Supporting Information

Table of Contents

1. General Information	2
2. Typical Synthetic Procedure and Datas for Peng-Phoses	3
3. ³¹ P NMR Experiments of (S, R_S) -P5 in the Cross RC Reaction	9
4. Optimization of Xiao-Phoses and Wei-Phoses in the Cross RC	
Reaction1	1
5. Typical Procedure for the Peng-Phos Catalyzed Cross RC	
Reaction of Active Alkenes and Acrolein1	3
6. X-ray crystal structure for 3g and (<i>S</i> , <i>R</i> _{<i>S</i>})-P91	13
7. Experimental Procedure for the Transformations of 3a1	.4
8 General Datas and HPLC Spectra for 3, 4, 5, 6, 7, 8, 9, 101	17
9. References	64
10. 1H, 13C, 31P Spectra	55

1. General Information

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere; materials obtained from commercial suppliers were used directly without further purification. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker 400 (or 500) MHz spectrometer in chloroform-d₃. ³¹P NMR were recorded on a Bruker 300 MHz spectrometer in chloroform-d₃. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). The data is being reported as (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). Noteworthy, splitting signals between ¹³C nucleus and ¹³P nucleus in some Peng-Phoses were difficult to distinguish and these ¹³C NMR signals were reported as singlet entirely. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer.

Trichloromethane (CHCl₃), carbon tetrachlorid, dichloromethane, dichloroethane and ethyl acetate were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use; Ph₂PCH₃ was purchased from Acros Company.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate.

2. Typical Synthetic Procedure and Datas for Peng-Phoses.

Typical Procedure for the Preparation of Methylphosphonic Lithium

 $Ph_2PCH_3 \qquad \frac{nBuLi (1 equiv)}{TMEDA (1 equiv), RT} \qquad Ph_2PCH_2Li$

The diphenyl methyl phosphonic lithium was prepared according to the literature^[1]: According to Peterson's method, 5 mmol *n*BuLi (1.6 M in hexane) was slowly added to a Schlenk tube that containing TMEDA (5.0 mmol), the mixture was stirred for 30 minutes. Then methyldiphenylphosphane (5 mmol) was added slowly to the solution of *n*BuLi and TMEDA. The mixture was stirred until a bright yellow precipitate was generated. At last, a solution of methyl phosphonic lithium was formed by the addition of few milliliters of THF.

A solution of diphenyl methyl phosphonic lithium (1.5 mmol) that containing TMEDA (1.5 mmol) in anhydrous THF was added to the solution of corresponding chiral sulfinyl imines^[2] (1.0 mmol chiral sulfinyl imines in 2 mL anhydrous THF) at

room temperature. The mixture was stirred until completion of imine as indicated by TLC, followed by hydrolysis with 10 mL of water and diluted with EtOAc. The organic layer was separated, the aqueous phase was extracted three times with EtOAc (3X10 mL). The combined organic phases were dried over MgSO₄ and the solvents were removed in vacuo. The residue was purified by silica gel chromatography using petroleum ether/EtOAc as the eluent to afford the desired Peng-Phoses.

Procedure for the Synthesis (S,R_S) -P9.

A stirred solution of (S,R_S) -**P5** (0.3 mmol), KOH (0.6 mmol), tetrabutyl ammonium bromidein (0.12 mmol) in ether (2 mL) was added CH₃I (0.6 mmol) slowly. The mixture was stirred at 25 °C until completion of (S,R_S) -**P5** as indicated by TLC, after completion of the reaction, the reaction mixture was directly purified by silica gel chromatography using petroleum ether/EtOAc as the eluent to afford the desired (S,R_S) -**P9** in 19% yield (noteworthy, a great deal of phosphonium salts were obtained during the methylation process).

General Data for (*S*,*R*_{*S*})-P1~9

(*S*,*R*_{*S*})-**P1**; White solid. m.p. = 159-161 °C; $[α]_D^{20} = + 20.9$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.38–7.35 (m, 1H), 7.31–7.10 (m, 17H), 4.71–4.64 (m, 1H), 3.82 (d, *J* = 6.0 Hz, 1H), 2.61–2.55 (m, 1H), 2.47–2.41 (m, 1H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 141.06, 140.41, 141.09 (d, *J*_{*CP*}= 4.9 Hz), 137.90 (d, *J*_{*CP*}= 12.5 Hz), 137.35 (d, *J*_{*CP*}= 12.8 Hz), 132.64 (d, *J*_{*CP*}= 19.2 Hz), 132.26 (d, *J*_{*CP*}= 18.9 Hz), 130.23, 129.36, 128.55, 128.43, 128.40, 128.33, 128.12, 128.00, 127.36, 127.01, 126.56, 56.25, 54.30 (d, *J*_{*CP*}= 16.8 Hz), 38.52 (d, *J*_{*CP*}= 15.4 Hz), 22.41; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.36 ppm; HRMS (ESI) m/z calcd. for C₃₀H₃₂NNaOPS [M+Na] ⁺ = 508.1834, found = 508.1845; IR (neat): v 3231, 3051, 2961, 2922, 1476, 1430, 1398, 1366, 1181, 1065, 1044, 1031, 894, 771, 744, 695 cm⁻¹.

(*S*,*R*_{*S*})-**P2**; White solid. m.p. = 127-129 °C; $[\alpha]_D^{20} = + 17.6$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.36–7.33 (m, 1H), 7.28–7.12 (m, 14H), 6.82 (d, *J* = 8.4 Hz, 2H), 4.74–4.67 (m, 1H), 3.83–3.82 (m, 4H), 2.61–2.55 (m, 1H), 2.45–2.40 (m, 1H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.56, 140.72, 140.36 (d, *J*_{*CP*}= 5.0 Hz), 137.89 (d, *J*_{*CP*}= 12.5 Hz), 137.41 (d, *J*_{*CP*}= 13.1 Hz), 132.72 (d, *J*_{*CP*}= 19.5 Hz), 132.23 (d, *J*_{*CP*}= 18.7 Hz), 130.43, 128.53, 128.36, 128.29, 127.79, 127.35, 126.44, 113.55, 56.25, 55.13, 54.11 (d, *J*_{*CP*}= 16.7 Hz), 38.60 (d, *J*_{*CP*}= 15.2 Hz), 22.46; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.36 ppm; HRMS (ESI) m/z calcd. for C₃₁H₃₄NNaO₂PS [M+Na] ⁺ = 538.1940, found = 538.1954; IR (neat): v 3224, 2950, 2927, 1607, 1512, 1478, 1431, 1391, 1290, 1243, 1176, 1061, 1042, 999, 897, 834, 778, 738 cm⁻¹.

(*S*,*R*_{*S*})-**P3**; White solid. m.p. = 160-162 °C; $[α]_D^{20} = + 8.3$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.49–7.46 (m, 2H), 7.41–7.35 (m, 2H), 7.32–7.28 (m, 3H), 7.23–7.20 (m, 6H), 7.17–7.10 (m, 5H), 4.77–4.70 (m, 1H), 3.86 (d, *J* = 5.6 Hz, 1H), 2.64–2.59 (m, 1H), 2.48–2.43 (m, 1H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 140.62 (d, *J_{CP}*= 7.3 Hz), 140.22 (d, *J_{CP}*= 4.7 Hz), 139.66, 139.36, 137.77 (d, *J_{CP}*= 12.5 Hz), 132.27 (d, *J_{CP}*= 13.0 Hz), 132.69 (d, *J_{CP}*= 19.5 Hz), 132.21 (d, *J_{CP}*= 18.5 Hz), 130.27, 129.83, 128.73, 128.58, 128.38, 128.30, 128.11, 127.47, 127.25, 126.96, 126.77, 126.58, 56.28, 54.09 (d, *J_{CP}*= 16.5 Hz), 38.74 (d, *J_{CP}*= 15.3 Hz), 22.46; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.55 ppm; HRMS (ESI) m/z calcd. for C₃₆H₃₆NNaOPS [M+Na] ⁺ = 584.2147, found = 584.2152; IR (neat): v 3212, 3054, 3024, 2955, 2921, 1477, 1451, 1430, 1392, 1367, 1180, 1042, 1029, 900, 841, 753, 740 cm⁻¹.

(*S*,*R*_{*S*})-**P4**; White solid. m.p. = 212-214 °C; $[α]_D^{20} = +5.3$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.62 (m, 5H), 7.52–7.27 (m, 6H), 7.11–6.85 (m, 9H), 4.71 (br, 1H), 3.90 (br, 1H), 2.54–2.43 (m, 2H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 140.90, 140.44 (d, *J*_{*CP*}= 4.9 Hz), 137.96, 137.74 (d, *J*_{*CP*}= 12.4 Hz), 136.95 (d, *J*_{*CP*}= 12.9 Hz), 133.16, 132.51 (d, *J*_{*CP*}= 19.5 Hz), 132.36, 132.13 (d, *J*_{*CP*}= 18.8 Hz), 130.47, 128.47, 128.32, 128.28, 128.22, 128.18, 128.16, 128.10, 127.75, 127.63, 127.48, 126.60, 126.16, 125.95, 56.37, 54.41 (d, *J*_{*CP*}= 16.0 Hz), 38.82 (d, *J*_{*CP*}= 15.2 Hz), 22.48; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.46 ppm; HRMS (ESI) m/z calcd. for C₃₄H₃₄NNaOPS [M+Na] ⁺ = 558.1991, found = 558.2004; IR (neat): v 3224, 3050, 2957, 1483, 1468, 1429, 1391, 1366, 1265, 1233, 1179, 1155, 1042, 1030, 900, 860, 826, 754, 737 cm⁻¹.

