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Experimental Details 

Synthesis 

General. 

All solvents and reagents were of the highest quality available and were used as received. RuM 1 and 

[Ru(bpy)3](NO3)2･3H2O 2 were prepared according to the literature procedures. 

 

Preparation of [{RuIII(bda)(pic)2(-O)}2RuIV(pic)2(H2O)2](PF6)2•2H2O (RuT2+) 

RuM (23.0 mg, 42.7 mol) was suspended in 9 mL water. The suspension was stirred at room 

temperature under air until RuM was completely dissolved. The solution was left stirred for 

approximately 8 h and UV−Vis spectra were monitored periodically. When the band at 688 nm 

seemed to achieve a maximum value, the dark green solution was cooled in ice bath followed by 

addition of a saturated aqueous NaPF6 solution (ca. 1 mL). The green precipitate was collected by 

filtration, washed with cold water and diethyl ether, and dried in vacuo. Yield 18.6 mg (10.6 µmol, 

74%). 1H NMR (D2O, 600 MHz): δ 8.46 (d, J = 6.4 Hz, 4H), 8.44-7.66 (br. m, 12H), 7.58 (d, J = 6.4 

Hz, 8H), 6.80 (d, J = 5.5 Hz, 8H), 6.67 (d, J = 6.4 Hz, 4H), 2.25 (s, 6H), 2.22 (s, 12H). Elemental 

analysis calculated for C60H58F12N10O12P2Ru3·2H2O : C, 41.41; H, 3.59; N, 8.05. Found: C, 41.22; H, 

3.54; N, 8.05.  

 

Preparation of single crystals of [RuT2+](BF4)2•8H2O 

To a solution of RuT2+ prepared by air oxidation of RuM (2.0 mg, 3.7 mol) in 6 mL water, two 

drops of a saturated aqueous NaBF4 solution were added. Green crystals suitable for X-ray 

crystallography were grown at 5 °C over 2 days. 

 

Preparation of single crystals of [RuT3+](S2O8)(BF4)•12H2O 

To a solution of RuT2+ prepared by air oxidation of RuM (3.5 mg, 6.5 mol) in 4 mL water, 

Na2S2O8 solid (500 equiv.) was added. The resulting solution was stirred at room temperature while 

tracking the formation of RuT3+ by UV-Vis spectroscopy. When the band at 688 nm reached a 

minimum value, some drops of a saturated aqueous NaBF4 solution were added. Brown crystals 

suitable for X-ray crystallography were grown at 5 °C over 5 days. 
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Measurements 

Electronic absorption spectra were recorded on Varian Cary50 UV−Vis and Shimadzu UV-3600 

spectrophotometers using a 1 cm path length quartz cuvette. 1H NMR spectra were recorded on 

JEOL JNM-ESA 600 and Agilent DD2 400 MHz spectrometers using 

3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt as an internal standard. Electrochemical 

experiments were performed using standard three-electrode measurements carried out on a Princeton 

Applied Research VersaSTAT-4. Cyclic voltammetry (CV) experiments were performed at room 

temperature in a one-compartment cell equipped with a glassy carbon working electrode, a Ag/AgCl 

reference electrode (+0.197 V vs, NHE), and a platinum wire as the auxiliary electrode. A scan rate 

of 100 mV/s and 0.1M borate buffer (pH 8) were used. The relative concentrations of RuM and 

RuT2+(PF6)2 used for the CV experiments (1:2, Figures 3 and S9) were lower than those used for the 

photochemical oxygen assay (3:1, Figure S11) due to the low solubility of RuM in aqueous media 

and the instability of RuT2+(PF6)2 in organic solvents. 

Oxygen assay 

Photochemical oxygen evolution monitored by GC (Figures 4, S10 and S11). 

Photochemical oxygen production from water was analyzed by using an automatic GC H2/O2 

monitoring system developed in our group. In this system, a continuous flow of Ar (10.0 mL/min, 

controlled by a STEC SEC-E40/PAC-D2 digital mass flow controller) is bubbled through a 

photolysis solution (10 mL) contained in a Pyrex vial (ca. 20 mL). The vent gas from the vial is 

introduced into a valve that allows the automatic injection of the sample gas onto the GC (Shimadzu 

GC-8A equipped with a molecular sieve 5 Å column of 2 m × 3 mm i.d., at 30 ºC). The injection of 

the sample gas is controlled by software developed by K.S., and the output signal from the thermal 

conductivity detector of the gas chromatograph is analyzed by the Shimadzu C-R8A integrator. 

