# An Elusive Vinyl Radical Isolated as an Appended Unit in a Five-Coordinate Co(III)-Bis(Iminobenzosemiquinone) Complex Formed via Ligand-Centered C-S Bond Cleavage 

Prasenjit Sarkar, ${ }^{\text {a }}$ Archana Tiwari, ${ }^{\text {b }}$ Amrit Sarmah, ${ }^{\text {c }}$ Subhrajyoti Bhandary, ${ }^{\text {d }}$ Ram Kinkar Roy ${ }^{\text {c }}$ and Chandan Mukherjee ${ }^{\text {a * }}$

*Corresponding address:
Dr. Chandan Mukherjee, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India

Email: cmukherjee@iitg.ernet.in
Phone No. +91-361-258-2327
Fax: +91-361-258-2349

| Contents | Page |
| :--- | :--- |
| Materials and Methods | S3 |
| Syntheses | S3-S4 |
| IR, mass, ${ }^{1}$ H and $^{13}{ }^{13}$ NMR spectrum of the ligand | S5-S6 |
| IR Mass and UV-Vis/NIR Spectrum of complex 1 | S7-S8 |
| Shift in ${ }^{1}$ H NMR spectrum of CDCl ${ }_{3}$ solvent peak in Evan's method magnetic <br> moment measurement. | S8 |
| Optimized structure of the complex at PBEPBE/def2-TZVP level. | S9 |
| Electrostatic potential plot computed at PBEPBE/def2-TZVP level | S9 |
| Proposed mechanism for the formation of complex 1 | S10 |
| Selected bond distances (A) and bond angles $\left({ }^{\circ}\right)$ for complex 1 | S10 |
| Crystallographic refinement Parameters | S11 |
| Coordinated for the geometrically optimized structure | S11-S15 |
| References | S15 |

## EXPERIMENTAL SECTION:

Materials: All the chemicals and solvents were obtained from commercial sources and were used as supplied, unless noted otherwise. 3,5-di-tert-butylcatechol, 2-aminothiophenol, and 1,2dibromoethane were purchased from Sigma-Aldrich. Solvents were obtained from Merck (India). Mass spectra were measured in HPLC grade acetonitrile solution.

Physical methods: X-ray crystallographic data were collected using Super Nova, Single source at offset, Eos diffractometer. The data refinement and cell reductions were carried out by CrysAlisPro. ${ }^{1 a}$ Structures were solved by direct methods using SHELXS-97 and refined by the full matrix least squares method using SHELXL $2014^{1 \mathrm{~b}}$ present in the program suite WinGX (version 2014.1) ${ }^{\text {lc }}$. All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms (except $\mathrm{H} 22 \mathrm{~A} / \mathrm{H} 22 \mathrm{~B}$ ) were positioned geometrically and refined isotropically using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U \mathrm{eq}[\mathrm{C}], U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}$ (methyl groups). C $22 \mathrm{~A} / \mathrm{C} 22 \mathrm{~B}$ - bound H atoms were located using difference Fourier maps, but in the final refinement their distances were constrained at $0.97 \AA$ (DFIX). IR spectra were recorded on a Perkin Elmer Instrument at normal temperature with KBr pellet by grinding the sample with KBr (IR Grade). ${ }^{1} \mathrm{H}-$, and ${ }^{13} \mathrm{C}-$ NMR spectra of the ligand were recorded in BRUKER 600 MHz NMR machine. UV-Vis spectra were recorded on a Perkin Elmer, Lamda 750, UV/VIS/NIR spectrometer by preparing a known concentration of the samples in HPLC Grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$ using a cuvette of 1 cm width. Mass spectral (MS) data were obtained from quadrupole time-of-flight (QTOF)-MS spectrometer ('Waters, Model: Q-Tof Premier') and peaks are given in $m / z$ (\% of basis peak). Magnetic susceptibility of the complex in solution was measured using Evan's method at 400 MHz NMR machine (Varian, Model: Mercury plus). Variable temperature magnetic susceptibility measurements for the complex were performed using superconducting quantum interference device (SQUID) magnetometer at 1 T . Simulations of the experimentally obtained magnetic measurements were performed using julX programme developed by Dr. E. Bill, Max-Planck Institute, Muelheim an der Ruhr, Germany.

