An Elusive Vinyl Radical Isolated as an Appended Unit in a Five-Coordinate Co(III)–Bis(Iminobenzosemiquinone) Complex Formed *via* Ligand–Centered C–S Bond Cleavage

Prasenjit Sarkar,^a Archana Tiwari,^b Amrit Sarmah,^c Subhrajyoti Bhandary,^d Ram Kinkar Roy^c and Chandan Mukherjee^a*

*Corresponding address:

Dr. Chandan Mukherjee, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India

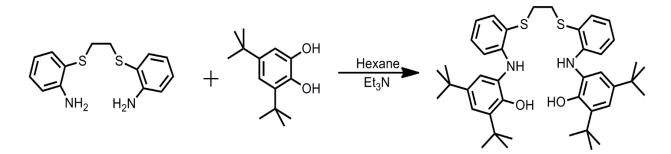
Email: <u>cmukherjee@iitg.ernet.in</u>

Phone No. +91-361-258-2327

Fax: +91-361-258-2349

Contents	Page
Materials and Methods	S 3
Syntheses	S3-S4
IR, mass, ¹ H and ¹³ C NMR spectrum of the ligand	S5-S6
IR Mass and UV-Vis/NIR Spectrum of complex 1	S7-S8
Shift in ¹ H NMR spectrum of CDCl ₃ solvent peak in Evan's method magnetic	S 8
moment measurement.	
Optimized structure of the complex at PBEPBE/def2-TZVP level.	S 9
Electrostatic potential plot computed at PBEPBE/def2-TZVP level	S9
Proposed mechanism for the formation of complex 1	S10
Selected bond distances (Å) and bond angles (°) for complex 1	S10
Crystallographic refinement Parameters	S11
Coordinated for the geometrically optimized structure	S11-S15
References	S15

EXPERIMENTAL SECTION:


Materials: All the chemicals and solvents were obtained from commercial sources and were used as supplied, unless noted otherwise. 3,5–di–*tert*–butylcatechol, 2-aminothiophenol, and 1,2-dibromoethane were purchased from Sigma–Aldrich. Solvents were obtained from Merck (India). Mass spectra were measured in HPLC grade acetonitrile solution.

Physical methods: X-ray crystallographic data were collected using Super Nova, Single source at offset, Eos diffractometer. The data refinement and cell reductions were carried out by CrvsAlisPro.^{1a} Structures were solved by direct methods using SHELXS-97 and refined by the full matrix least squares method using SHELXL 2014^{1b} present in the program suite WinGX (version 2014.1)^{1c}. All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms (except H22A/H22B) were positioned geometrically and refined isotropically using a riding model with $U_{iso}(H) = 1.2Ueq[C]$, $U_{iso}(H) = 1.5Ueq$ (methyl groups). C22A/C22B - bound H atoms were located using difference Fourier maps, but in the final refinement their distances were constrained at 0.97 Å (DFIX). IR spectra were recorded on a Perkin Elmer Instrument at normal temperature with KBr pellet by grinding the sample with KBr (IR Grade). ¹H–, and ¹³C– NMR spectra of the ligand were recorded in BRUKER 600 MHz NMR machine. UV-Vis spectra were recorded on a Perkin Elmer, Lamda 750, UV/VIS/NIR spectrometer by preparing a known concentration of the samples in HPLC Grade CH₂Cl₂ at room temperature (25 °C) using a cuvette of 1 cm width. Mass spectral (MS) data were obtained from quadrupole time-of-flight (QTOF)–MS spectrometer ('Waters, Model: Q–Tof Premier') and peaks are given in m/z (% of basis peak). Magnetic susceptibility of the complex in solution was measured using Evan's method at 400 MHz NMR machine (Varian, Model: Mercury plus). Variable temperature magnetic susceptibility measurements for the complex were performed using superconducting quantum interference device (SOUID) magnetometer at 1 T. Simulations of the experimentally obtained magnetic measurements were performed using julX programme developed by Dr. E. Bill, Max-Planck Institute, Muelheim an der Ruhr, Germany.