Photolysis solutions were degassed with Ar for 30 min prior to photolysis. Photoirradiation was 

performed using an ILC Technology CERMAX LX-300 300 W Xe lamp equipped with a CM-1 cold 

mirror (400 < λ < 800 nm). The photolysis vial was immersed in a 20 ºC water bath to remove IR 

radiation and to eliminate temperature effects.  

Photochemical oxygen evolution monitored by oxygen electrode (Figure S12). 

A YSI 5300A Clark-type electrode was used to measure changes in dissolved oxygen concentration. 

The electrode, secured in a Teflon tube, was inserted into a tight-fitting water jacketed glass vessel 

for constant temperature (20 ºC). The glass vessel was charged with RuT2+, [Ru(bpy)3](NO3)2･3H2O 

and Na2S2O8 in buffer (4.7 mL). Photolysis solutions were degassed with Ar for 30 min prior to 

photolysis. Photoirradiation was performed using an 150 W quartz halogen lamp (Dolan-jenner 

industries, Inc. Fiber-Lite High Intensity Illuminator series 180) equipped with a 400 nm long-pass 

filter and an IR cut filter (Transmission spectrum for a set of the filters is shown in Figure S18). 
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Thermal oxygen evolution monitored by oxygen electrode (Figure S17). 

A YSI 5300A Clark-type electrode was used to measure changes in dissolved oxygen concentration. 

The electrode, secured in a Teflon tube, was inserted into a tight-fitting water-jacketed glass vessel 

for constant temperature (20 ºC). Solutions were not deaerated prior to use. A solution of Na2S2O8 in 

buffer (5.00 mL) was placed in the glass vessel, and the system was allowed to equilibrate until a 

stable baseline was attained. After the baseline had stabilized, 250 µL of RuT2+ solution was injected 

into the glass vessel. 
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Crystallographic details 

Refinement Details for [RuT2+](BF4)2•8H2O
 

Low-temperature diffraction data were collected on a Bruker SMART APEXII CCD area 

detector diffractometer with the detector positioned at a distance of 6.0 cm from the crystal. The 

X-ray source was a monochromated Mo-K radiation (λ = 0.71073 Å) from a rotating anode with a 

mirror focusing apparatus operated at 1.2 kW (50 kV, 24 mA). Corrections for absorption were made 

by SADABS.3 The structure was solved with SHELXS-97, and refined anisotropically on F2 with 

SHELXL-97,4 where KENX5 was used to assist all the refinement procedures and to generate 

publication materials. All hydrogen atoms, except for those of the water solvate, were located in 

their idealized positions and included in the refinement using a riding model. Hydrogen atoms of the 

aqua ligand bound to the central Ru ion were located at the peak positions found in the difference 

Fourier map and were refined isotropically. Hydrogen atoms of water solvates were not located. Part 

of the water solvates could not be located. The crystal graphics were worked on by using 

DIAMOND. 

   The trimeric structure has a crystallographic inversion center at the central Ru ion. One of the 

carboxylate units does not coordinate to the ruthenium ion, and this unit shows nearly an identical 

C-O distance (O3-C32 = 1.245(5) and O5-C32 = 1.260(5) Å), from which we confirmed the 

deprotonated nature of this unit. Including a BF4
- anion found in the asymmetric unit, the compound 

is judged to have a Ru(III)2Ru(IV) oxidation state. The diamagnetic character of this complex further 

supported this assignment. Moreover, the centrosymmetric feature further revealed that the 

compound has a Ru(III)-O-Ru(IV)-O-Ru(III) oxidation state in the crystal.  

 

Refinement Details for [RuT3+](S2O8)(BF4)•12H2O 

Low-temperature diffraction data (ω-scans) were collected on a Rigaku R-Axis Spider 

diffractometer (sealed tube) coupled to a Rigaku R_AXIS RAPID imaging plate Mo Kα (λ = 

0.71073 Å) for the structure of RuT3+. The diffraction images were processed and scaled using the 

Rigaku CrystalClear software.6 The structure was solved with SHELXT and was refined against F2 

on all data by full-matrix least squares with SHELXL,7 where KENX5 was used to assist all the 

refinement procedures including locating the disordered models and to generate publication 

materials. All hydrogen atoms, except for those of the water solvate, were located in their idealized 

positions and included in the refinement using a riding model. The crystal graphics were worked on 

by using DIAMOND. 