Computational Details: All DFT calculations are performed using Gaussian $09^{2}$ program suit. The initial geometry optimization is performed at $\mathrm{M} 06^{3} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ and subjected for further optimization using the PBE functional (exchange and correlation) (PBEPBE) ${ }^{4}$ in conjunction with an uncontracted Ahlrichs def2-TZVP ${ }^{5}$ basis set. Subsequently, frequency calculations are also performed at the same level (i.e., PBEPBE/def2-TZVP). The natural bond orbital (NBO) analysis ${ }^{6}$ is performed to understand the bonding nature of the atoms as implemented in Gaussian09.

## Syntheses:

Synthesis of 1,2-Bis(2-aminophenylthio)ethane: Same as previously been reported. ${ }^{7}$


Synthesis of $\left[\mathbf{C}_{\mathbf{4} 2} \mathbf{H}_{\mathbf{5} 6} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \mathrm{S}_{\mathbf{2}}\right], \mathbf{H}_{\mathbf{4}} \mathbf{P r a}{ }^{\text {edt(AP/AP) }}$ : To a solution of 1,2-bis(aminophenylthio)ethane ( $1.10 \mathrm{gm}, 4 \mathrm{mmol}$ ) and 3,5-di-tert-butylcatechol ( $2.22 \mathrm{~g}, 10 \mathrm{mmol}$ ) in hexane ( 30 mL ), $\mathrm{Et}_{3} \mathrm{~N}(0.1$ mL ) was added. The solution was refluxed for 24 h . During this period a brown color precipitate was appeared. The resulting suspension was further stirred at room temperature ( $25^{\circ} \mathrm{C}$ ) for 2 h . Thus formed precipitate was filtered and washed with methanol thoroughly. The solid was dried under high vacuum. Yield: $1.947 \mathrm{~g}, 71 \%$. FTIR ( KBr pellet $\mathrm{cm}^{-1}$ ): 3379, 3297, 2955, 2907, 2867, $1586,1476,1448,1420,1362,1310,1222,1201,1157,1126,1117,1057,1035,974,881,823$, $810,754,676,620 .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ $(\mathrm{s}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $149.66,148.72,142.56,136.15,135.62,130.62,127.55,122.47,121.82,119.8,118.04,114.13$, $77.43,77.22,77.01,35.22,34.95,34.57,31.78,29.71$. ESI-MS (+) $m / z$ for $\left[\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}:$ calcd, 685.3855; found, 685.3983.

Synthesis of [ $\mathbf{C}_{\mathbf{4 2}} \mathbf{H}_{\mathbf{5 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{S}_{\mathbf{2}} \mathbf{C o}$ ]: To the stirred solution of $\mathrm{H}_{4} \mathrm{Pra}{ }^{\text {edt(AP/AP) }}$ ( $154 \mathrm{mg}, 0.225 \mathrm{mmol}$ ) in methanol $(15 \mathrm{~mL}), \mathrm{Co}(\mathrm{OAc})_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(56 \mathrm{mg}, 0.225 \mathrm{mmol})$ was added followed by dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$. The resulting solution was stirred at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$ for 24 h under air. A deep violet precipitate appeared which was filtered and washed thoroughly with methanol. Recrystallization of the solid from a $\mathrm{CHCl}_{3}: \mathrm{MeOH}$ (4:1) solvent mixture provided crystalline compound, which was suitable for single crystal X-ray analysis. Yield: $98 \mathrm{mg}, 51 \%$ (including $1 \mathrm{CHCl}_{3}$ ). FTIR ( KBr pellet $\mathrm{cm}^{-1}$ ): 3434, 3050, 2955, 2905, 2866, 1587, 1523, 1461, $1386,1361,1328,1265,1249,1201,1174,1110,1060,1025,996,885,859,822,756,741,665$, 647, 538. ESI-MS (+) $m / z$ for $\left[\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Co}+\mathrm{H}\right]^{+}$: calcd, 738.27; found, 738.14. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Co} \bullet 1 \mathrm{CHCl}_{3} \bullet 2.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.95 ; \mathrm{H}, 5.88$; N, 2.88. Found: C, 57.20; H, 6.27; N, 3.10 .


Figure S1: IR spectrum of $\mathrm{H}_{4} \mathrm{Pra}^{\text {edt(AP/AP) }}$.


Figure S2. Experimental and simulated mass spectra for $\mathrm{H}_{4} \mathrm{Pra}{ }^{\text {edt(AP/AP) }}+\mathrm{H}=\left[\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}+\mathrm{H}\right]^{+}$have been shown.


Figure S3: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathrm{H}_{4} \mathrm{Pra}^{\text {edt(AP/AP) }}$.


Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{H}_{4} \mathrm{Pra}^{\text {edt(AP/AP) }}$.


Figure S5: IR spectrum of complex 1, $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Co}$.