Computational Details: All DFT calculations are performed using Gaussian09² program suit. The initial geometry optimization is performed at $M06^3/6-31+G(d,p)$ and subjected for further optimization using the PBE functional (exchange and correlation) (PBEPBE)⁴ in conjunction with an uncontracted Ahlrichs def2-TZVP⁵ basis set. Subsequently, frequency calculations are also performed at the same level (*i.e.*, PBEPBE/def2-TZVP). The natural bond orbital (NBO) analysis⁶ is performed to understand the bonding nature of the atoms as implemented in Gaussian09.

Syntheses:

Synthesis of 1,2-Bis(2-aminophenylthio)ethane: Same as previously been reported.⁷

Synthesis of [C₄₂H₅₆N₂O₂S₂], H₄Pra^{edt(AP/AP)}: To a solution of 1,2-bis(aminophenylthio)ethane (1.10 gm, 4 mmol) and 3,5-di-*tert*-butylcatechol (2.22 g, 10 mmol) in hexane (30 mL), Et₃N (0.1 mL) was added. The solution was refluxed for 24 h. During this period a brown color precipitate was appeared. The resulting suspension was further stirred at room temperature ($25 \circ$ C) for 2 h. Thus formed precipitate was filtered and washed with methanol thoroughly. The solid was dried under high vacuum. Yield: 1.947 g, 71%. FTIR (KBr pellet cm⁻¹): 3379, 3297, 2955, 2907, 2867, 1586, 1476, 1448, 1420, 1362, 1310, 1222, 1201, 1157, 1126, 1117, 1057, 1035, 974, 881, 823, 810, 754, 676, 620. ¹H NMR (CDCl₃, 600MHz): δ 7.44 (s, 2H), 7.24 (d, *J* = 2.2 Hz, 2H), 7.13 (t, *J* = 7.7 Hz, 2H), 6.97 (d, *J* = 2.1 Hz, 2H), 6.77 (t, *J* = 7.5 Hz, 2H), 6.47 (d, *J* = 7.6 Hz, 2H), 6.38 (s, 2H), 6.20 (s, 2H), 3.02 (s, 4H), 1.44 (s, 18H), 1.25 (s, 18H). ¹³C NMR (151 MHz, CDCl₃): δ 149.66, 148.72, 142.56, 136.15, 135.62, 130.62, 127.55, 122.47, 121.82, 119.8, 118.04, 114.13, 77.43, 77.22, 77.01, 35.22, 34.95, 34.57, 31.78, 29.71. ESI-MS (+) *m*/*z* for [C₄₂H₅₆N₂O₂S₂+H]⁺: calcd, 685.3855; found, 685.3983.

Synthesis of $[C_{42}H_{50}N_2O_2S_2C_0]$ **:** To the stirred solution of H₄Pra^{edt(AP/AP)} (154 mg, 0.225 mmol) in methanol (15 mL), Co(OAc)₂•2H₂O (56 mg, 0.225 mmol) was added followed by dropwise addition of Et₃N (0.1 mL). The resulting solution was stirred at room temperature (25 °C) for 24 h under air. A deep violet precipitate appeared which was filtered and washed thoroughly with methanol. Recrystallization of the solid from a CHCl₃:MeOH (4:1) solvent mixture provided crystalline compound, which was suitable for single crystal X-ray analysis. Yield: 98 mg, 51% (including 1CHCl₃). FTIR (KBr pellet cm⁻¹): 3434, 3050, 2955, 2905, 2866, 1587, 1523, 1461, 1386, 1361, 1328, 1265, 1249, 1201, 1174, 1110, 1060, 1025, 996, 885, 859, 822, 756, 741, 665, 647, 538. ESI-MS (+) *m*/*z* for [C₄₂H₅₀N₂O₂S₂Co+H]⁺: calcd, 738.27; found, 738.14. Anal. Calcd for C₄₂H₅₀N₂O₂S₂Co•1CHCl₃•2.6H₂O: C, 56.95; H, 5.88; N, 2.88. Found: C, 57.20; H, 6.27; N, 3.10.