The trimeric structure does not formally possess a crystallographic inversion center but is 

considered to possess a pseudo centrosymmetric structure as demonstrated in Table S3 and Figures 

S19 and S20. In the same manner as observed for RuT2+, one of the carboxylate units of each bda 

ligand is not bound to the ruthenium ion, and possesses nearly an identical C-O distance (O7-C18 = 
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1.263(13), O8-C18 = 1.238(13), O11-C38 = 1.261(14), and O12-C38 = 1.242(13) Å), revealing that 

it is in the deprotonated form serving as one of the counter anions for the complex. The two oxygen 

donors bound to the central Ru ion were reasonably judged both as aqua ligands based on the good 

similarity of the coordinate bonds between the RuT2+ and RuT3+ cations (see Figure S20). As 

described above, the asymmetric unit includes two unligated carboxylate units, a BF4
- anion, and a 

S2O8
2- dianion, the overall charge can be judged as proposed with its chemical formula. By including 

two carboxylate donors from two bda’s as well as two oxido donors bridging the three Ru ions, the 

oxidation state of Ru(III)Ru(IV)2 proposed can be reasonably deduced. Moreover, as evidenced by 

the pseudo centrosymmetric feature of this trimer (see Table S3, and Figures S19-S21), the 

compound may be classified as a so-called Robin-Day Class III delocalized mixed-valence 

compound, which may be described as having a Ru(3.5+)-O-Ru(4.0+)-O-Ru(3.5+) oxidation state in 

the crystal, although crystallographic disorder cannot be ruled out as the origin of the equivalent 

structures of the two terminal Ru ions. 
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Table S1. Crystal data collection and structure refinement parameters for [RuT2+](BF4)2•8H2O and 

[RuT3+](S2O8)(BF4)•12H2O. 

________________________________________________________________________________ 
  [RuT2+](BF4)2•8H2O [RuT3+](S2O8)(BF4)•12H2O 
________________________________________________________________________________ 
 formula C60H74B2F8N10O20Ru3 C60H82BF4N10O32Ru3S2 
 fw 1732.12 1909.50 
 color, habit green, prisms brown, prisms 
 crystal size, mm 0.25x0.20x0.17 0.3x0.2x0.2 
 crystal system Monoclinic Triclinic 
 space group P 21/n (No. 14) P -1 (No. 2) 
 a, Å 14.515(5) 15.229(3) 
 b, Å 14.999(5) 17.001(3) 
 c, Å 15.692(5) 17.204(3) 
 , deg 90.00 65.62(3) 
 , deg 96.150(5) 84.91(3) 
 , deg 90.00 71.63(3) 
 V, A3 3396.6(19) 3846.1(13) 
 Z 2 2 
 F(000) 1756 1946 
 dcalc, g/cm3 1.694 1.649 
 (Mo K), mm-1 0.761 0.737 
 T, K 100(2) 100(2) 
 radiation, Å 0.71073 0.71073 
  range, deg 1.82 <  < 25.30 3.02 <  < 19.98 
 index ranges -17<h<17, -17<k<17, -18<l<18 -14<h<14, -16<k<16, -16<l<16 
 reflns measd 33103 50447 
 uniq reflns 6158 7140 
 R(int) 0.1028 0.1279 
 data/restraints/params 6158/0/494 7140/44/1037 
 R1 [I ≥ 2σ(I) ] 0.0412 0.0598 
 wR2 (all data) 0.0979a 0.1657b 
 GOF 1.019 1.086 
 max/mean shift/esd 0.001/0.000 0.010/0.000 
 max/min diff. peaks 1.160/-0.484 1.138/-0.596 
  
aw=1/[2(Fo

2)+(0.0272P)2+5.5635P] where P=(Fo
2+2Fc

2)/3. b w=1/[2(Fo
2)+(0.0679P)2+25.384P] 

where P=(Fo
2+2Fc

2)/3. 
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Table S2. Interatomic Distances (Å) and Angles (deg) for [RuT2+](BF4)2•8H2O and 

[RuT3+](S2O8)(BF4)•12H2O. 