(*S*,*R*_{*S*})-**P5**; White solid. m.p. = 82-84 °C; $[α]_D^{20} = +96.8$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.66–7.60 (m, 2H), 7.51–7.43 (m, 4H), 7.37–7.29 (m, 2H), 7.25–7.18 (m, 4H), 7.09–7.04 (m, 3H), 6.87–6.84 (m, 2H), 6.36–6.33 (m, 2H), 4.07–4.05 (m, 1H), 3.91–3.84 (m, 1H), 2.29–2.17 (m, 2H), 0.78 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 143.26 (d, *J_{CP}*= 6.1 Hz), 137.53 (d, *J_{CP}*= 11.5 Hz), 136.62, 135.82 (d, *J_{CP}*= 12.1 Hz), 134.56, 132.58, 132.39, 132.04, 131.84, 131.53, 131.35, 131.29, 130.64, 129.94, 128.78, 128.70, 128.44, 128.37, 128.34, 128.21, 128.17, 128.10, 127.61, 127.37, 127.12, 127.03, 126.64, 125.72, 125.70, 125.40, 125.20, 56.68, 55.94 (d, *J_{CP}*= 12.1 Hz), 38.31 (d, *J_{CP}*= 16.2 Hz), 21.94; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.19 ppm; HRMS (ESI) m/z calcd. for C₃₈H₃₆NNaOPS [M+Na] ⁺ = 608.2147, found = 608.2152; IR (neat): v 3050, 2864, 2348, 1725, 1432, 1356, 1047, 885, 844, 792, 736 cm⁻¹.

(*S*,*R*_{*S*})-**P6**; White solid. m.p. = 58-60 °C; $[α]_D^{20} = + 36.8$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 7.6 Hz, 1H), 7.46–7.47 (m, 1H), 7.39–7.35 (m, 1H), 7.29–7.26 (m, 1H), 7.23–7.11 (m, 11H), 7.05–7.02 (m, 2H), 4.79–4.72 (m, 1H), 3.84 (d, *J* = 6.8 Hz, 1H), 2.48–2.36 (m, 2H), 1.32 (s, 18H), 1.08 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 150.54, 141.94, 140.64 (d, *J*_{*CP*}= 5.0 Hz), 139.92, 138.52 (d, *J*_{*CP*}= 13.0 Hz), 136.79 (d, *J*_{*CP*}= 12.5 Hz), 132.53 (d, *J*_{*CP*}= 19.4 Hz), 132.23 (d, *J*_{*CP*}= 18.9 Hz), 130.31, 128.48, 128.41, 128.38, 128.31, 127.73, 127.14, 126.51, 123.93, 120.77, 56.32, 54.84 (d, *J*_{*CP*}= 15.5 Hz), 38.77 (d, *J*_{*CP*}= 15.6 Hz), 34.89, 31.46, 22.33; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.72 ppm; HRMS (ESI) m/z calcd. for C₃₈H₄₈NNaOPS [M+Na] ⁺ = 620.3086, found = 620.3099; IR (neat): v 2957, 2902,

2866, 1592, 1476, 1432, 1392, 1361, 1246, 1053, 899, 879, 739 cm⁻¹.

(*S*,*R*_{*S*})-**P7**; White solid. m.p. = 54-56 °C; $[α]_D^{20} = + 34.2$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 1H), 7.37–7.33 (m, 1H), 7.28–7.15 (m, 12H), 7.09–7.06 (m, 2H), 4.82–4.78 (m, 1H), 3.80–3.73 (m, 4H), 2.53–2.48 (m, 1H), 2.41–2.36 (m, 1H), 1.41 (s, 18H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.45, 143.28, 141.60, 140.58 (d, *J*_{*CP*}= 4.9 Hz), 138.45 (d, *J*_{*CP*}= 13.2 Hz), 137.05, 134.92, 132.55 (d, *J*_{*CP*}= 19.5 Hz), 132.19 (d, *J*_{*CP*}= 19.8 Hz), 128.59, 128.49, 128.41, 128.34, 127.90, 127.61, 127.14, 126.61, 64.12, 56.27, 54.87 (d, *J*_{*CP*}= 16.3 Hz), 38.64 (d, *J*_{*CP*}= 15.6 Hz), 35.80, 32.15, 22.34; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.49 ppm; HRMS (ESI) m/z calcd. for C₃₉H₅₀NnaO₂PS [M+Na] ⁺ = 650.3192, found = 650.3212; IR (neat): v 2957, 2867, 1411, 1391, 1360, 1257, 1220, 1115, 1053, 1010, 888, 764, 738, cm⁻¹.

(*S*,*R*_{*S*})-**P8**; White solid. m.p. = 71-73 °C; $[α]_D^{20} = +42.6$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H), 7.65–7.63 (m, 5H), 7.52 (s, 2H), 7.45–7.40 (m, 5H), 7.37–7.25 (m, 4H), 7.23–7.15 (m, 5H), 7.11–7.00 (m, 5H), 4.81–4.74 (m, 1H), 3.91 (d, *J* = 6.0 Hz, 1H), 2.65–2.59 (m, 1H), 2.49–2.44 (m, 1H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 141.63, 141.54, 140.73, 140.61, 140.26 (d, *J*_{*CP*}= 5.1 Hz), 137.79 (d, *J*_{*CP*}= 12.4 Hz), 137.00 (d, *J*_{*CP*}= 12.9 Hz), 132.48 (d, *J*_{*CP*}= 19.3 Hz), 132.22 (d, *J*_{*CP*}= 18.9 Hz), 130.30, 128.70, 128.58, 128.46, 128.37, 128.34, 128.31, 128.27, 128.16, 127.44, 127.41, 127.25, 127.16, 126.94, 124.71, 56.31, 54.92 (d, *J*_{*CP*}= 16.2 Hz), 38.78 (d, *J*_{*CP*}= 15.5 Hz), 22.32; ³¹P NMR (121.5 MHz, CDCl₃) δ = -24.07 ppm; HRMS (ESI) m/z calcd. for C₄₂H₄₀NNaOPS [M+Na] ⁺ = 660.2460, found = 660.2480; IR (neat): v 3054, 3031, 2951, 1592, 1575, 1432, 1411, 1361, 1182, 1052, 882 cm⁻¹.

(*S*,*R*_{*S*})-**P9**; White solid. m.p. = 184-186 °C; $[α]_D^{20} = +59.5$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.09–8.04 (m, 2H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.57–7.52 (m, 2H), 7.48–7.42 (m, 3H), 7.32–7.26 (m, 3H), 7.14–7.02 (m, 4H), 6.93–6.90 (m, 2H), 6.80–6.77 (m, 2H), 6.52–6.48 (m, 2H), 3.88–3.83 (m, 1H), 2.66–2.60 (m, 1H), 2.39–2.33 (m, 4H), 0.83 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 142.92 (d, *J*_{*CP*}= 4.7 Hz), 138.58 (d, *J*_{*CP*}= 13.7 Hz), 137.36, 136.78 (d, *J*_{*CP*}= 13.8 Hz), 135.08, 132.68, 132.48, 132.14, 132.06, 131.87, 131.47, 131.22, 130.65, 130.07, 128.46, 128.41, 128.21, 128.15, 128.09, 128.03, 127.57, 127.54, 127.03, 126.90, 125.83, 125.33, 125.27, 62.25 (d, *J*_{*CP*}= 15.3 Hz), 58.54, 33.92 (d, *J*_{*CP*}= 17.4 Hz), 29.68, 23.36; ³¹P NMR (121.5 MHz, CDCl₃) δ = -22.55 ppm; HRMS (ESI) m/z calcd. for C₃₉H₃₈NNaOPS [M+Na] ⁺ = 622.2304, found = 622.2311; IR (neat): v 2921, 2851, 1648, 1632, 1468, 1432, 1357, 1237, 1195, 1068, 1027, 902, 847, 735, 697 cm⁻¹.

3. ³¹P NMR Experiments of (S, R_S) -P5 in the Cross RC Reaction

For better understanding of the catalytic process of (S,R_S) -**P5** in the cross RC reaction, series of ³¹P NMR experiments were carried out (Figure 1). The ³¹P NMR spectrum containing 3-aroyl acrylates (Figure 1b) hardly had any difference compared with the ³¹P NMR spectrum of the pure (S,R_S) -**P5** (Figure 1a) demonstrated a fact that (S,R_S) -**P5** had no interaction with 3-aroyl acrylates. Noteworthy, a newly formed ³¹P peaks was observed by the addition of acrolein to the (S,R_S) -**P5** solution (Figure 1c).

Figure S1. (a) ³¹P NMR spectrum of pure (S,R_S) -**P5**; (b) ³¹P NMR spectrum of (S,R_S) -**P5** containing 3-aroyl acrylates; (c) ³¹P NMR spectrum of (S,R_S) -**P5** containing acrolein.

4. Optimization of Xiao-Phoses and Wei-Phoses in the Cross R-C Reaction

Figure S2. Screened Xiao-Phoses and Wei-Phoses.