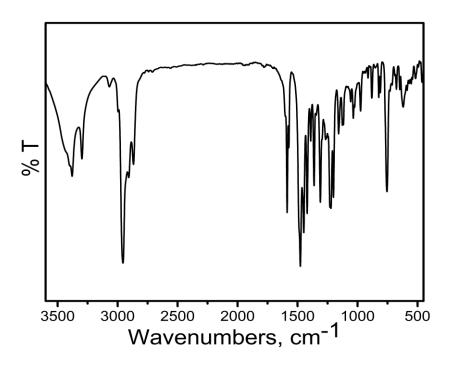
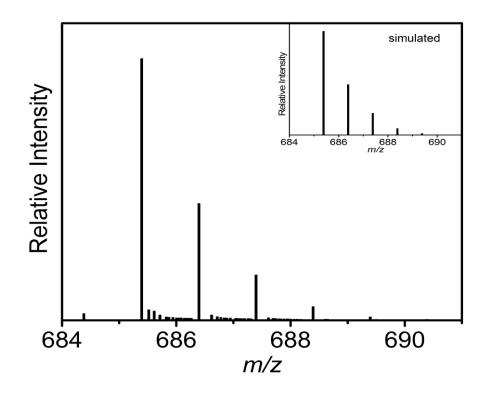



Figure S1: IR spectrum of $H_4Pra^{edt(AP/AP)}$.

Figure S2. Experimental and simulated mass spectra for $H_4Pra^{edt(AP/AP)} + H = [C_{40}H_{52}N_2O_2S_2 + H]^+$ have been shown.

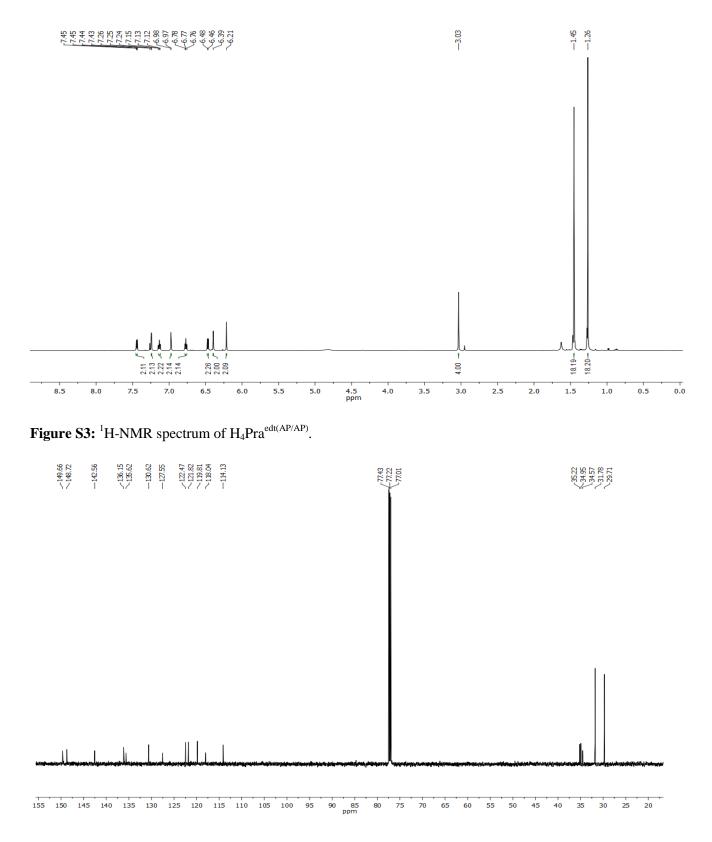


Figure S4: ¹³C NMR spectrum of H₄Pra^{edt(AP/AP)}.