Figure S6. Experimental and simulated mass spectra for complex $\mathbf{1}+\mathrm{H}=\left[\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Co}+\mathrm{H}\right]^{+}$have been shown.


Figure S7: UV spectrum of complex $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S8: Showing NMR shift in solvent peak $\left(\mathrm{CDCl}_{3}\right)$ during Evan's method magnetic susceptibility measurement of complex $1 \bullet 1 \mathrm{CHCl}_{3}$ at $25^{\circ} \mathrm{C}$. $\mathrm{c}=15 \mathrm{mg} / \mathrm{mL}$.


Figure S9: Optimized structure of the complex at PBEPBE/def2-TZVP level.


Figure S10: Electrostatic potential plot computed at PBEPBE/def2-TZVP level $($ Iso-value $=0.03)$.


Figure S11: Showing proposed mechanism for the formation of complex 1.
Table S1: Selected bond distances ( $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ for complex 1.

| Co1-N1 | $1.858(3)$ | O1-C2 | $1.297(4)$ |
| :---: | :---: | :---: | :---: |
| Co1-O2 | $1.858(2)$ | O2-C28 | $1.305(4)$ |
| Co1-N2 | $1.874(3)$ | N2-C23 | $1.357(4)$ |
| Co1-O1 | $1.887(2)$ | N2-C37 | $1.396(4)$ |
| Co1-S2 | $2.2069(12)$ | N1-C1 | $1.354(4)$ |
| S2-C42 | $1.743(4)$ | N1-C15 | $1.426(4)$ |
| S1-C21A | $1.756(13)$ | C24-C25 | $1.357(4)$ |
| S1-C21B | $1.743(8)$ | C22A-C21A | $1.354(18)$ |
| S1-C20 | $1.770(4)$ | C37-C38 | $1.393(6)$ |
| C27-C26 | $1.370(5)$ | C27-C28 | $1.424(5)$ |
| C24-C23 | $1.420(4)$ | C2-C3 | $1.429(4)$ |
| C25-C26 | $1.423(5)$ | C1-C6 | $1.408(4)$ |
| C28-C23 | $1.425(5)$ | C4-C5 | $1.433(5)$ |
| C2-C1 | $1.430(5)$ | C22B-C21B | $1.358(15)$ |
| C3-C4 | $1.369(5)$ | C5-C6 | $1.357(5)$ |


| N1-Co1-O2 | $129.75(12)$ | O2-Co1-N2 | $83.68(10)$ |
| :--- | :---: | :---: | :---: |
| N1-Co1-N2 | $101.94(11)$ | N1-Co1-O1 | $83.43(11)$ |
| O2-Co1-O1 | $92.65(10)$ | N2-Co1-O1 | $174.63(11)$ |
| N1-Co1-S2 | $98.76(9)$ | O2-Co1-S2 | $131.47(9)$ |
| N2-Co1-S2 | $84.99(9)$ | O1-Co1-S2 | $94.58(9)$ |
| C42-S2-Co1 | $95.12(13)$ | C2-O1-Co1 | $113.5(2)$ |
| C23-N2-Co1 | $114.1(2)$ | C37-N2-Co1 | $117.6(2)$ |
| C28-O2-Co1 | $113.8(2)$ |  |  |

Table S2: Crystallographic parameters and refinement data for complex $\mathbf{1}$.

| Empirical formula | $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{CoN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}, \mathrm{CHCl}_{3}$ |
| :--- | :--- |
| Formula weight | 857.26 |
| CCDC Number | 1468751 |
| Crystal habit, colour | Block, violet |
| Crystal size, $\mathrm{mm}^{3}$ | $0.24 \times 0.18 \times 0.14$ |
| Temperature, $T$ | $293(2)$ |
| Wavelength, $\lambda(\AA)$ | 0.71073 |
| Crystal system | monoclinic |
| Space group | $P 21 / c$ |
| Unit cell dimensions | $a=19.3263(9) \AA$ |
|  | $b=9.6193(4) \AA$ |
|  | $c=25.4228(11) \AA$ |
|  | $\alpha=90.00^{\circ}, \gamma=108.384(5)^{\circ}$, |
|  | $\beta=90.00^{\circ}$ |
| Volume, $V\left(\AA{ }^{3}\right)$ | $4485.0(4)$ |
| $Z$ | 4 |
| Calculated density, Mg. $\mathrm{m}^{-3}$ | 1.270 |
| Absorption coefficient, $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.690 |
| $F(000)$ | 1796 |
| $\theta$ range for data collection | $2.99^{\circ}$ to $25.00^{\circ}$ |
| Limiting indices | $-22 \leq h \leq 12,-11 \leq k \leq 10$, |
|  | $-26 \leq l \leq 30$ |
| Reflection collected/unique | $19539 / 7888[R($ int $)=0.0280]$ |
| Completeness to $\theta$ | $99.7 \%\left(\theta=25.00^{\circ}\right)$ |
| Max. and min. transmission | $0.908 / 0.862$ |
| Refinement method | SHELXL-2014/7' |
| Data/restraints/parameters | $7908 / 211 / 578$ |
| Goodness-of-fit on $F^{2}$ | 1.035 |
| Final $R$ indices $[l>2$ sigma $(I)]$ | $R 1=0.0577, w R 2=0.1491$ |
| $R$ indices (all data | $R 1=0.0829, w R 2=0.1653$ |
| Largest diff. peak and hole | 0.543 and $-0.477 \mathrm{e} \cdot \AA^{-3}$ |