	O CO ₂ Et +	o ↓	Cat.* 1	10 mol%	0	O H
	1a	2 H	Solvent, Te	mperatue, <i>t</i>		CO ₂ Et
Entry	Cat.*	Tem. [°C]	Solvent	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^[c]
1	(S,R_S) - X4	25	CHCl ₃	12	49	46
2	(S,R_S) - X4	25	DCM	12	24	51
3	(S,R_S) - X4	25	DCE	12	42	40
4	(S,R_S) - X4	25	Et ₂ O	12	<5	
5	(S,R_S) - X4	25	THF	12	13	54
6	(S,R_S) - X4	25	CH ₃ CO ₂ Et	12	12	53
7	(S,R_S) - X4	25	Acetone	12	63	39
8	(S,R_S) - X4	25	Toluene	12	41	36
9	(S,R_S) - X1	25	Acetone	12	27	36
10	(S,R_S) - X2	25	Acetone	12	34	35
11	(S,R_S) - X3	25	Acetone	12	21	17
12	(S,R_S) - X5	25	Acetone	12	39	36
13	(S,R_S) - X6	25	Acetone	12	42	38
14	(S,R_S) - X7	25	Acetone	12	33	27
15	(S,R_S) - X8	25	Acetone	12	15	23
16	(R,R_S) - X8	25	Acetone	12	18	-47
17	(S,R_S) - X9	25	Acetone	12	37	28
18	(R,R_S) - X9	25	Acetone	12	24	-55
19	(S,R_S) - X10	25	Acetone	12	62	34
20	(R,R_S) - X10	25	Acetone	12	60	-67
21	(R,R_S) - X10	0	Acetone	14	57	78
22	(R,R_S) - X10	-10	Acetone	14	45	85
23	(R,R_S) - X10	-20	Acetone	24	<10	
21	(S,R_S) - X11	25	Acetone	12	58	36
22	(R,R_S) - X11	25	Acetone	12	42	-65
23	(S,R_S) - X12	25	Acetone	12	40	32
24	(R,R_S) - X12	25	Acetone	12	53	-64
25	(S,R_S) - W1	25	Acetone	12	69	58
26	(S,R_S) - W2	25	Acetone	12	64	50
27	(S,R_S) - W3	25	Acetone	12	68	45
28	(S,R_S) - W4	25	Acetone	12	67	44
29	(S,R_S) - W1	0	Acetone	12	55	61
30	(S,R_S) - W1	-10	Acetone	12	49	65
31	(S,R_S) -W1	-20	Acetone	16	37	67

Table S1: Optimization of Xiao-phoses and Wei-Phoses for the cross R-C reaction of3-aroyl acrylates and acrolein^[a].

[a] Unless otherwise specified, all reactions were carried out with **1a** (0.1 mmol), **2** (0.3 mmol), Xiao-Phos OR Wei-Phos (10 mol%) in solvent (2 mL). [b] Yield of isolated products. [c] Determined by HPLC analysis using a chiral stationary phase.

5. Typical Procedure for the Peng-Phos Catalyzed Cross R-C Reaction of Active Alkenes and Acrolein.

A stirred solution of $\mathbf{1}^{[3]}$ (0.2 mmol) and (*S*,*R*_{*S*})-**P5** (0.02 mmol) in toluene (2 mL) was cooled to -20 °C. Subsequently, **2** (0.6 mmol) in toluene (2 mL) added slowly over 4 h. The mixture was stirred for another 8 h, the solvents were removed in vacuo and the residue was directly purified by silica gel chromatography using petroleum ether/EtOAc as the eluent to afford the desired RC product.

6. X-ray crystal structure for 3g and (S,R_S)-P9

The H-atoms on the aryl ring have been removed for claritry.

7. Experimental Procedure for the Transformations of 3a

Experimental procedure for the Wittig reaction of 3a

A stirred solution of 3a (0.2 mmol) in toluene (2 mL) was added (1-phenyl-2-(triphenylphosphoranylidene)-ethanone (0.6 mmol). The mixture was stirred at 100 °C for 12 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **4** in 81% yield without loss of enantiopurity.

Experimental procedure for the selective reduction of 3a

Under Ar, a stirred solution of 3a (0.2 mmol) in THF (2 mL) was added NaBH(OAc)₃ (0.6 mmol). The mixture was stirred at 60 °C for 3 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **5** in 74% yield without loss of enantiopurity.

Experimental procedure for the condensation reaction of 3a with TsNHNH₂

A stirred solution of 3a (0.2 mmol) in dioxane (2 mL) was added TsNHNH₂ (0.24 mmol). The mixture was stirred at r.t. for 0.5 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **6** in 94% yield without loss of enantiopurity.

Experimental procedure for the Diels-Alder reaction of 3a

A stirred solution of **3a** (0.2 mmol) and 2,3-dimethyl-1,3-butadiene (0.6 mmol) in DME (2 mL) was added boron fluoride ethyl ether (0.08 mmol). The mixture was stirred at 35 $^{\circ}$ C for 2 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **7** in 89% yield without loss of enantiopurity (d.r. = 2:1, the diastereoisomers of **7** were inseparable through silica gel chromatography).

Experimental procedure for the Michael addition of 3a with 4-Chlorothiophenol

A stirred solution of **3a** (0.2 mmol) in DCM (2 mL) was added 4-chlorothiophenol (0.24 mmol), DABCO (0.04 mmol). The mixture was stirred at r.t. for 2 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **8** in 96% yield without loss of enantiopurity (d.r. = 1:1).

Experimental procedure for the dipolar cycloaddition of 3a

A stirred solution of **3a** (0.2 mmol) in DCE (2 mL) was added benzoyl(3,4-dihydroisoquinolin-2-ium-2-yl)amide^[4] (0.4 mmol). The mixture was stirred at 65 °C for 1.5 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **9** in 91% yield without loss of enantiopurity (d.r. = 4:1).

Experimental procedure for the R-C of 3a with methyl vinyl ketone

A stirred solution of **3a** (0.2 mmol) and methyl vinyl ketone (0.6 mmol) in DCM (2 mL) was added Ph_2PCH_3 (0.04 mmol). The mixture was stirred at 25 °C for 8 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **10** in 86% yield. (d.r. = 1.3:1, the diastereoisomers of **10** were inseparable through silica gel chromatography and we have not found suitable chiral stationary for determining the ee).

8 General Datas and HPLC Spectra for 3, 4, 5, 6, 7, 8, 9

3a (S)-ethyl 3-formyl-2-(2-oxo-2-phenylethyl)but-3-enoate

3a; Colorless oil; $[\alpha]_D^{20} = + 127.1$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.55 (s, 1H), 7.96–7.93 (m, 2H), 7.59–7.54 (m, 1H), 7.47–7.44 (m, 2H), 6.49 (d, J =0.8 Hz, 1H), 6.20 (s, 1H), 4.23 (dd, J = 8.0, 5.6 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.69 (dd, J = 18.0, 8.0 Hz, 1H), 3.22 (dd, J = 17.6, 5.6 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.06, 192.68, 172.08, 147.31, 136.37, 136.18, 133.30, 128.59, 128.03, 61.26, 39.77, 39.70, 13.98; Enantiomeric excess: 95%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 10.10 min, second peak: t_R = 11.30 min; HRMS (ESI) m/z calcd. for C₁₅H₁₆NaO₄ [M+Na] ⁺ = 283.0941, found = 283.0950; IR (neat): v 2983, 2939, 2907, 2824, 1727, 1691, 1679, 1594, 1448, 1401, 1362, 1325, 1211, 1174, 1159, 1096, 1022, 975, 753, cm⁻¹.

3b (S)-ethyl 2-(2-(4-fluorophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3b; Colorless oil; $[\alpha]_D^{20} = +167.2$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.56 (s, 1H), 8.00–7.97 (m, 2H), 7.15–7.12 (m, 2H), 6.50 (s, 1H), 6.22 (s, 1H), 4.22 (dd, J = 8.5, 5.5 Hz, 1H), 4.17 (q, J = 7.0 Hz, 2H), 3.68 (dd, J = 18.0, 8.5 Hz, 1H), 3.17 (dd, J = 18.0, 5.5 Hz, 1H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 195.50, 192.69, 172.02, 165.84 (d, $J_{CF} = 253.63$ Hz), 147.19, 136.30, 132.78 (d, $J_{CF} = 3.0$ Hz), 130.69 (d, $J_{CF} = 9.4$ Hz), 115.71 (d, $J_{CF} = 21.8$ Hz), 61.31, 39.79, 39.58, 13.97; Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 10.79 min, second peak: t_R = 11.86 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅FNaO₄ [M+Na] ⁺ = 301.0847, found = 301.0855; IR (neat): v 2982, 2918, 2848, 1729, 1684, 1648, 1628, 1595, 1507, 1409, 1363, 1322, 1212, 1173, 1156, 1096, 1024, 972, 821 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.85	n.a.	958.757	262.172	49.99	n.a.	BMB*
2	11.95	n.a.	902.274	262.317	50.01	n.a.	BMB*
Total:			1861.031	524.490	100.00	0.000	

No.	Ret.Time	Pea	k Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	10.79	n.a.		17.841	4.472	2.83	n.a.	BMB*
2	11.86	n.a.		547.665	153.823	97.17	n.a.	BMB*
Total:				565.506	158.295	100.00	0.000	

3c (S)-ethyl 2-(2-(4-chlorophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3c; Colorless oil; $[\alpha]_D^{20} = +130.2$ (*c* = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 7.91–7.89 (m, 2H), 7.46–7.43 (m, 2H), 6.51 (s, 1H), 6.22 (s, 1H), 4.22 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.18 (q, *J* = 7.5 Hz, 2H), 3.68 (dd, *J* = 18.0, 8.5 Hz, 1H), 3.16 (dd, *J* = 18.0, 5.5 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 195.92, 192.69, 171.98, 147.15, 139.79, 136.35, 134.66, 129.46, 128.93, 61.35, 39.79, 39.64, 13.98; Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 12.34 min, second peak: t_R = 13.33 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅ClNaO₄ [M+Na] ⁺ = 317.0551, found = 317.0557; IR (neat): v 2981, 2921, 2823, 2703, 1730, 1685, 1627, 1588, 1571, 1400, 1306, 1246, 1213, 1173, 1090, 991, 827 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.36	n.a.	392.890	114.485	48.87	n.a.	BMB*
2	13.37	n.a.	388.201	119.773	51.13	n.a.	BMB*
Total:			781.091	234.259	100.00	0.000	