______________________________________________________________________________________________ 

 [RuT2+](BF4)2•8H2O 

 

 Ru1-O4 1.903(3) Ru1-N1 1.987(3) 

 Ru1-O2 2.080(3) Ru1-N3 2.088(3) 

 Ru1-N4 2.114(3) Ru1-N2 2.123(3) 

 Ru2-O4a 1.812(3) Ru2-O4 1.812(3) 

 Ru2-O6a 2.072(3) Ru2-O6 2.072(3) 

 Ru2-N5a 2.100(3) Ru2-N5 2.100(3) 

 F1-B1 1.358(8) F2A-F2B 0.85(6) 

 F2A-B1 1.358(11) F2B-B1 1.58(3) 

 F3-B1 1.396(8) F4-B1 1.394(8) 

 O1-C12 1.228(5) O2-C12 1.294(5) 

 O3-C32 1.245(5) O5-C32 1.260(5) 

 O10A-O10B 0.952(17) N1-C11 1.344(5) 

 N1-C7 1.352(5) N2-C2 1.340(5) 

 N2-C6 1.381(5) N3-C17 1.341(5) 

 N3-C13 1.357(5) N4-C23 1.343(6) 

 N4-C19 1.349(6) N5-C26 1.347(5) 

 N5-C30 1.347(5) C2-C3 1.392(6) 

 C2-C32 1.517(6) C3-C4 1.379(6) 

 C4-C5 1.390(6) C5-C6 1.382(6) 

 C6-C7 1.463(6) C7-C8 1.393(6) 

 C8-C9 1.387(6) C9-C10 1.391(6) 

 C10-C11 1.379(6) C11-C12 1.509(6) 

 C13-C14 1.374(6) C14-C15 1.397(6) 

 C15-C16 1.385(6) C15-C18 1.498(6) 

 C16-C17 1.375(6) C19-C20 1.379(6) 

 C20-C24 1.384(7) C22-C24 1.381(7) 

 C22-C23 1.384(6) C24-C25 1.503(6) 

 C26-C27 1.382(6) C27-C28 1.387(6) 

 C28-C29 1.389(6) C28-C31 1.502(6) 

 C29-C30 1.377(6) 
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 O4-Ru1-N1 171.56(13) O4-Ru1-O2 92.67(11) 

 N1-Ru1-O2 78.93(12) O4-Ru1-N3 89.95(12) 

 N1-Ru1-N3 90.20(13) O2-Ru1-N3 85.59(12) 

 O4-Ru1-N4 90.56(12) N1-Ru1-N4 88.50(13) 

 O2-Ru1-N4 88.94(13) N3-Ru1-N4 174.53(13) 

 O4-Ru1-N2 110.20(12) N1-Ru1-N2 78.19(13) 

 O2-Ru1-N2 157.12(12) N3-Ru1-N2 95.02(13) 

 N4-Ru1-N2 89.92(13) O4a-Ru2-O4 180.00(15) 

 O4a-Ru2-O6a 89.45(13) O4-Ru2-O6a 90.55(13) 

 O4a-Ru2-O6 90.55(13) O4-Ru2-O6 89.45(13) 

 O6a-Ru2-O6 180.0 O4a-Ru2-N5a 89.19(13) 

 O4-Ru2-N5a 90.81(13) O6a-Ru2-N5a 86.91(13) 

 O6-Ru2-N5a 93.09(13) O4a-Ru2-N5 90.81(13) 

 O4-Ru2-N5 89.19(13) O6a-Ru2-N5 93.09(13) 

 O6-Ru2-N5 86.91(13) N5a-Ru2-N5 180.000(1) 

 F2B-F2A-B1 88.0(18) F2A-F2B-B1 59.4(19) 

 C12-O2-Ru1 114.6(3) Ru2-O4-Ru1 164.30(17) 

 C11-N1-C7 122.2(4) C11-N1-Ru1 117.8(3) 

 C7-N1-Ru1 120.0(3) C2-N2-C6 117.8(4) 

 C2-N2-Ru1 129.4(3) C6-N2-Ru1 112.7(3) 

 C17-N3-C13 116.8(4) C17-N3-Ru1 124.7(3) 