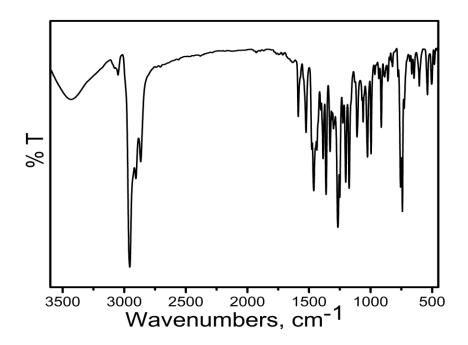
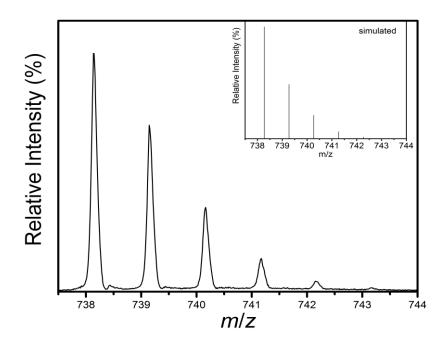



Figure S5: IR spectrum of complex 1, $C_{42}H_{50}N_2O_2S_2Co$.

Figure S6. Experimental and simulated mass spectra for complex $1+H = [C_{42}H_{50}N_2O_2S_2C_0+H]^+$ have been shown.

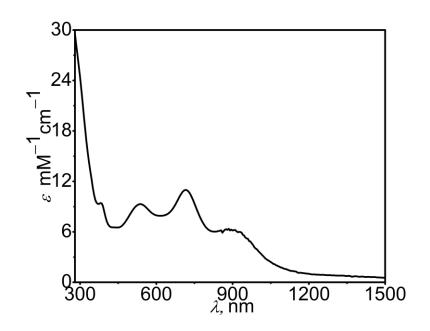
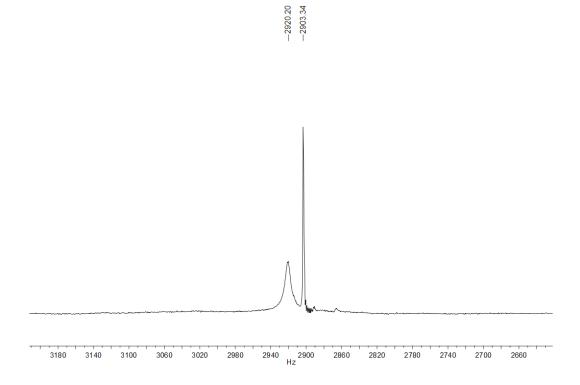



Figure S7: UV spectrum of complex 1 in CH₂Cl₂ at 25 °C.

Figure S8: Showing NMR shift in solvent peak (CDCl₃) during Evan's method magnetic susceptibility measurement of complex $1 \cdot 1$ CHCl₃ at 25 °C. c = 15 mg/mL.

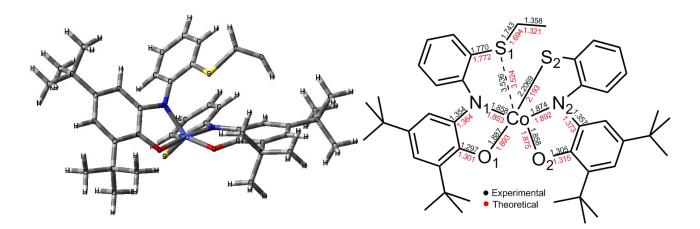
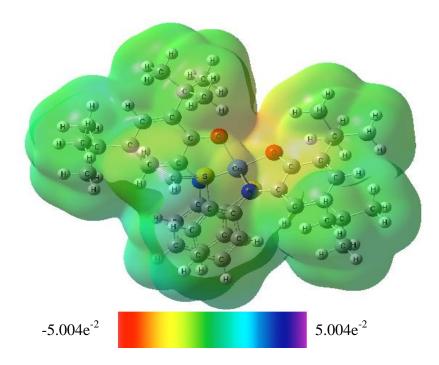



Figure S9: Optimized structure of the complex at PBEPBE/def2-TZVP level.