No.	Ret.Time	Peak	Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	12.35	n.a.		17.151	4.798	3.23	n.a.	BMB*
2	13.33	n.a.		468.642	143.877	96.77	n.a.	BMB*
Total:				485.793	148.676	100.00	0.000	

3d (S)-ethyl 2-(2-(4-bromophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3d^[5]; Colorless oil; $[\alpha]_D^{20} = +$ 119.1 (*c* = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.56 (s, 1H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 2H), 6.50 (s, 1H), 6.22 (s, 1H), 4.22 (dd, *J* = 8.0, 5.5 Hz, 1H), 4.18 (q, *J* = 7.0 Hz, 2H), 3.67 (dd, *J* = 18.0, 8.5 Hz, 1H), 3.15 (dd, *J* = 18.0, 5.5 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 196.10, 192.67, 171.95, 147.12, 136.33, 135.04, 131.91, 129.55, 128.51, 61.33, 39.76, 39.60, 13.97; Enantiomeric excess: 95%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 13.24 min, second peak: t_R = 14.92 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅BrNaO₄ [M+Na] ⁺ = 361.0046, found = 361.0054; IR (neat): v 2981, 2921, 2849, 1730, 1685, 1628, 1584, 1568, 1396, 1307, 1246, 1213, 1173, 1069, 990, 822, 786 cm⁻¹.

	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
Γ	1	13.09	n.a.	480.415	147.772	49.44	n.a.	BMB*
	2	14.78	n.a.	444.732	151.112	50.56	n.a.	BMB*
	Fotal:			925.147	298.884	100.00	0.000	

Γ	No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
		min			mAU	mAU*min	%		
I	1	13.25	n.a.		9.742	2.775	2.64	n.a.	BMB*
	2	14.93	n.a.		302.169	102.297	97.36	n.a.	BMB*
ľ	Total:				311.911	105.072	100.00	0.000	

3e (S)-ethyl 3-formyl-2-(2-oxo-2-(p-tolyl)ethyl)but-3-enoate

Total:

3e; White solid. m.p. = 48-50 °C; $[\alpha]_D^{20} = + 117.6 (c = 0.33, CHCl_3)$; ¹H NMR (500 MHz, CDCl_3): δ 9.56 (s, 1H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.50 (s, 1H), 6.20 (s, 1H), 4.23 (dd, *J* = 8.0, 5.5 Hz, 1H), 4.18 (q, *J* = 7.0 Hz, 2H), 3.67 (dd, *J* = 18.0, 8.0 Hz, 1H), 3.21 (dd, *J* = 18.0, 5.5 Hz, 1H), 2.42 (s, 3H), 1.24 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl_3): δ 196.65, 192.73, 172.15, 147.32, 144.13, 136.22, 133.86, 129.25, 128.14, 61.22, 39.74, 39.55, 21.61, 13.98; Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 10.94 min, second peak: t_R = 12.00 min; HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₄ [M+Na] ⁺ = 297.1097, found = 297.1109; IR (neat): v 2987, 2908, 2850, 1732, 1682, 1672, 1605, 1404, 1364, 1325, 1244, 1210, 1173, 1158, 1022, 976, 913, 813 cm⁻¹.

442.543

160.174

100.00

0.000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.94	n.a.	14.959	4.980	3.08	n.a.	BMB*
2	12.01	n.a.	418.821	156.459	96.92	n.a.	BMB*
Total:			433.780	161.438	100.00	0.000	

3f (S)-ethyl 3-formyl-2-(2-(4-methoxyphenyl)-2-oxoethyl)but-3-enoate

3f; Colorless oil; $[\alpha]_D^{20} = + 123.6$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.56 (s, 1H), 7.95–7.93 (m, 2H), 6.95–6.92 (m, 2H), 6.50 (s, 1H), 6.20 (s, 1H), 4.22 (dd, J = 7.5, 5.5 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 3.88 (s, 3H), 3.64 (dd, J = 17.5, 8.0 Hz, 1H), 3.20 (dd, J = 17.5, 6.0 Hz, 1H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 195.52, 192.77, 172.21, 163.63, 147.36, 136.22, 130.32, 129.44, 113.72, 61.21, 55.44, 39.81, 39.30, 13.99; Enantiomeric excess: 93%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 20.54 min, second peak: t_R = 29.41 min; HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₅ [M+Na] ⁺ = 313.1046, found = 313.1057; IR (neat): υ 2980, 2935, 2841, 1730, 1674, 1598, 1574, 1510, 1420, 1363, 1307, 1252, 1217, 1164, 1095, 1027, 989, 833 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	19.16	n.a.	341.322	154.839	49.77	n.a.	BMB*
2	26.98	n.a.	255.491	156.258	50.23	n.a.	BMB*
Total:			596.813	311.097	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	20.55	n.a.	16.692	7.975	3.43	n.a.	BMB*
2	29.41	n.a.	329.643	224.846	96.57	n.a.	BMB*
Total:			346.335	232.821	100.00	0.000	

3g (S)-ethyl 2-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-3-formylbut-3-enoate

3g; White solid. m.p. = 101-103 °C; $[\alpha]_D^{20} = + 82.1$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.59 (s, 1H), 8.04 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.65–7.63 (m, 2H), 7.50–7.47 (m, 2H), 7.44–7.41 (m, 1H), 6.53 (s, 1H), 6.23 (s, 1H), 4.27 (dd, J = 8.0, 6.0 Hz, 1H), 4.20 (q, J = 7.0 Hz, 2H), 3.75 (dd, J = 18.0, 8.0 Hz, 1H), 3.27 (dd, J = 18.0, 5.5 Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 196.63, 192.73, 172.10, 147.27, 145.96, 139.74, 136.28, 135.02, 128.91, 128.63, 128.23, 127.22, 61.28, 39.80, 39.69, 13.99; Enantiomeric excess: 94%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 17.18 min, second peak: t_R = 20.84 min; HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₄ [M+Na] ⁺ = 359.1254, found = 359.1267; IR (neat): v 2979, 2921, 2902, 2850, 2818, 1735, 1687, 1676, 1600, 1445, 1401, 1324, 1244, 1215, 1158, 1092, 973, 832, 760 cm⁻¹.

3h (S)-ethyl 2-(2-(2-fluorophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3h; White solid. m.p. = 33-35 °C; $[\alpha]_D^{20} = +95.6$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 7.90–7.86 (m, 1H), 7.56–7.51 (m, 1H), 7.25–7.22 (m, 1H), 7.16–7.12 (m, 1H), 6.48 (s, 1H), 6.21 (s, 1H), 4.25 (dd, J = 8.5, 5.0 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 3.69–3.63 (m, 1H) , 3.24–3.19 (m, 1H), 1.26 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 195.31, 192.59, 172.14, 162.10 (d, $J_{CF} = 253.25$ Hz), 147.27, 135.94, 134.90 (d, $J_{CF} = 9.13$ Hz), 130.65 (d, $J_{CF} = 2.38$ Hz), 124.93 (d, $J_{CF} = 12.75$ Hz), 124.50 (d, $J_{CF} = 3.13$ Hz), 116.71 (d, $J_{CF} = 23.50$ Hz), 61.28, 44.59, 39.39, 14.02; Enantiomeric excess: 92%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 10.32 min, second peak: t_R = 11.25 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅NaO₄ [M+Na] ⁺ = 301.0847, found = 301.0854; IR (neat): v 2979, 2925, 2814, 2694, 1732, 1686, 1676, 1606, 1478, 1449, 1396, 1324, 1269, 1204, 1159, 1089, 974, 912 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.35	n.a.	943.588	266.131	50.07	n.a.	BMB*
2	11.29	n.a.	904.609	265.381	49.93	n.a.	BMB*
Tota	:		1848.197	531.512	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.32	n.a.	14.962	4.164	3.91	n.a.	BMB*
2	11.25	n.a.	341.803	102.462	96.09	n.a.	BMB*
Total:			356.765	106.626	100.00	0.000	

3i (S)-ethyl 2-(2-(2-bromophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3i; Colorless oil; $[\alpha]_D^{20} = +79.8$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.55 (s, 1H), 7.62–7.60 (m, 1H), 7.50–7.48 (m, 1H), 7.40–7.37 (m, 1H), 7.32–7.29 (m, 1H), 6.51 (s, 1H), 6.22 (s, 1H), 4.22 (dd, J = 8.5, 5.5 Hz, 1H), 4.17 (q, J = 7.0 Hz, 2H), 3.63 (dd, J = 18.0, 8.0 Hz, 1H), 3.16 (dd, J = 18.0, 5.5 Hz, 1H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 200.70, 192.57, 171.72, 146.91, 140.67, 136.41, 133.73, 131.80, 128.89, 127.40, 118.67, 61.38, 43.33, 40.07, 13.98; Enantiomeric excess: 87%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 12.66 min, second peak: t_R = 14.36 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅BrNaO₄ [M+Na] ⁺ = 361.0046, found = 361.0058; IR (neat): v 2918, 2849, 1730, 1688, 1649, 1629, 1587, 1467, 1428, 1211, 1171, 1093, 1024, 971 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.69	n.a.	1059.166	399.435	50.00	n.a.	BMB*
2	14.25	n.a.	931.543	399.447	50.00	n.a.	BMB*
Total:			1990.709	798.882	100.00	0.000	