 C13-N3-Ru1 118.3(3) C23-N4-C19 117.0(4) 

 C23-N4-Ru1 124.1(3) C19-N4-Ru1 119.0(3) 

 C26-N5-C30 117.8(4) C26-N5-Ru2 120.2(3) 

 C30-N5-Ru2 121.9(3) N2-C2-C3 123.0(4) 

 N2-C2-C32 117.5(4) C3-C2-C32 119.4(4) 

 C4-C3-C2 118.9(4) C3-C4-C5 119.3(4) 

 C6-C5-C4 119.3(4) N2-C6-C5 121.7(4) 

 N2-C6-C7 115.5(4) C5-C6-C7 122.8(4) 

 N1-C7-C8 118.7(4) N1-C7-C6 113.3(3) 

 C8-C7-C6 128.0(4) C9-C8-C7 119.6(4) 

 C8-C9-C10 120.2(4) C11-C10-C9 118.1(4) 

 N1-C11-C10 121.1(4) N1-C11-C12 112.4(3) 

 C10-C11-C12 126.4(4) O1-C12-O2 123.8(4) 

 O1-C12-C11 120.7(4) O2-C12-C11 115.4(4) 

 N3-C13-C14 122.8(4) C13-C14-C15 120.2(4) 
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 C16-C15-C14 116.6(4) C16-C15-C18 122.3(4) 

 C14-C15-C18 121.1(4) C17-C16-C15 120.5(4) 

 N3-C17-C16 123.2(4) N4-C19-C20 123.0(4) 

 C19-C20-C24 119.9(5) C24-C22-C23 120.1(5) 

 N4-C23-C22 122.7(5) C22-C24-C20 117.3(4) 

 C22-C24-C25 121.0(5) C20-C24-C25 121.6(5) 

 N5-C26-C27 122.2(4) C26-C27-C28 120.6(4) 

 C27-C28-C29 116.5(4) C27-C28-C31 121.3(4) 

 C29-C28-C31 122.2(4) C30-C29-C28 120.6(4) 

 N5-C30-C29 122.3(4) O3-C32-O5 126.9(4) 

 O3-C32-C2 117.5(4) O5-C32-C2 115.5(4) 

 F2A-B1-F1 104.2(14) F2A-B1-F4 107.7(6) 

 F1-B1-F4 109.4(6) F2A-B1-F3 117.6(15) 

 F1-B1-F3 108.5(5) F4-B1-F3 109.2(6) 

 F2A-B1-F2B 32.6(18) F1-B1-F2B 127.4(18) 

 F4-B1-F2B 112.2(12) F3-B1-F2B 87(3) 

  

   

  [RuT3+](S2O8)(BF4)•12H2O 

 

 Ru1-O2 1.809(6) Ru1-O1 1.817(7) 

 Ru1-O4 2.050(6) Ru1-O3 2.068(7) 

 Ru1-N1 2.084(9) Ru1-N2 2.110(9) 

 Ru2-O1 1.875(7) Ru2-N5 2.009(8) 

 Ru2-O5 2.015(7) Ru2-N3 2.070(9) 

 Ru2-N9 2.102(9) Ru2-N4 2.123(9) 

 Ru3-O2 1.884(6) Ru3-N10 2.006(9) 

 Ru3-O9 2.030(7) Ru3-N7 2.067(9) 

 Ru3-N8 2.105(9) Ru3-N6 2.123(9) 

 S1-O13 1.431(8) S1-O14 1.432(8) 

 S1-O15 1.444(8) S1-O16 1.652(8) 

 S2-O19 1.427(8) S2-O18 1.441(8) 

 S2-O20 1.443(8) S2-O17 1.658(8) 

 F1A-B3A 1.359(18) F2A-B3A 1.359(19) 

 F3A-B3A 1.361(19) F4A-B3A 1.350(18) 

 F1B-B3B 1.366(19) F2B-B3B 1.387(19) 
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 F3B-B3B 1.37(2) F4B-B3B 1.37(2) 

 O5-C35 1.308(13) O6-C35 1.216(13) 

 O7-C18 1.263(13) O8-C18 1.238(13) 

 O9-C53 1.303(13) O10-C53 1.243(13) 

 O11-C38 1.261(14) O12-C38 1.242(13) 