Figure S10: Electrostatic potential plot computed at PBEPBE/def2-TZVP level (Iso-value = 0.03).

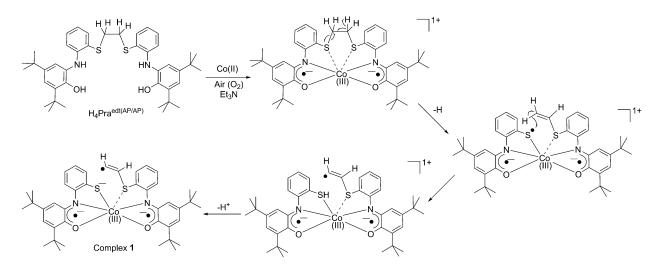


Figure S11: Showing proposed mechanism for the formation of complex 1.

able S1: Selected bond	distances (A) and bond ar	igles (°) for complex 1 .	
Co1–N1	1.858(3)	O1–C2	1.297(4)
Co1–O2	1.858(2)	O2–C28	1.305(4)
Co1–N2	1.874(3)	N2-C23	1.357(4)
Co1–O1	1.887(2)	N2-C37	1.396(4)
Co1–S2	2.2069 (12)	N1–C1	1.354(4)
S2-C42	1.743(4)	N1–C15	1.426(4)
S1-C21A	1.756(13)	C24–C25	1.357(4)
S1-C21B	1.743(8)	C22A–C21A	1.354(18)
S1-C20	1.770(4)	C37–C38	1.393(6)
C27–C26	1.370(5)	C27–C28	1.424(5)
C24–C23	1.420(4)	C2–C3	1.429(4)
C25-C26	1.423(5)	C1–C6	1.408(4)
C28–C23	1.425(5)	C4–C5	1.433(5)
C2–C1	1.430(5)	C22B–C21B	1.358(15)
C3–C4	1.369(5)	C5–C6	1.357(5)
N1-Co1-O2	129.75(12)	O2-Co1-N2	83.68(10)
N1-Co1-N2	101.94(11)	N1-Co1-O1	83.43(11)
O2-Co1-O1	92.65(10)	N2-Co1-O1	174.63(11)
N1-Co1-S2	98.76(9)	O2–Co1–S2	131.47(9)
N2-Co1-S2	84.99 (9)	O1–Co1–S2	94.58(9)
C42-S2-Co1	95.12(13)	C2-O1-Co1	113.5(2)
C23-N2-Co1	114.1(2)	C37-N2-Co1	117.6(2)
C28-O2-Co1	113.8(2)		

Table S1: Selected bond d	istances (Å) and bond	l angles (°) for complex 1 .