Table S3: Coordinates for the geometrical optimized structure of complex 1.

| Co | 0.17393000 | 0.33871300 | -0.96389800 |
| :--- | :--- | :--- | :--- |
| N | 1.26403800 | -0.63367500 | 0.16642300 |
| N | -1.40124600 | -0.69707700 | -1.03425200 |
| O | 1.63362000 | 1.54269600 | -1.02114800 |
| O | -1.01194500 | 1.74574200 | -0.63230900 |
| C | 2.72029700 | 1.06213200 | -0.48741000 |


| C | 4.00089600 | 1.71021900 | -0.51582300 |
| :---: | :---: | :---: | :---: |
| C | 5.04057500 | 1.04997000 | 0.14613500 |
| C | 4.90791800 | -0.19580000 | 0.83956100 |
| C | 3.65676300 | -0.81374400 | 0.86457100 |
| C | 2.56401400 | -0.20248500 | 0.20179600 |
| H | 6.02929500 | 1.52270100 | 0.13397000 |
| H | 3.49838400 | -1.76401100 | 1.39303800 |
| C | -4.49759700 | 1.66771200 | 0.39548900 |
| C | -3.21885600 | 2.21380900 | 0.25165100 |
| C | -2.22403900 | 1.35160100 | -0.31940400 |
| C | -2.52610900 | -0.03073900 | -0.60927100 |
| C | -3.85927000 | -0.50517900 | -0.49404100 |
| C | -4.85254600 | 0.33558400 | 0.01242100 |
| H | -5.28947200 | 2.30949300 | 0.80477800 |
| H | -4.10375400 | -1.52404400 | -0.80714600 |
| C | 6.10463400 | -0.87170200 | 1.54455400 |
| C | 6.37315200 | -2.24419200 | 0.87989600 |
| H | 7.22926700 | -2.75300200 | 1.37060900 |
| H | 5.49506200 | -2.91672400 | 0.95355400 |
| H | 6.61618300 | -2.12461900 | -0.19562200 |
| C | 7.39438600 | -0.03357200 | 1.45436400 |
| H | 7.27965600 | 0.96029400 | 1.93288500 |
| H | 8.21798700 | -0.55972200 | 1.97809800 |
| H | 7.71837200 | 0.12324100 | 0.40559600 |
| C | 5.76996500 | -1.08220200 | 3.04077800 |
| H | 6.61820300 | -1.57317400 | 3.56195800 |