 O16-O17 1.461(10) N1-C1 1.348(13) 

 N1-C6 1.365(13) N2-C46 1.353(13) 

 N2-C3 1.356(13) N3-C16 1.349(14) 

 N3-C26 1.370(13) N4-C28 1.360(13) 

 N4-C59 1.360(13) N5-C14 1.332(13) 

 N5-C13 1.357(13) N6-C11 1.333(14) 

 N6-C10 1.347(13) N7-C29 1.346(13) 

 N7-C56 1.351(13) N8-C22 1.363(13) 

 N8-C23 1.378(13) N9-C36 1.355(13) 

 N9-C43 1.383(13) N10-C39 1.340(13) 

 N10-C52 1.358(13) C1-C2 1.382(15) 

 C2-C8 1.392(15) C3-C4 1.379(15) 

 C4-C5 1.365(14) C5-C7 1.404(14) 

 C5-C20 1.497(14) C6-C9 1.364(14) 

 C7-C46 1.376(15) C8-C9 1.391(15) 

 C8-C32 1.471(15) C10-C27 1.382(15) 

 C11-C12 1.397(16) C12-C21 1.380(16) 

 C13-C25 1.374(15) C13-C35 1.486(16) 

 C14-C15 1.396(15) C14-C43 1.485(15) 

 C15-C19 1.392(15) C16-C17 1.398(15) 

 C17-C34 1.390(16) C18-C36 1.536(15) 

 C19-C25 1.382(15) C21-C27 1.356(15) 

 C21-C60 1.496(16) C22-C30 1.386(15) 

 C22-C38 1.520(16) C23-C24 1.381(14) 

 C23-C39 1.470(15) C24-C31 1.370(15) 

 C26-C50 1.364(15) C28-C49 1.389(15) 

 C29-C51 1.362(14) C30-C31 1.367(15) 

 C33-C34 1.496(15) C34-C50 1.368(16) 

 C36-C37 1.387(15) C37-C45 1.369(15) 

 C39-C40 1.392(15) C40-C41 1.392(15) 

 C41-C42 1.375(15) C42-C52 1.362(15) 
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 C43-C44 1.378(15) C44-C45 1.371(15) 

 C47-C59 1.380(15) C47-C48 1.381(16) 

 C48-C49 1.399(16) C48-C58 1.479(15) 

 C51-C54 1.371(15) C52-C53 1.478(16) 

 C54-C55 1.402(15) C54-C57 1.503(15) 

 C55-C56 1.383(15) 

  

 O2-Ru1-O1 179.5(3) O2-Ru1-O4 90.1(3) 

 O1-Ru1-O4 90.3(3) O2-Ru1-O3 89.8(3) 

 O1-Ru1-O3 89.8(3) O4-Ru1-O3 179.7(3) 

 O2-Ru1-N1 88.0(3) O1-Ru1-N1 91.8(3) 

 O4-Ru1-N1 93.1(3) O3-Ru1-N1 86.6(3) 

 O2-Ru1-N2 91.0(3) O1-Ru1-N2 89.2(3) 

 O4-Ru1-N2 87.3(3) O3-Ru1-N2 93.0(3) 

 N1-Ru1-N2 178.9(4) O1-Ru2-N5 171.4(3) 

 O1-Ru2-O5 93.3(3) N5-Ru2-O5 78.2(3) 

 O1-Ru2-N3 88.8(3) N5-Ru2-N3 90.9(3) 

 O5-Ru2-N3 86.0(3) O1-Ru2-N9 111.2(3) 

 N5-Ru2-N9 77.3(4) O5-Ru2-N9 155.4(3) 

 N3-Ru2-N9 91.8(3) O1-Ru2-N4 92.0(3) 

 N5-Ru2-N4 87.8(3) O5-Ru2-N4 90.7(3) 

 N3-Ru2-N4 176.7(3) N9-Ru2-N4 90.9(3) 

 O2-Ru3-N10 170.5(3) O2-Ru3-O9 92.8(3) 

 N10-Ru3-O9 77.9(3) O2-Ru3-N7 88.1(3) 

 N10-Ru3-N7 89.6(3) O9-Ru3-N7 86.7(3) 

 O2-Ru3-N8 111.6(3) N10-Ru3-N8 77.7(4) 