3j (S)-ethyl 2-(2-(2,4-dichlorophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3j; Colorless oil; $[\alpha]_D^{20} = + 85.5$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.55 (s, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.34–7.32 (m, 1H), 6.48 (s, 1H), 6.22 (s, 1H), 4.21 (dd, J = 8.5, 5.0 Hz, 1H), 4.16 (q, J = 7.5 Hz, 2H), 3.63 (dd, J = 18.0, 8.5 Hz, 1H), 3.12 (dd, J = 18.0, 5.0 Hz, 1H), 1.23 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 198.62, 192.53, 171.72, 146.91, 137.67, 136.57, 136.33, 132.16, 130.60, 130.46, 127.33, 61.41, 40.22, 29.64, 13.96; Enantiomeric excess: 88%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 11.08 min, second peak: t_R = 12.74 min; HRMS (ESI) m/z calcd. for C₁₅H₁₄Cl₂NaO₄ [M+Na] ⁺ = 351.0161, found = 351.0168; IR (neat): v 2981, 2916, 2847, 1730, 1690, 1628, 1581, 1552, 1464, 1371, 1209, 1171, 1092, 990, 957 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.99	n.a.	745.192	249.813	49.89	n.a.	BMB*
2	12.57	n.a.	635.325	250.922	50.11	n.a.	BMB*
Total:			1380.517	500.735	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.09	n.a.	780.877	266.630	94.19	n.a.	BMB*
2	12.74	n.a.	43.922	16.452	5.81	n.a.	BMB*
Total:			824.798	283.082	100.00	0.000	

3k (S)-ethyl 2-(2-(3-bromophenyl)-2-oxoethyl)-3-formylbut-3-enoate

3k; Colorless oil; $[\alpha]_D^{20} = + 110.6$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 8.09–8.08 (m, 1H), 7.89–7.87 (m, 1H), 7.71–7.69 (m, 1H), 7.37–7.34 (m, 1H), 6.51 (s, 1H), 6.23 (s, 1H), 4.22 (dd, J = 8.0, 5.0 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 3.68 (dd, J = 18.0, 8.5 Hz, 1H), 3.16 (dd, J = 18.0, 5.5 Hz, 1H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 195.79, 192.66, 171.91, 147.08, 138.02, 136.36, 136.15, 131.11, 130.21, 126.57, 122.96, 61.37, 39.75, 39.72, 13.98; Enantiomeric excess: 94%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 11.37 min, second peak: t_R = 12.64 min; HRMS (ESI) m/z calcd. for C₁₅H₁₅BrNaO₄ [M+Na] ⁺ = 361.0046, found = 361.0053; IR (neat): v 2981, 2923, 2823, 1730, 1687, 1627, 1566, 1420, 1303, 1242, 1209, 1163, 1094, 1029, 956 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.37	n.a.	975.108	373.218	97.17	n.a.	BMB*
2	12.65	n.a.	27.849	10.865	2.83	n.a.	BMB*
Total:			1002.957	384.083	100.00	0.000	

31 (S)-ethyl 3-formyl-2-(2-(naphthalen-2-yl)-2-oxoethyl)but-3-enoate

3I; White solid. m.p. = 44-46 °C; $[\alpha]_D^{20} = + 108.6$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.60 (s, 1H), 8.49 (s, 1H), 8.04–8.02 (m, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.92–7.88 (m, 2H), 7.64–7.56 (m, 2H), 6.56 (s, 1H), 6.24 (s, 1H), 4.31 (dd, J = 8.0, 5.5 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.85 (dd, J = 18.0, 8.0 Hz, 1H), 3.38 (dd, J = 18.0, 6.0 Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 196.99, 192.80, 172.15, 147.32, 136.38, 135.67, 133.66, 132.43, 129.86, 129.56, 128.55, 128.47, 127.75, 126.81, 123.66, 61.31, 39.91, 39.72, 14.01; Enantiomeric excess: 95%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 18.38 min, second peak: t_R = 25.35 min; HRMS (ESI) m/z calcd. for C₁₉H₁₈NaO₄ [M+Na] ⁺ = 333.1097, found = 333.1105; IR (neat): v 2957, 2922, 2852, 1730, 1688, 1675, 1624, 1593, 1467, 1372, 1317, 1258, 1226, 1170, 1093, 1016, 972 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.27	n.a.	708.044	375.491	50.02	n.a.	BMB*
2	24.91	n.a.	484.003	375.158	49.98	n.a.	BMB*
Total:			1192.047	750.649	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.38	n.a.	535.615	284.860	97.49	n.a.	BMB*
2	25.35	n.a.	10.342	7.328	2.51	n.a.	BMB*
Total:			545.957	292.188	100.00	0.000	

3m (S)-ethyl 3-formyl-2-(2-(furan-2-yl)-2-oxoethyl)but-3-enoate

3m; White solid. m.p. = 34-36 °C; $[\alpha]_D^{20} = + 146.5$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.54 (s, 1H), 7.59–7.58 (m, 1H), 7.20 (d, J = 4.0 Hz, 1H), 6.54 (dd, J = 3.5, 1.5 Hz, 1H), 6.49 (s, 1H), 6.20 (s, 1H), 4.20–4.13 (m, 3H), 3.56 (dd, J = 17.5, 8.0 Hz, 1H), 3.08 (dd, J = 17.5, 6.0 Hz, 1H), 1.22 (t, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.61, 186.11, 171.80, 152.18, 146.97, 146.48, 136.39, 117.29, 112.26, 61.28, 39.45, 39.16, 13.93; Enantiomeric excess: 94%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 18.16 min, second peak: t_R = 22.55 min; HRMS (ESI) m/z calcd. for C₁₃H₁₄NaO₅ [M+Na] ⁺ = 273.0733, found = 273.0739; IR (neat): v 3122, 2981, 2930, 2812, 1724, 1692, 1650, 1561, 1468, 1407, 1325, 1273, 1220, 1168, 1095, 1016, 979 cm⁻¹.

	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
Γ	1	18.17	n.a.	163.892	82.611	50.58	n.a.	BMB*
	2	22.17	n.a.	112.851	80.703	49.42	n.a.	BMB*
Т	otal:			276.743	163.315	100.00	0.000	

I	No.	Ret.Time	P	eak Name	Height	Area	Rel.Area	Amount	Туре
		min			mAU	mAU*min	%		
I	1	18.16	n.a.		308.703	157.632	96.79	n.a.	BMB*
	2	22.55	n.a.		7.969	5.227	3.21	n.a.	BMB*
I	Total:				316.673	162.859	100.00	0.000	

3n (S)-ethyl 3-formyl-2-(2-oxo-2-(thiophen-2-yl)ethyl)but-3-enoate

3n; Colorless oil; $[\alpha]_D^{20} = +158.1$ (*c* = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.55 (s, 1H), 7.74–7.73 (m, 1H), 7.66–7.64 (m, 1H), 7.14–7.12 (m, 1H), 6.50 (s, 1H), 6.21 (s, 1H), 4.21–4.14 (m, 3H), 3.63 (dd, *J* = 17.5, 8.0 Hz, 1H), 3.18 (dd, *J* = 17.5, 6.0 Hz, 1H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.75, 189.98, 171.88, 147.00, 143.49, 136.60, 133.92, 132.20, 128.17, 61.37, 40.04, 39.96, 13.99; Enantiomeric excess: 94%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 15.21 min, second peak: t_R = 19.28 min; HRMS (ESI) m/z calcd. for C₁₃H₁₄NaO₄S [M+Na] ⁺ = 289.0505, found = 289.0510; IR (neat): v 3095, 2981, 2921, 2849, 2703, 1729, 1688, 1658, 1518, 1414, 1366, 1304, 1218, 1163, 1093, 1024, 957, 940 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	18.17	n.a.	164.010	82.863	50.63	n.a.	BMB*
2	22.17	n.a.	112.897	80.792	49.37	n.a.	BMB*
Total:			276.907	163.654	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре	
	min		mAU	mAU*min	%			
1	15.21	n.a.	329.952	137.119	96.96	n.a.	BMB*	
2	19.28	n.a.	7.324	4.301	3.04	n.a.	BMB*	
Total:			337.277	141.420	100.00	0.000		

30 (S)-ethyl 2-(2-(benzo[b]thiophen-2-yl)-2-oxoethyl)-3-formylbut-3-enoate

3o; Colorless oil; $[\alpha]_D^{20} = + 117.7$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.58 (s, 1H), 8.01 (s, 1H), 7.91–7.88 (m, 2H), 7.50–7.47 (m, 1H), 7.44–7.41 (m, 1H), 6.55 (s, 1H), 6.24 (s, 1H), 4.25 (dd, J = 7.5, 6.5 Hz, 1H), 4.19 (q, J = 6.0 Hz, 2H), 3.76 (dd, J = 17.5, 8.0 Hz, 1H), 3.30 (dd, J = 17.5, 6.0 Hz, 1H), 1.24 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 192.75, 191.56, 171.75, 146.91, 142.85, 142.51, 139.01, 136.72, 129.43, 127.53, 126.00, 125.04, 122.95, 61.42, 40.14, 39.90, 13.98; Enantiomeric excess: 93%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 16.51 min, second peak: t_R = 19.18 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆NaO₄S [M+Na] ⁺ = 339.0662, found = 339.0670; IR (neat): v 2981, 2923, 2851, 2814, 2694, 1732, 1690, 1657, 1592, 1514, 1401, 1330, 1214, 1156, 1095, 975 cm⁻¹.

