\ ^{1}\text{H} \text{ NMR} & (400 \text{ MHz}, \text{CDCI}_{3}) \ \bar{\delta} \ 7.47 - 7.41 \ (m, 4\text{H}), \ 7.13 - 7.05 \ (m, 4\text{H}), \ 3.55 \ (s, 4\text{H}). \\ ^{13}\text{C} \text{ NMR} & (126 \text{ MHz}, \text{CDCI}_{3}) \ \bar{\delta} \ 136.5, \ 131.8, \ 131.1, \ 121.6, \ 42.7 \\ \text{IR:} \ 1481, \ 1065, \ 1011, \ 826, \ 802, \ 494, \ 401 \ \text{cm}^{-1}. \\ \text{HRMS} \ \text{calcd} \ \text{for} \ C_{14}\text{H}_{11}\text{Br}_2\text{S}_2 \ [\text{M-H}]^{+}: \ 400.8663, \ \text{found:} \ 400.8657. \end{split}$$

1,2-di(naphthalen-2-yl)disulfide⁹ (1.472 g, 46%, 4.6 mmol), pale yellow crystals (mp: 141-142 °C, chloroform).

Synthesised by the standard procedure on a 10 mmol scale.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 1.7 Hz, 1H), 7.83 – 7.77 (m, 2H), 7.76 – 7.71 (m, 1H), 7.62 (dd, J = 8.7, 1.9 Hz, 1H), 7.50 – 7.42 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 134.4, 133.6, 132.6, 129.1, 127.9, 127.6, 126.9, 126.6, 126.4, 125.8.

IR: 2970, 1738, 1366, 1352, 1229, 1217, 897, 862, 810, 735, 629, 475 cm⁻¹.

HRMS (EI+): [C₂₀H₁₄S₂]⁺: calcd. 318.0537, found 318.0543

Synthesis of difluoromethyl thioethers

Standard procedure for the synthesis of difluoromethyl thioethers from the corresponding disulfide:

An oven-dried flask was charged with caesium fluoride (0.608 g, 4 mmol), the disulfide (0.5 mmol) and flushed with nitrogen. *N*-Methyl-2-pyrrolidone (1 mL) was added and the solution cooled to 0 °C. Difluoromethyltrimethylsilane (0.248 g, 4 mmol) was added dropwise. The suspension was stirred at 0 °C for 1 h and then at rt for a further 19 h. Trifluorotoluene (0.041 mL, 0.33 mmol) was added as a standard and conversion determined by ¹⁹F-NMR spectroscopy. The spectra were referenced to trifluorotoluene at δ = -63.72 and the conversion determined by comparing the integral of the desired product peak (doublet at δ = -94 ppm) to the integral of the peak due to the standard (δ = -63.72). Other common materials noted in the ¹⁹F NMR of the crude reaction mixture are TMSCF₂H @ -139 ppm and CF₂H₂@ -140 ppm.

Isolation: The NMP was removed manually by a modified counter-current extraction method with diethyl ether (4 x 10 mL) and water (4 x 10 mL).¹⁰ The organic layer was dried over anhydrous MgSO₄ and the solvent removed under reduced pressure. The crude

product was purified by flash column chromatography eluting with petroleum ether and ethyl acetate. Isolation of the products was complicated by the volatility of the product. To exemplify the volatility of the products a mixed column fraction containing ~ a 1:1 mixture of ArSCF₂H and the ArSH byproduct (as analysed by ¹H NMR) were subject to rotary evaporation under standard operating conditions for 1 hour. Following this treatment, reevalution by ¹H NMR showed that there was none of the ArSCF₂H remaining. Alas in the following example we have isolated the material with solvent impurities

SCF₂H

(4-chlorophenyl)(difluoromethyl)sulfane, 10 (0.065 g, 0.33 mmol, 67%), colourless oil ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 6.81 (t, *J* = 56.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 136.7, 136.5, 129.6, 124.3, 120.4 (t, J = 275.8 Hz).

¹⁹F NMR (283 MHz, CDCl₃) δ -95.09 (d, J = 54.1 Hz)).

IR: 2361, 1574, 1477, 1319, 1296, 1065, 1038, 907, 826, 733, 501 cm⁻¹.

HRMS (ASAP+): $[C_7H_5F_2SCI]^+$ calcd. 193.9769, found: 193.9771.

(difluoromethyl)(naphthalen-2-yl)sulfane, 18 (0.065 g, 0.31 mmol, 62%), colourless oil ¹H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.80 – 7.69 (m, 3H), 7.54 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H), 6.78 (t, J = 56.9 Hz, 1H).

¹³C NMR (75 MHz, CDCl3) δ 135.5, 133.5, 131.5, 129.1, 128.0, 127.8, 127.5, 126.9, 125.6, 123.3, 121.2 (t, J = 275.6 Hz).

¹⁹F NMR (376 MHz, CDCl3) δ -91.09 (d, J = 56.8 Hz, 2F).

IR: 1501, 1318, 1296, 1061, 1030, 814, 754, 475 cm⁻¹.

HRMS (EI+): $[C_{11}H_8F_2S]^+$ calcd. 210.0315, found: 210.0316

Spectroscopic Data

Disulfides

280 240 200 160 120 80 60 40 20 0 -20 -40 -60 -80 -120 -160 -200 -240 -280

280 240 200 160 120 80 60 40 20 0 -20 -40 -60 -80 -120 -160 -200 -240 -280

Difluoromethylthioethers

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Purified product

<-95.01 <-95.17

S28

¹⁹F NMR spectra of crude reaction mixtures with trifluorotoluene standard to determine conversion.

References

- Tyutyunov, V. E. Boyko and S. M. Igoumnov, *Fluor. notes*, 2011, **1**, 19– 21.
- G. K. S. Prakash, J. Hu and G. a. Olah, *J. Org. Chem.*, 2003, 68, 4457–4463.
- M. M. Thuo, W. F. Reus, C. a. Nijhuis, J. R. Barber, C. Kim, M. D.
 Schulz and G. M. Whitesides, *J. Am. Chem. Soc.*, 2011, **133**, 2962–2975.
- 4 A. Khazaei, M. A. Zolfigol and A. Rostami, *Synthesis*, 2004, 2959–2961.
- 5 J. K. Vandavasi, W.-P. Hu, C.-Y. Chen and J.-J. Wang, *Tetrahedron*, 2011, **67**, 8895–8901.
- H. J. Reich, W. W. Willis and P. D. Clark, *J. Org. Chem.*, 1981, 46, 2775–2784.
- D.-Y. Zhou, H.-Y. Dou, C.-X. Zhao and Q.-Y. Chen, *J. Fluor. Chem.*, 2006, **127**, 740–745.
- A. Reza Kiasat, B. Mokhtari, F. Kazemi, S. Yousefi and M. Javaherian,
 J. Sulfur Chem., 2007, 28, 171–176.
- 9 S. C. Banfield, A. T. Omori, H. Leisch and T. Hudlicky, *J. Org. Chem.*, 2007, **72**, 4989–4992.
- 10 A. Frontier, http://chem.chem.rochester.edu/~nvd/documents/Efficient_extraction_of _highly_polar_solvents_from_reaction_mixtures.doc