 O9-Ru3-N8 155.5(3) N7-Ru3-N8 92.4(3) 

 O2-Ru3-N6 94.1(3) N10-Ru3-N6 87.6(3) 

 O9-Ru3-N6 88.9(3) N7-Ru3-N6 175.2(3) 

 N8-Ru3-N6 90.8(3) O13-S1-O14 115.9(5) 

 O13-S1-O15 114.9(5) O14-S1-O15 113.7(5) 

 O13-S1-O16 97.5(4) O14-S1-O16 106.0(4) 

 O15-S1-O16 106.5(4) O19-S2-O18 114.7(5) 

 O19-S2-O20 115.1(5) O18-S2-O20 115.3(5) 

 O19-S2-O17 105.2(4) O18-S2-O17 96.9(4) 

 O20-S2-O17 106.9(4) Ru1-O1-Ru2 165.2(4) 
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 Ru1-O2-Ru3 164.1(4) C35-O5-Ru2 118.0(7) 

 C53-O9-Ru3 116.4(7) O17-O16-S1 108.0(5) 

 O16-O17-S2 108.1(5) C1-N1-C6 116.2(9) 

 C1-N1-Ru1 121.8(7) C6-N1-Ru1 122.0(8) 

 C46-N2-C3 117.8(10) C46-N2-Ru1 123.7(8) 

 C3-N2-Ru1 118.5(8) C16-N3-C26 116.5(10) 

 C16-N3-Ru2 118.0(8) C26-N3-Ru2 125.5(8) 

 C28-N4-C59 117.1(10) C28-N4-Ru2 122.7(7) 

 C59-N4-Ru2 120.2(8) C14-N5-C13 122.3(9) 

 C14-N5-Ru2 120.3(7) C13-N5-Ru2 117.4(7) 

 C11-N6-C10 115.2(10) C11-N6-Ru3 123.6(8) 

 C10-N6-Ru3 121.0(8) C29-N7-C56 115.9(9) 

 C29-N7-Ru3 119.1(7) C56-N7-Ru3 124.9(8) 

 C22-N8-C23 116.1(9) C22-N8-Ru3 129.3(7) 

 C23-N8-Ru3 114.7(7) C36-N9-C43 115.8(9) 

 C36-N9-Ru2 129.0(7) C43-N9-Ru2 115.2(7) 

 C39-N10-C52 121.9(9) C39-N10-Ru3 119.4(7) 

 C52-N10-Ru3 118.6(8) N1-C1-C2 123.0(10) 

 C1-C2-C8 120.9(11) N2-C3-C4 121.2(10) 

 C5-C4-C3 122.1(10) C4-C5-C7 116.2(10) 

 C4-C5-C20 122.1(10) C7-C5-C20 121.7(10) 

 C9-C6-N1 122.6(11) C46-C7-C5 120.4(10) 

 C2-C8-C9 115.2(10) C2-C8-C32 122.1(11) 

 C9-C8-C32 122.7(11) C6-C9-C8 121.9(11) 

 N6-C10-C27 123.5(11) N6-C11-C12 123.6(11) 

 C21-C12-C11 120.1(11) N5-C13-C25 119.9(10) 

 N5-C13-C35 112.1(10) C25-C13-C35 127.9(11) 

 N5-C14-C15 120.0(10) N5-C14-C43 113.7(10) 

 C15-C14-C43 126.3(10) C19-C15-C14 118.2(11) 

 N3-C16-C17 122.6(11) C34-C17-C16 119.8(11) 

 O8-C18-O7 128.2(11) O8-C18-C36 117.7(11) 

 O7-C18-C36 114.1(11) C25-C19-C15 120.5(11) 

 C27-C21-C12 116.1(11) C27-C21-C60 123.9(12) 

 C12-C21-C60 120.0(12) N8-C22-C30 121.9(10) 

 N8-C22-C38 118.5(10) C30-C22-C38 119.6(10) 

 N8-C23-C24 123.2(10) N8-C23-C39 113.9(9) 
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 C24-C23-C39 122.8(10) C31-C24-C23 119.0(10) 

 C13-C25-C19 119.1(11) C50-C26-N3 122.7(11) 

 C21-C27-C10 121.3(11) N4-C28-C49 122.4(11) 