Empirical formula $C_{42}H_{50}CoN_2O_2S_2$, CHCl3Formula weight857.26CCDC Number1468751Crystal habit, colourBlock, violetCrystal size, mm³0.24×0.18×0.14Temperature, T293(2)Wavelength, λ (Å)0.71073Crystal systemmonoclinicSpace group $P \ 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (ų)4485.0(4) Z 4Calculated density, Mg·m³1.270Absorption coefficient, μ (mm¹)0.690 $F(000)$ 1796 θ range for data collection2.99° to 25.00°
CCDC Number 1468751 Crystal habit, colour Block, violet Crystal size, mm ³ $0.24 \times 0.18 \times 0.14$ Temperature, T 293(2) Wavelength, λ (Å) 0.71073 Crystal system monoclinic Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (Å ³) 4485.0(4) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
Crystal habit, colour Block, violet Crystal size, mm ³ $0.24 \times 0.18 \times 0.14$ Temperature, T 293(2) Wavelength, λ (Å) 0.71073 Crystal system monoclinic Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (Å ³) $4485.0(4)$ Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
Crystal size, mm ³ $0.24 \times 0.18 \times 0.14$ Temperature, T $293(2)$ Wavelength, λ (Å) 0.71073 Crystal system monoclinic Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $\alpha = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (Å ³) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
Temperature, T293(2)Wavelength, λ (Å)0.71073Crystal systemmonoclinicSpace group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (Å ³) Z A Calculated density, Mg·m ⁻³ Absorption coefficient, μ (mm ⁻¹) $F(000)$ 1796
Wavelength, λ (Å) 0.71073 Crystal system monoclinic Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}, \gamma = 108.384(5)^{\circ}, \beta = 90.00^{\circ}$ Volume, V (Å ³) 4485.0(4) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
Crystal system monoclinic Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}$, $\gamma = 108.384(5)^{\circ}$, $\beta = 90.00^{\circ}$ Volume, V (Å ³) 4485.0(4) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
Space group $P 21/c$ Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}, \gamma = 108.384(5)^{\circ}, \beta = 90.00^{\circ}$ Volume, V (Å ³) Z A Calculated density, Mg·m ⁻³ Absorption coefficient, μ (mm ⁻¹) $F(000)$ 1796
Unit cell dimensions $a = 19.3263(9)$ Å $b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}, \gamma = 108.384(5)^{\circ},$ $\beta = 90.00^{\circ}$ Volume, V (ų)4485.0(4)Z4Calculated density, Mg·m ⁻³ 1.270Absorption coefficient, μ (mm ⁻¹)0.690 $F(000)$ 1796
$b = 9.6193(4)$ Å $c = 25.4228(11)$ Å $a = 90.00^{\circ}, \gamma = 108.384(5)^{\circ}, \beta = 90.00^{\circ}$ Volume, V (Å ³) Z Calculated density, Mg·m ⁻³ Absorption coefficient, μ (mm ⁻¹) $F(000)$ 1796
$c = 25.4228(11) \text{ Å}$ $\alpha = 90.00^{\circ}, \gamma = 108.384(5)^{\circ},$ $\beta = 90.00^{\circ}$ Volume, $V(\text{Å}^3)$ Z Calculated density, Mg·m ⁻³ Absorption coefficient, μ (mm ⁻¹) $F(000)$ 1796
$\alpha = 90.00^{\circ}, \gamma = 108.384(5)^{\circ},$ $\beta = 90.00^{\circ}$ Volume, $V(Å^3)$ Z 4485.0(4) Z Calculated density, Mg·m ⁻³ Absorption coefficient, μ (mm ⁻¹) $F(000)$ 1796
$\beta = 90.00^{\circ}$ Volume, $V(Å^3)$ 4485.0(4) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 F(000) 1796
Volume, $V(Å^3)$ 4485.0(4) Z 4 Calculated density, Mg·m ⁻³ 1.270 Absorption coefficient, μ (mm ⁻¹) 0.690 F(000) 1796
Z4Calculated density, $Mg \cdot m^{-3}$ 1.270Absorption coefficient, μ (mm ⁻¹)0.690F(000)1796
Calculated density, $Mg \cdot m^{-3}$ 1.270Absorption coefficient, μ (mm ⁻¹)0.690 $F(000)$ 1796
Absorption coefficient, μ (mm ⁻¹) 0.690 $F(000)$ 1796
<i>F</i> (000) 1796
θ range for data collection 2.99° to 25.00°
Limiting indices $-22 \le h \le 12, -11 \le k \le 10,$
$-26 \le l \le 30$
Reflection collected/unique 19539/7888 [<i>R</i> (int)=0.0280]
Completeness to θ 99.7% (θ = 25.00°)
Max. and min. transmission 0.908/0.862
Refinement method 'SHELXL-2014/7'
Data/restraints/parameters 7908/211/578
Goodness-of-fit on F^2 1.035
Final <i>R</i> indices $[I>2 \text{sigma}(I)]$ $R1 = 0.0577, wR2 = 0.1491$
<i>R</i> indices (all data) $R1 = 0.0829, wR2 = 0.1653$
Largest diff. peak and hole $0.543 \text{ and } -0.477 \text{ e} \cdot \text{Å}^{-3}$