                    \(\begin{array}{llll}5.57105000 & -0.11446200 & 3.54437400\end{array}\)
                    \(4.87656000 \quad-1.72311200 \quad 3.17928600\)
                    \(4.18326900 \quad 3.05342800-1.24237300\)
                    \(3.82093700 \quad 2.88168200-2.73883300\)
                    \(\begin{array}{llll}2.77258500 & 2.55193200 & -2.86455100\end{array}\)
                    \(3.94619900 \quad 3.84670500-3.27286200\)
                    \(4.48320200 \quad 2.13521800-3.22348300\)
                    \(5.63401300 \quad 3.56273100-1.15376900\)
                    \(5.95284800 \quad 3.73923800-0.10590400\)
                    \(6.35332000 \quad 2.85923500-1.62132400\)
                    \(5.71905100 \quad 4.52829000-1.69196700\)
                    \(3.25523500 \quad 4.11481500-0.59948000\)
                    \(2.19309200 \quad 3.81192800-0.66460800\)
                    \(3.51089800 \quad 4.26833300 \quad 0.46913000\)
                    \(3.37265900 \quad 5.08762700-1.12114100\)
                    \(-2.87426500 \quad 3.66241800 \quad 0.64103400\)
                    \(-4.07680500 \quad 4.39005300 \quad 1.27074800\)
                    \(-3.77832000 \quad 5.42004600 \quad 1.55241500\)
                    \(-4.93004200 \quad 4.47566700 \quad 0.56700600\)
                    \(-4.43491200 \quad 3.88536200 \quad 2.19166800\)
                    \(-2.44050900 \quad 4.44789100-0.62233900\)
                    \(-1.55381900 \quad 3.98627600-1.09579500\)
                    \(-3.26005600 \quad 4.47746800-1.36952300\)
                    \(-2.18803300 \quad 5.49443100 \quad-0.35086800\)
                    \(-1.71835400 \quad 3.65520500 \quad 1.67232100\)
                    \(-2.01375200 \quad 3.11534100 \quad 2.59590400\)
    | H | -0.81471900 | 3.16930100 | 1.25894700 |
| :---: | :---: | :---: | :---: |
| H | -1.45493900 | 4.69571900 | 1.95557800 |
| C | -6.31597400 | -0.12420100 | 0.17470200 |
| C | -6.52275800 | -1.58104300 | -0.27968100 |
| H | -6.26975200 | -1.72130800 | $-1.35006100$ |
| H | -5.91274100 | -2.29015800 | 0.31633000 |
| H | -7.58579900 | -1.86859700 | -0.14935200 |
| C | -7.23436400 | 0.78386400 | -0.67912600 |
| H | -8.29476200 | 0.47415400 | -0.56994300 |
| H | -7.16355200 | 1.84766900 | -0.37681800 |
| H | -6.96645900 | 0.72082400 | -1.75336600 |
| C | -6.72818000 | -0.02014200 | 1.66342000 |
| H | -6.64235700 | 1.01568400 | 2.04830300 |
| H | -7.78370600 | -0.33756100 | 1.79577100 |
| H | -6.09444400 | -0.67184000 | 2.29946600 |
| S | -0.53456300 | -0.27174200 | 2.42635900 |
| S | 0.72695500 | -0.61091200 | -2.85335600 |
| C | -0.46414200 | -3.10063800 | 2.36330800 |
| C | -0.03001200 | -1.87083200 | 1.83225600 |
| C | 0.88828700 | -1.87059600 | 0.74442200 |
| C | 1.36187200 | -3.09172800 | 0.22623300 |
| C | 0.92911900 | -4.30972100 | 0.76902900 |
| C | 0.01553800 | -4.30900200 | 1.83483500 |
| H | -1.19500000 | -3.11257800 | 3.18448100 |
| H | 2.05382700 | -3.06412600 | -0.62800000 |
| H | 1.29185500 | $-5.25782500$ | 0.34528000 |


| H | -0.34056900 | -5.26061200 | 2.25829500 |
| :--- | :--- | :--- | :--- |
| C | -1.32043100 | -1.93425100 | -1.65460700 |
| C | -0.26615500 | -2.02981300 | -2.62567000 |
| C | -0.09522200 | -3.21967400 | -3.36956700 |
| C | -0.93773600 | -4.30991700 | -3.14426500 |
| C | -1.94819300 | -4.23668100 | -2.15818700 |
| C | -2.14381900 | -3.06717900 | -1.42162300 |
| H | 0.71229800 | -3.27407500 | -4.11564000 |
| H | -0.79807400 | -5.23723500 | -3.72050500 |
| H | -2.57636300 | -5.11644900 | -1.95164600 |
| H | -2.89267800 | -3.04581900 | -0.62021200 |
| C | -1.71150300 | -0.67336700 | 3.73404900 |
| C | -2.96215900 | -0.26689600 | 3.59351900 |
| H | -3.55602800 | 0.26158600 | 2.83225100 |
| H | -1.31632100 | -1.17463900 | 4.63728000 |

## References:

1. (a) CrysAlisPro, Oxford Diffraction Ltd., Version 1, 171. 33. 34d [release 27-02-2009

CrysAlis 171. NET]; (b) G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112; (c) L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.
2. Frisch, M. J. GAUSSIAN 09(Revision D.02), Gaussian, Inc., Wallingford, CT, 2009.
3. Y. Zhao, D.G. Truhlar, Theor Chem Acc. 2006, 120, 215.
4. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
5. A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
6. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
7. Khanmohammadi, H.; Rezaeian, K.; Amini, M. M.; Ng, S. W. Dyes and Pigments, 2013, 98, 557.