S38

3p (S)-ethyl 5,5-dimethyl-4-oxo-2-(3-oxoprop-1-en-2-yl)hexanoate

3p; Colorless oil; $[\alpha]_D^{20} = + 67.1$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.54 (s, 1H), 6.42 (s, 1H), 6.16 (s, 1H), 4.15 (q, J = 7.0 Hz, 2H), 4.04 (dd, J = 8.0, 5.0 Hz, 1H), 3.19 (dd, J = 18.0, 8.5 Hz, 1H), 2.73 (dd, J = 18.0, 5.0 Hz, 1H), 1.23 (t, J =7.0 Hz, 3H), 1.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 212.96, 192.72, 172.20, 147.49, 135.97, 61.16, 43.86, 39.62, 38.17, 26.36, 14.00; Enantiomeric excess: 91%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 8.30 min, second peak: t_R = 9.38 min; HRMS (ESI) m/z calcd. for C₁₃H₂₀NaO₄ [M+Na] ⁺ = 263.1254 found = 263.1260; IR (neat): v 2959, 2922, 2852, 2704, 1734, 1693, 1628, 1478, 1462, 1396, 1366, 1304, 1233, 1190, 1165, 1098, 1035, 959 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.43	n.a.	93.538	27.400	52.03	n.a.	BMB*
2	9.51	n.a.	96.771	25.267	47.97	n.a.	BMB*
Total:			190.309	52.666	100.00	0.000	

l	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
	1	8.31	n.a.	2249.768	689.615	95.42	n.a.	BMB*
	2	9.38	n.a.	146.794	33.132	4.58	n.a.	BMB*
	Total:			2396.562	722.747	100.00	0.000	

3q (S)-ethyl 2-(2-cyclohexyl-2-oxoethyl)-3-formylbut-3-enoate

3q; Colorless oil; $[\alpha]_D^{20} = +20.3$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.53 (s, 1H), 6.42 (s, 1H), 6.16 (s, 1H), 4.15 (q, J = 7.0 Hz, 2H), 4.04 (dd, J = 8.5, 5.0 Hz, 1H), 3.16 (dd, J = 18.0, 8.5 Hz, 1H), 2.64 (dd, J = 18.0, 5.5 Hz, 1H), 2.39–2.33 (m, 1H), 1.91–1.77 (m, 4H), 1.69–1.66 (m, 1H), 1.39–1.22 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 210.89, 192.71, 172.10, 147.42, 135.99, 61.20, 50.63, 41.49, 39.56, 28.33, 28.30, 25.78, 25.58, 25.53, 13.99; Enantiomeric excess: 92%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 90/10; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 11.67 min, second peak: t_R = 13.51 min; HRMS (ESI) m/z calcd. for C₁₅H₂₂NaO₄ [M+Na] ⁺ = 289.1410, found = 289.1418; IR (neat): v 2927, 2853, 1732, 1692, 1627, 1448, 1370, 1297, 1228, 1164, 1097, 1024, 956, 922 cm⁻¹.

	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
L		min		mAU	mAU*min	%		
Γ	1	11.66	n.a.	246.587	144.626	50.45	n.a.	BMB*
	2	13.41	n.a.	236.939	142.072	49.55	n.a.	BMB*
Ŀ	Total:			483.526	286.698	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре	
	min		mAU	mAU*min	%			
1	11.67	n.a.	400.635	198.462	96.07	n.a.	BMB*	
2	13.51	n.a.	16.327	8.121	3.93	n.a.	BMB*	
Total:			416.962	206.584	100.00	0.000		

3r (S)-methyl 3-formyl-2-(2-oxo-2-phenylethyl)but-3-enoate

3r; Colorless oil; $[\alpha]_D^{20} = +108.6$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 7.97–7.95 (m, 2H), 7.60–7.57 (m, 1H), 7.49–7.46 (m, 2H), 6.51 (s, 1H), 6.22 (s, 1H), 4.27 (dd, J = 8.0, 6.0 Hz, 1H), 3.74–3.69 (m, 4H), 3.25 (dd, J = 18.0, 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 196.98, 192.68, 172.62, 147.11, 136.37, 136.25, 133.36, 128.61, 128.04, 52.41, 39.73, 39.48; Enantiomeric excess: 96%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 18.39 min, second peak: t_R = 22.85 min; HRMS (ESI) m/z calcd. for C₁₄H₁₄NaO₄ [M+Na] ⁺ = 269.0784, found = 269.0789; IR (neat): v 2953, 2922, 2851, 1734, 1683, 1627, 1596, 1448, 1358, 1306, 1246, 1164, 1001 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.40	n.a.	217.893	97.729	48.66	n.a.	BMB*
2	22.21	n.a.	139.679	103.129	51.34	n.a.	BMB*
Total:			357.571	200.857	100.00	0.000	

Γ	No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
		min			mAU	mAU*min	%		
Γ	1	18.39	n.a.		437.509	200.413	97.92	n.a.	BMB*
	2	22.85	n.a.		6.825	4.255	2.08	n.a.	BMB*
	Total:				444.333	204.668	100.00	0.000	

3s (S)-isopropyl 3-formyl-2-(2-oxo-2-phenylethyl)but-3-enoate

3s; White solid. m.p. = 61-63 °C; $[\alpha]_D^{20} = + 127.1$ (*c* = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.56 (s, 1H), 7.97–7.95 (m, 2H), 7.59–7.56 (m, 1H), 7.48–7.45 (m, 2H), 6.50 (s, 1H), 6.20 (s, 1H), 5.08–5.01 (m, 1H), 4.20 (dd, *J* = 8.0, 5.5 Hz, 1H), 3.69 (dd, *J* = 18.0, 8.0 Hz, 1H), 3.20 (dd, *J* = 18.0, 5.5 Hz, 1H), 1.26 (d, *J* = 6.5 Hz, 3H), 1.17 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 197.12, 192.73, 171.53, 147.42, 136.39, 136.12, 133.25, 128.57, 128.02, 68.69, 40.03, 39.64, 21.64, 21.39; Enantiomeric excess: 93%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 10.41 min, second peak: t_R = 11.47 min; HRMS (ESI) m/z calcd. for C₁₆H₁₈NaO₄ [M+Na] ⁺ = 297.1097, found = 297.1106; IR (neat): v 2983, 2935, 2902, 2814, 2697, 1725, 1689, 1677, 1595, 1448, 1377, 1326, 1246, 1211, 1179, 1101, 979 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.29	n.a.	83.457	26.250	50.13	n.a.	BMB*
2	11.31	n.a.	72.860	26.117	49.87	n.a.	BMB*
Total:			156.317	52.367	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	10.41	n.a.	140.475	45.912	96.37	n.a.	BMB*
2	11.47	n.a.	5.077	1.730	3.63	n.a.	BMB*
Total:			145.552	47.642	100.00	0.000	

3t (S)-benzyl 3-formyl-2-(2-oxo-2-phenylethyl)but-3-enoate

3t; Colorless oil; $[\alpha]_D^{20} = +85.8$ (c = 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 9.55 (s, 1H), 7.97–7.95 (m, 2H), 7.60–7.57 (m, 1H), 7.49–7.46 (m, 2H), 7.38–7.32 (m, 5H), 6.45 (s, 1H), 6.19 (s, 1H), 5.17 (q, J = 7.5 Hz, 2H), 4.32 (dd, J = 7.5, 5.5 Hz, 1H), 3.72 (dd, J = 18.0, 8.0 Hz, 1H), 3.27 (dd, J = 18.0, 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 196.94, 192.67, 171.96, 146.99, 136.40, 136.26, 135.53, 133.33, 128.59, 128.44, 128.16, 128.08, 128.03, 66.99, 39.72, 39.65; Enantiomeric excess: 94%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 85/15; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 17.80 min, second peak: t_R = 21.56 min; HRMS (ESI) m/z calcd. for C₂₀H₁₈NaO₄ [M+Na] ⁺ = 345.1097, found = 345.1108; IR (neat): v 3063, 3033, 2924, 1732, 1684, 1596, 1580, 1449, 1305, 1212, 1157, 1088, 1001, 957 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	17.77	n.a.	771.143	373.431	50.44	n.a.	BMB*
2	21.14	n.a.	579.566	366.917	49.56	n.a.	BMB*
Total:			1350.709	740.348	100.00	0.000	

NO.	Ret. Lime	Peak Name	Height	Area	Rel.Area	Amount	Type	
	min		mAU	mAU*min	%			
1	17.80	n.a.	540.050	256.136	97.05	n.a.	BMB*	
2	21.56	n.a.	13.833	7.779	2.95	n.a.	BMB*	
Total:			553.883	263.915	100.00	0.000		

3u (S)-3-benzoyl-2-methylene-5-oxo-5-phenylpentanal

Total:

3u; Colorless oil; $[\alpha]_D{}^{20} = +254.2$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.59 (s, 1H), 8.00–7.94 (m, 4H), 7.58–7.54 (m, 2H), 7.47–7.43 (m, 4H), 6.40 (s, 1H), 6.19 (s, 1H), 5.35 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.86 (dd, *J* = 18.0, 9.6 Hz, 1H), 3.24 (dd, *J* = 18.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.53, 197.15, 192.47, 147.29, 136.97, 136.18, 135.74, 133.35, 133.31, 128.67, 128.58, 128.09, 41.40, 39.20; Enantiomeric excess: 92%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 11.00 min, second peak: t_R = 15.75 min; HRMS (ESI) m/z calcd. for C₁₉H₁₆NaO₃ [M+Na] ⁺ = 315.0992, found = 315.1001; IR (neat): v 3060, 2916, 2822, 1676, 1595, 1579, 1447, 1250, 1217, 1178, 999, 949 cm⁻¹.