 Table S2: Crystallographic parameters and refinement data for complex 1.

 Table S3: Coordinates for the geometrical optimized structure of complex 1.

Co	0.17393000	0.33871300	-0.96389800
Ν	1.26403800	-0.63367500	0.16642300
Ν	-1.40124600	-0.69707700	-1.03425200
0	1.63362000	1.54269600	-1.02114800
0	-1.01194500	1.74574200	-0.63230900
С	2.72029700	1.06213200	-0.48741000

С	4.00089600	1.71021900	-0.51582300
С	5.04057500	1.04997000	0.14613500
С	4.90791800	-0.19580000	0.83956100
С	3.65676300	-0.81374400	0.86457100
С	2.56401400	-0.20248500	0.20179600
Н	6.02929500	1.52270100	0.13397000
Н	3.49838400	-1.76401100	1.39303800
С	-4.49759700	1.66771200	0.39548900
С	-3.21885600	2.21380900	0.25165100
С	-2.22403900	1.35160100	-0.31940400
С	-2.52610900	-0.03073900	-0.60927100
С	-3.85927000	-0.50517900	-0.49404100
С	-4.85254600	0.33558400	0.01242100
Н	-5.28947200	2.30949300	0.80477800
Н	-4.10375400	-1.52404400	-0.80714600
С	6.10463400	-0.87170200	1.54455400
С	6.37315200	-2.24419200	0.87989600
Н	7.22926700	-2.75300200	1.37060900
Н	5.49506200	-2.91672400	0.95355400
Н	6.61618300	-2.12461900	-0.19562200
С	7.39438600	-0.03357200	1.45436400
Н	7.27965600	0.96029400	1.93288500
Н	8.21798700	-0.55972200	1.97809800
Н	7.71837200	0.12324100	0.40559600
С	5.76996500	-1.08220200	3.04077800
Н	6.61820300	-1.57317400	3.56195800

5.57105000 4.87656000 4.18326900	-0.11446200 -1.72311200	3.54437400 3.17928600
		3.17928600
4.18326900		
	3.05342800	-1.24237300
3.82093700	2.88168200	-2.73883300
2.77258500	2.55193200	-2.86455100
3.94619900	3.84670500	-3.27286200
4.48320200	2.13521800	-3.22348300
5.63401300	3.56273100	-1.15376900
5.95284800	3.73923800	-0.10590400
6.35332000	2.85923500	-1.62132400
5.71905100	4.52829000	-1.69196700
3.25523500	4.11481500	-0.59948000
2.19309200	3.81192800	-0.66460800
3.51089800	4.26833300	0.46913000
3.37265900	5.08762700	-1.12114100
-2.87426500	3.66241800	0.64103400
-4.07680500	4.39005300	1.27074800
-3.77832000	5.42004600	1.55241500
-4.93004200	4.47566700	0.56700600
-4.43491200	3.88536200	2.19166800
-2.44050900	4.44789100	-0.62233900
-1.55381900	3.98627600	-1.09579500
-3.26005600	4.47746800	-1.36952300
-2.18803300	5.49443100	-0.35086800
-1.71835400	3.65520500	1.67232100
-2.01375200	3.11534100	2.59590400
	3.94619900 4.48320200 5.63401300 5.95284800 6.35332000 5.71905100 3.25523500 2.19309200 3.51089800 3.37265900 -2.87426500 -4.07680500 -3.77832000 -4.93004200 -4.93004200 -4.43491200 -2.44050900 -1.55381900 -3.26005600 -2.18803300 -1.71835400	3.946199003.846705004.483202002.135218005.634013003.562731005.952848003.739238006.353320002.859235005.719051004.528290003.255235004.114815002.193092003.811928003.510898004.268333003.372659005.08762700-2.874265003.66241800-4.076805004.39005300-3.778320005.42004600-4.434912003.88536200-2.440509004.44789100-1.553819003.98627600-3.260056004.47746800-2.188033005.49443100-1.718354003.65520500