 N7-C29-C51 123.6(10) C31-C30-C22 120.5(11) 

 C30-C31-C24 119.0(11) C50-C34-C17 117.0(10) 

 C50-C34-C33 122.6(12) C17-C34-C33 120.4(11) 

 O6-C35-O5 123.9(11) O6-C35-C13 121.8(11) 

 O5-C35-C13 114.3(10) N9-C36-C37 123.1(10) 

 N9-C36-C18 116.9(10) C37-C36-C18 119.9(10) 

 C45-C37-C36 119.1(10) O12-C38-O11 129.2(11) 

 O12-C38-C22 114.9(12) O11-C38-C22 115.9(11) 

 N10-C39-C40 119.2(10) N10-C39-C23 114.2(9) 

 C40-C39-C23 126.6(11) C41-C40-C39 119.4(11) 

 C42-C41-C40 119.4(11) C52-C42-C41 119.9(11) 

 C44-C43-N9 123.1(10) C44-C43-C14 123.6(10) 

 N9-C43-C14 113.4(9) C45-C44-C43 118.9(10) 

 C37-C45-C44 119.8(10) N2-C46-C7 122.2(10) 

 C59-C47-C48 121.6(11) C47-C48-C49 116.2(11) 

 C47-C48-C58 122.4(11) C49-C48-C58 121.2(12) 

 C28-C49-C48 120.6(11) C26-C50-C34 121.4(11) 

 C29-C51-C54 120.9(10) N10-C52-C42 120.1(10) 

 N10-C52-C53 110.4(10) C42-C52-C53 129.5(11) 

 O10-C53-O9 122.1(11) O10-C53-C52 121.4(12) 

 O9-C53-C52 116.4(11) C51-C54-C55 116.9(10) 

 C51-C54-C57 122.4(10) C55-C54-C57 120.7(11) 

 C56-C55-C54 119.0(10) N7-C56-C55 123.6(11) 

 N4-C59-C47 122.2(11) F4A-B3A-F1A 109.4(15) 

 F4A-B3A-F2A 108.9(14) F1A-B3A-F2A 110.0(15) 

 F4A-B3A-F3A 109.9(15) F1A-B3A-F3A 108.2(14) 

 F2A-B3A-F3A 110.4(15) F1B-B3B-F3B 111.1(15) 

 F1B-B3B-F4B 110.7(15) F3B-B3B-F4B 110.4(15) 

 F1B-B3B-F2B 108.3(15) F3B-B3B-F2B 108.9(15) 

 F4B-B3B-F2B 107.3(15)          

           _____________________________________________________________  

aSymmetry operation: 1-x, -y, 2-z. 
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Table S3. Bond distances and the ratios given for the pseudo centrosymmetrically equivalent bonds 

in the trimeric structure of [RuT3+](S2O8)(BF4)•12H2O, consistent with a delocalized nature of the 

mixed-valent Ru(3.5+)—O—Ru(IV)—O—Ru(3.5+) triruthenium core. 

comparison
set number

centrosymmetry
factor

1 Ru1-O2 1.809 Ru1-O1 1.817 0.996
2 Ru1-O3 2.068 Ru1-O4 2.05 1.009
3 Ru1-N2 2.11 Ru1-N1 2.084 1.012
4 Ru3-O2 1.884 Ru2-O1 1.875 1.005
5 Ru3-O9 2.03 Ru2-O5 2.015 1.007
6 Ru3-N8 2.105 Ru2-N9 2.102 1.001
7 Ru3-N7 2.067 Ru2-N3 2.07 0.999
8 Ru3-N6 2.123 Ru2-N4 2.123 1.000
9 Ru3-N10 2.006 Ru2-N5 2.009 0.999

Left Side Right Side
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Figure S20. Comparison of the coordinate bond distances between [RuT2+](BF4)2•8H2O and 

[RuT3+](S2O8)(BF4)•12H2O which are in the formal oxidation states of Ru(III)2Ru(IV) and 

Ru(III)Ru(IV)2, respectively, showing a nearly centrosymmetric feature of the latter. This feature is 

consistent with the delocalized mixed-valence character of the formally Ru(III)Ru(IV)2 species, 

providing a description of Ru(3.5+)-O-Ru(IV)-O-Ru(3.5+) for the latter oxidation state.  
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