499.966

205.392

100.00

0.000

3v (S)-3-(4-chlorobenzoyl)-5-(4-chlorophenyl)-2-methylene-5-oxopentanal

3v; Colorless oil; $[\alpha]_D^{20} = +217.2$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.94–7.86 (m, 4H), 7.44–7.41 (m, 4H), 6.40 (s, 1H), 6.21 (s, 1H), 5.27 (dd, *J* = 10.0, 3.6 Hz, 1H), 3.82 (dd, *J* = 18.0, 10.4 Hz, 1H), 3.18 (dd, *J* = 18.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.30, 195.94, 192.32, 146.87, 139.95, 139.88, 137.17, 134.38, 134.00, 130.07, 129.49, 129.02, 128.95, 41.39, 39.07; Enantiomeric excess: 93%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 10.23 min, second peak: t_R = 12.03 min; HRMS (ESI) m/z calcd. for C₁₉H₁₄Cl₂NaO₃ [M+Na] ⁺ = 383.0212, found = 383.0215; IR (neat): v 3074, 2920, 2851, 2699, 1676, 1589, 1506, 1399, 1313, 1216, 1155, 1090, 995 cm⁻¹.

Ν	No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
		min			mAU	mAU*min	%		
	1	10.99	n.a.		935.629	313.698	50.09	n.a.	BMB*
	2	13.31	n.a.		790.761	312.580	49.91	n.a.	BMB*
Т	otal:				1726.390	626.277	100.00	0.000	

No.	Ret.Time	Peak Na	me Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	10.23	n.a.	290.864	95.364	96.56	n.a.	BMB*
2	12.03	n.a.	9.888	3.401	3.44	n.a.	BMB*
Total:			300.752	98.766	100.00	0.000	

3w (S)-3-(4-bromobenzoyl)-5-(4-bromophenyl)-2-methylene-5-oxopentanal

3w; Colorless oil; $[\alpha]_D^{20} = +185.0$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.58 (s, 1H), 7.86–7.79 (m, 4H), 7.61–7.59 (m, 4H), 6.39 (s, 1H), 6.21 (s, 1H), 5.26 (dd, J = 10.0, 3.6 Hz, 1H), 3.81 (dd, J = 18.0, 10.0 Hz, 1H), 3.17 (dd, J = 18.0, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 197.49, 196.12, 192.32, 146.79, 137.22, 134.74, 134.37, 132.02, 131.94, 130.16, 129.58, 128.73, 128.64, 41.36, 39.02; Enantiomeric excess: 92%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 11.73 min, second peak: t_R = 14.20 min; HRMS (ESI) m/z calcd. for C₁₉H₁₄Br₂NaO₃ [M+Na] ⁺ = 470.9202, found = 470.9209; IR (neat): v 3089, 2921, 2850, 1676, 1583, 1567, 1483, 1396, 1249, 1214, 1174, 1068, 992 cm⁻¹.

3x (S)-3-(4-methylbenzoyl)-2-methylene-5-oxo-5-(p-tolyl)pentanal

3x; Colorless oil; $[\alpha]_D^{20} = +264.2$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.91–7.83 (m, 4H), 7.25–7.23 (m, 4H), 6.40 (s, 1H), 6.16 (s, 1H), 5.31 (dd, J = 9.6, 4.4 Hz, 1H), 3.81 (dd, J = 18.0, 9.6 Hz, 1H), 3.21 (dd, J = 18.0, 4.4 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.21, 196.79, 192.55, 147.57, 144.20, 144.07, 136.84, 133.79, 133.28, 129.35, 129.23, 128.82, 128.20, 41.27, 39.07, 21.64; Enantiomeric excess: 93%, determined by HPLC (Chiralpak OZ-3, hexane/*i*-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 12.40 min, second peak: t_R = 20.25 min; HRMS (ESI) m/z calcd. for C₂₁H₂₀NaO₃ [M+Na] ⁺ = 343.1305, found = 343.1314; IR (neat): v 2919, 2852, 1674, 1605, 1571, 1398, 1317, 1253, 1223, 1177, 999, 941 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.41	n.a.	341.274	148.851	49.84	n.a.	BMB*
2	20.12	n.a.	214.723	149.822	50.16	n.a.	BMB*
Total:			555.998	298.673	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.41	n.a.	383.584	169.656	96.38	n.a.	BMB*
2	20.25	n.a.	9.937	6.381	3.62	n.a.	BMB*
Total:			393.521	176.036	100.00	0.000	

4 (S,E)-ethyl 3-methylene-6-oxo-2-(2-oxo-2-phenylethyl)-6-phenylhex-4-enoate

4; Colorless oil; $[α]_D^{20} = + 92.3$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.97 (m, 4H), 7.59–7.56 (m, 2H), 7.50–7.45 (m, 5H), 7.28 (d, *J* = 15.6 Hz, 1H), 5.71 (s, 1H), 5.65 (s, 1H), 4.27–4.18 (m, 3H), 3.85 (dd, *J* = 18.0, 9.6 Hz, 1H), 3.21 (dd, *J* = 18.0, 3.6 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.44, 190.08, 172.57, 144.49, 142.62, 137.73, 136.16, 133.41, 132.95, 128.61, 128.44, 128.04, 126.02, 122.59, 61.34, 42.16, 40.57, 14.01; Enantiomeric excess: 92%, determined by HPLC (Chiralpak OD-H, hexane/*i*-PrOH = 80/20; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 6.93 min, second peak: t_R = 7.87 min; HRMS (ESI) m/z calcd. for C₂₃H₂₂NaO₄ [M+Na] ⁺ = 385.1410, found = 385.1425; IR (neat): v 3058, 2923, 2852, 1725, 1681, 1596, 1447, 1282, 1212, 1173, 1018, 987 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.93	n.a.	40.838	10.250	3.90	n.a.	BMB*
2	7.87	n.a.	762.710	252.396	96.10	n.a.	BMB*
Total:			803.548	262.645	100.00	0.000	

5 (S)-ethyl 3-(hydroxymethyl)-2-(2-oxo-2-phenylethyl)but-3-enoate

5; Colorless oil; $[\alpha]_D^{20} = + 32.0 \ (c = 0.33, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3): δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.60–7.56 (m, 1H), 7.49–7.45 (m, 2H), 5.25 (s, 1H), 5.13 (s, 1H), 4.26 (s, 2H), 4.21–4.14 (m, 2H), 3.82 (dd, *J* = 8.8, 5.6 Hz, 1H), 3.71 (dd, *J* = 17.6, 8.4 Hz, 1H), 3.32 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.24 (s, 1H), 1.26 (t, *J* =7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3): δ 197.89, 173.10, 145.90, 136.37, 133.38, 128.62, 128.06, 113.17, 65.73, 61.19, 43.05, 40.35, 14.04; Enantiomeric excess: 92%, determined by HPLC (Chiralpak OJ-H, hexane/*i*-PrOH = 85/15; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 11.85 min, second peak: t_R = 17.38 min; HRMS (ESI) m/z calcd. for C₁₅H₁₈NaO₄ [M+Na] ⁺ = 285.1097, found = 285.1100; IR (neat): v 3456, 2976, 2924, 2870, 1725, 1681, 1596, 1448, 1212, 1171, 1020, 1001 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.63	n.a.	207.782	87.856	49.94	n.a.	BMB*
2	17.12	n.a.	158.157	88.070	50.06	n.a.	BMB*
Total:			365.939	175.925	100.00	0.000	

N	о.	Ret.Time	Peak N	ame Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
	1	11.85	n.a.	8.46	8 3.436	3.93	n.a.	BMB*
	2	17.38	n.a.	151.95	4 83.958	96.07	n.a.	BMB*
Tot	tal:			160.42	1 87.394	100.00	0.000	

6 (S,E)-ethyl 2-(2-oxo-2-phenylethyl)-3-((2-tosylhydrazono)methyl)but-3-enoate

6; Colorless oil; $[\alpha]_D^{20} = +60.2$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.60–7.57 (m, 1H), 7.48–7.44 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 5.57 (s, 1H), 5.40 (s, 1H), 4.26 (dd, J =9.2, 4.0 Hz, 1H), 4.13–4.05 (m, 2H), 3.59 (dd, J = 18.0, 9.6 Hz, 1H), 2.93 (dd, J =18.0, 4.0 Hz, 1H), 2.21 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.81, 172.61, 147.57, 144.09, 141.75, 136.34, 134.79, 133.18, 129.45, 128.52, 128.02, 127.96, 124.41, 61.02, 41.78, 40.09, 21.33, 13.90; Enantiomeric excess: 92%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 80/20; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 13.88 min, second peak: t_R = 22.44 min; HRMS (ESI) m/z calcd. for C₂₂H₂₄N₂NaO₅S [M+Na] ⁺ = 451.1298, found = 451.1308; IR (neat): υ 3229, 2904, 1726, 1681, 1596, 1448, 1359, 1309, 1210, 1161, 1086, 884 cm⁻¹.