Н	-0.81471900	3.16930100	1.25894700
Н	-1.45493900	4.69571900	1.95557800
С	-6.31597400	-0.12420100	0.17470200
С	-6.52275800	-1.58104300	-0.27968100
Н	-6.26975200	-1.72130800	-1.35006100
Н	-5.91274100	-2.29015800	0.31633000
Н	-7.58579900	-1.86859700	-0.14935200
С	-7.23436400	0.78386400	-0.67912600
Н	-8.29476200	0.47415400	-0.56994300
Н	-7.16355200	1.84766900	-0.37681800
Н	-6.96645900	0.72082400	-1.75336600
С	-6.72818000	-0.02014200	1.66342000
Н	-6.64235700	1.01568400	2.04830300
Н	-7.78370600	-0.33756100	1.79577100
Н	-6.09444400	-0.67184000	2.29946600
S	-0.53456300	-0.27174200	2.42635900
S	0.72695500	-0.61091200	-2.85335600
С	-0.46414200	-3.10063800	2.36330800
С	-0.03001200	-1.87083200	1.83225600
С	0.88828700	-1.87059600	0.74442200
С	1.36187200	-3.09172800	0.22623300
С	0.92911900	-4.30972100	0.76902900
С	0.01553800	-4.30900200	1.83483500
Н	-1.19500000	-3.11257800	3.18448100
Н	2.05382700	-3.06412600	-0.62800000
Н	1.29185500	-5.25782500	0.34528000

Н	-0.34056900	-5.26061200	2.25829500
С	-1.32043100	-1.93425100	-1.65460700
С	-0.26615500	-2.02981300	-2.62567000
С	-0.09522200	-3.21967400	-3.36956700
С	-0.93773600	-4.30991700	-3.14426500
С	-1.94819300	-4.23668100	-2.15818700
С	-2.14381900	-3.06717900	-1.42162300
Н	0.71229800	-3.27407500	-4.11564000
Н	-0.79807400	-5.23723500	-3.72050500
Н	-2.57636300	-5.11644900	-1.95164600
Н	-2.89267800	-3.04581900	-0.62021200
С	-1.71150300	-0.67336700	3.73404900
С	-2.96215900	-0.26689600	3.59351900
Н	-3.55602800	0.26158600	2.83225100
Н	-1.31632100	-1.17463900	4.63728000

References:

- (a) CrysAlisPro, Oxford Diffraction Ltd., Version 1, 171. 33. 34d [release 27-02-2009 CrysAlis 171. NET]; (b) G. M. Sheldrick, *Acta Crystallogr.* 2008, A64, 112; (c) L. J. Farrugia, *J. Appl. Crystallogr.* 2012, 45, 849.
- 2. Frisch, M. J. GAUSSIAN 09(Revision D.02), Gaussian, Inc., Wallingford, CT, 2009.
- 3. Y. Zhao, D.G. Truhlar, Theor Chem Acc. 2006, 120, 215.
- 4. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- 5. A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
- 6. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
- 7. Khanmohammadi, H.; Rezaeian, K.; Amini, M. M.; Ng, S. W. Dyes and Pigments, 2013, 98, 557.