1	No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
		min			mAU	mAU*min	%		
Γ	1	13.99	n.a.		286.751	159.826	49.65	n.a.	BMB*
	2	23.18	n.a.		189.078	162.065	50.35	n.a.	BMB*
Т	otal:				475.829	321.891	100.00	0.000	

7(2S)-ethyl 2-(1-formyl-3,4-dimethylcyclohex-3-en-1-yl)-4-oxo-4-phenylbutanoate

3ia; Colorless oil; $[\alpha]_D^{20} = + 13.1$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.54 (s, 1H), 7.96–7.93 (m, 2H), 7.59–7.55 (m, 1H), 7.48–7.44 (m, 2H), 4.16 (q, J =7.2 Hz, 2H), 3.55–3.44 (m, 1H), 3.34–3.21 (m, 1H), 3.09–3.02 (m, 1H), 2.27 (s, 1H), 2.11–1.93 (m, 4H), 1.72–1.66 (m, 4H), 1.57 (s, 3H), 1.25 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.85, 197.80, 172.58, 136.34, 133.32, 128.56, 127.98, 125.49, 123.06, 61.01, 49.28, 45.61, 35.83, 34.17, 28.41, 26.49, 19.21, 18.70, 14.07; Enantiomeric excess: 92% and 92%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 95/05; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 9.82 min, second peak: t_R = 11.09 min, third peak: t_R = 13.66 min, forth peak: t_R = 16.26 min; HRMS (ESI) m/z calcd. for C₂₁H₂₆NaO₄ [M+Na] ⁺ = 365.1723, found = 365.1734; IR (neat): v 2979, 2914, 2721, 1722, 1685, 1597, 1447, 1363, 1216, 1175, 1023, 857 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.77	n.a.	115.466	47.407	18.32	n.a.	BMB*
2	11.06	n.a.	209.621	81.163	31.36	n.a.	BMB*
3	13.60	n.a.	103.879	46.402	17.93	n.a.	BMB*
4	16.21	n.a.	162.196	83.829	32.39	n.a.	BMB*
Total:			591.162	258.801	100.00	0.000	

Γ	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
Γ	1	9.83	n.a.	6.871	2.608	1.38	n.a.	BMB*
	2	11.09	n.a.	13.329	4.988	2.63	n.a.	MB*
	3	13.67	n.a.	147.768	64.260	33.93	n.a.	BMB*
	4	16.27	n.a.	230.876	117.520	62.06	n.a.	BMB*
1	Fotal:			398.845	189.377	100.00	0.000	

8; Colorless oil; $[\alpha]_D^{20} = + 4.9$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.81 (s, 1H), 7.93 (d, J = 7.6 Hz, 2H), 7.60–7.57 (m, 1H), 7.49–7.45 (m, 2H), 7.31–7.26 (m, 4H), 4.20–4.06 (m, 2H), 3.67–3.63 (m, 1H), 3.55 (dd, J = 18.0, 8.0 Hz, 1H), 3.37 (dd, J = 18.0, 8.8 Hz, 1H), 3.17–3.07 (m, 2H), 2.95–2.90 (m, 1H), 1.21 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.87, 197.02, 172.61, 136.15, 133.54, 133.18, 133.04, 131.58, 129.31, 128.67, 128.05, 61.51, 51.22, 40.14, 37.18, 31.58, 14.00; Enantiomeric excess: 92% and 92%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 90/10; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 15.60 min, second peak: t_R = 18.00 min, third peak: t_R = 20.06 min, forth peak: t_R = 21.95 min; HRMS (ESI) m/z calcd. for C₂₁H₂₁ClNaO₄S [M+Na] ⁺ = 427.0741, found = 427.0744; IR (neat): v 3060, 2980, 2927, 2834, 2739, 1721, 1683, 1596, 1476, 1448, 1365, 1261, 1218, 1176, 1094, 1010 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.59	n.a.	80.241	31.364	24.90	n.a.	BMB*
2	17.97	n.a.	70.300	30.950	24.57	n.a.	BMB*
3	20.17	n.a.	63.627	30.944	24.56	n.a.	BMB*
4	22.03	n.a.	61.251	32.715	25.97	n.a.	BMB*
Total:			275.418	125.973	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.61	n.a.	30.076	12.403	2.68	n.a.	BMB*
2	18.01	n.a.	19.936	8.766	1.89	n.a.	BMB*
3	20.07	n.a.	448.940	222.957	48.12	n.a.	BMB*
4	21.95	n.a.	403.282	219.203	47.31	n.a.	BMB*
Total:			902.233	463.328	100.00	0.000	

9 (2S)-ethyl 2-(3-benzoyl-1-formyl-1,2,3,5,6,10b-hexahydropyrazolo[5,1-a] isoqu inolin-1-yl)-4-oxo-4-phenylbutanoate

9; Colorless oil; $[\alpha]_D^{20} = +159.2$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.13 (s, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.60–7.56 (m, 1H), 7.48–7.39 (m, 3H), 7.36–7.29 (m, 3H), 7.27–7.23 (m, 1H), 7.11 (d, J = 7.6 Hz, 1H), 4.90 (s, 1H), 4.67 (br, 1H), 4.43 (d, J = 12.4 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.96 (d, J = 8.8 Hz, 1H), 3.58 (br, 1H), 2.92–2.66 (m, 5H), 1.26 (t, J = 10.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.20, 196.65, 170.90, 167.99, 135.63, 134.32, 133.65, 132.94, 130.44, 128.95, 128.63, 128.25, 128.08, 127.94, 127.61, 127.03, 126.86, 66.45, 63.31, 61.86, 47.77, 43.44, 41.30, 38.52, 28.46, 14.02; Enantiomeric excess: 92% and 92%, determined by HPLC (Chiralpak AD-H, hexane/*i*-PrOH = 70/30; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: t_R = 18.53 min, second peak: t_R = 20.62 min, third peak: t_R = 29.78 min, forth peak: t_R = 49.11 min; HRMS (ESI) m/z calcd. for C₃₁H₃₀N₂NaO₅ [M+Na] ⁺ = 533.2047, found = 533.2052; IR (neat): v 3061, 2976, 2934, 1720, 1683, 1632, 1577, 1448, 1407, 1363, 1264, 1218, 1172, 1095, 1027, 932 cm⁻¹.

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.46	n.a.	263.798	160.502	39.31	n.a.	BMB*
2	20.59	n.a.	69.757	45.323	11.10	n.a.	BMB*
3	30.00	n.a.	156.946	159.093	38.96	n.a.	BMB*
4	48.46	n.a.	29.025	43.399	10.63	n.a.	BMB*
Total:			519.527	408.318	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.53	n.a.	47.290	29.039	2.81	n.a.	BMB*
2	20.62	n.a.	432.524	285.543	27.58	n.a.	BMB*
3	29.79	n.a.	663.325	710.779	68.66	n.a.	BMB*
4	49.11	n.a.	6.906	9.843	0.95	n.a.	BMB*
Total:			1150.045	1035.203	100.00	0.000	

10 Ethyl 3-formyl-5-methylene-6-oxo-2-(2-oxo-2-phenylethyl)heptanoate

10; Colorless oil; $[\alpha]_D^{20} = +13.7$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 9.12 (d, *J* = 1.6 Hz, 1H), 7.97–7.95 (m, 2H), 7.61–7.55 (m, 1H), 7.50–7.45 (m, 2H), 6.17 (s, 1H), 5.97 (s, 1H), 4.18 (d, *J* = 7.2 Hz, 1H), 3.75–3.51 (m, 2H), 3.11–3.05 (m, 1H), 2.90–2.84 (m, 2H), 2.56–2.51 (m, 1H), 2.37 (s, 3H), 1.26 (t, *J* =7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.92, 199.12, 197.34, 172.90, 145.34, 136.28, 133.34, 128.57, 128.48, 128.01, 61.22, 51.15, 39.49, 37.35, 28.31, 25.70, 14.03; HRMS (ESI) m/z calcd. for C₁₉H₂₂NaO₅ [M+Na] ⁺ = 353.1359, found = 533.1364; IR (neat): υ 2981, 2925, 2853, 2733, 1722, 1676, 1597, 1448, 1365, 1217, 1175, 1022 cm⁻¹. (Noteworthy, diastereoisomers of **10** were inseparable through silica gel chromatography and we have not found suitable chiral stationary for its resolution)

9. References

- [1] a) D. J. Peterson, J. Organomet. Chem. 1967, 8, 199; b) J.-M. Camus, J. Andrieu,
 P. Richard, R. Poli, Eur. J. Inorg. Chem. 2004, 1081.
- [2] a) L. B. Schenken, J. A. Ellman, Org. Lett. 2003, 5, 545; b) Z.-M. Zhang, P. Chen,
 W. Li, Y. Niu, X.-L. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350; c) X. Su,
 W. Zhou, Y. Li, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 6874; d) W. Zhou, X. Su.
 M. Tao, C. Zhu, Q. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14853; e) P.
 Chen, X. Su, W. Zhou, Y. Xiao, J. Zhang, Tetrahedron 2016, 10.1016/ j.tet.2015.
 12.002.
- [3] H.-H. Lu, X.-F. Wang, C.-J. Yao, J.-M. Zhang, H. Wu, W.-J. Xiao, *Chem. Commun.***2009**, 4251.
- [4] R. Na, H. Liu, Z. Li, B. Wang, J. Liu, M.-A. Wang, M. Wang, J. Zhong, H. Guo, *Tetrahedron*, **2012**, *68*, 2349.
- [5] X. Dong, L. Liang, E. Li, Y. Huang, Angew. Chem. 2015, 127, 1641; Angew. Chem.
 Int. Ed. 2015, 54, 1621.

10. 1H, 13C, 31P Spectra

zhouw-5-189p

zhouw-5-191p

S70

S72

zhouw-5-187p

zhouw-5-43c


```
zhouw-5-48
```


