Pd-Catalyzed Sequential β -C(sp³)–H Arylation and Intramolecular Amination of δ -C(sp²)–H Bonds to Synthesis of Quinolinones via a N,O-Bidentate Directing Group

Mingyu Guan,^b Yubo Pang,^b Jingyu Zhang^{*a} and Yingsheng Zhao^{*b}

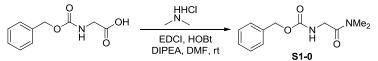
^{*a*} College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China

^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

Supporting information

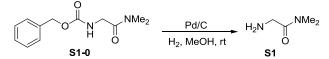
Table of Contents

1. Reagents
2. Instruments
3. Experimental section
4. Preparation of glycine dimethylamide (S1)S2
5. Preparation of various directing groups protected phenpropionic acid
6. General procedures for the preparation of various carboxylic acid substrates
7. General procedures for the preparation of various amino acid substrates
8. Screening of directing groups
9. Screening of reaction conditions of intramolecular δ -C(sp ²)–H amination
10. Palladium-catalyzed β -C(sp ³)–H arylation
11. Synthesis of quinolinones from general acid derivatives with aryl idodies
12. Palladium-catalyzed intramolecular δ -C(sp ²)–H aminationS17
13. Gram scale reaction
14. The removal and transformation of directing group
15. Proposed reaction mechanism
16. References
17. NMR spectra

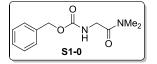

1. Reagents: Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br = broad singlet, m = multiplet. HRMS analyses were carried out using a Bruker micrOTOF–Q instrument or a TOF–MS instrument.

3. Experimental section: Unless otherwide noted, all experiments were performed under air atmosphere. No reaction required anhydrous condition. All the glasswares used in the experiments were dried by vacuum oven.


4. Preparation of glycine dimethylamide (S1)

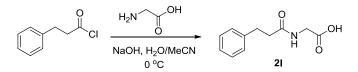
4.1. Preparation of S1-0^[1]



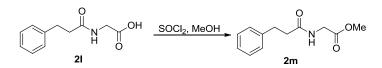
A mixture of acid (50 mmol, 1.0 equiv), amine (55 mmol, 1.1 equiv), EDCI (55 mmol, 1.1 equiv), HOBt (55 mmol, 1.1 equiv), and DIPEA (150 mmol, 3.0 equiv) in DMF (0.2 M) was stirred at rt overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give **S1-0** as a white solid in 87% yield.

4.2. Preparation of S1

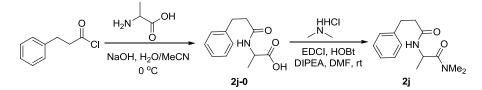
Compound **S1-0** (7.08 g, 30 mmol) was dissolved in methanol (150 mL) and 10% palladium-carbon (0.71 g) was added. The reaction mixture was shaked under hydrogen gas at room temperature over night. After removal of catalyst by filtration with aid of celite, the filtrate was concentrated under vacuum to give **S1** as pale yellow liquid in 95% yield. The crude product was used in the next step without any purification.


¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 5H), 5.86 (br s, 1H), 5.10 (s, 2H), 3.98 (d, *J* = 4.1 Hz, 2H), 2.94 (d, *J* = 7.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.93, 156.29, 136.54, 128.53, 128.10, 128.04, 66.85, 42.69, 35.87, 35.62; HRMS Calcd for C₁₂H₁₇N₂O₃ [M+H⁺]: 237.1239; Found: 237.1241.

¹H NMR (400 MHz, CDCl₃) δ 3.36 – 3.20 (m, 2H), 2.84 – 2.74 (m, 6H), 2.02 (br s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.41, 42.86, 35.55, 35.43; HRMS Calcd for C₄H₁₂N₂O [M+H⁺]: 103.0871; Found: 103.0874.

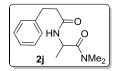

5. Preparation of various directing groups protected phenpropionic acid

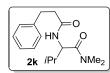
5.1. Preparation of 2l


The glycine (30 mmol, 1.0 equiv) and NaOH (120 mmol, 4.0 equiv) were dissolved in water/acetonitrile (75/25, 0.3 M). After cooling to 0 °C, hydrocinnamoyl chloride (1.05 equiv) was added dropwise at this temperature. After the addition was complete, the mixture was stirred for additional 2 hours at 0 °C. Subsequently, the mixture was allowed to warm to RT and was stirred for one additional hour. All volatiles were then removed under reduced pressure before conc. HCl was added to cause precipitation. The mixture was filtered and the filter cake was washed with ice-cold diethylether to give **2l** as a white solid in 91% yield.

5.2. Preparation of 2m

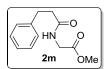
To a solution of **2l** (4.14 g, 20 mmol, 1.0 equiv) in MeOH (30 mL), at 0 $^{\circ}$ C, was added SOCl₂ (4.35 mL, 60 mmol, 3.0 equiv) dropwise. The resulting mixture was allowed to stir from 0 $^{\circ}$ C to room temperature overnight. The solvent was removed under reduced pressure afford a white solid **2m** 4.20 g, 95%.


5.3. Preparation of various directing groups protected phenpropionic acid 2j and 2k

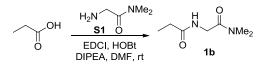

The racemic amino acid (20 mmol, 1 equiv) and NaOH (80 mmol, 4 equiv) were dissolved in water/acetonitrile (75/25, 0.3 M). After cooling to 0 °C, hydrocinnamoyl chloride (21 mmol, 1.05 equiv.) was added dropwise at this temperature. After the addition was complete, the mixture was stirred for additional 2 hours at 0 °C. Subsequently, the mixture was allowed to warm to RT and was stirred for one additional hour. All volatiles were then removed under reduced pressure before conc. HCl was added to cause precipitation. The mixture was filtered and the filter cake was washed with

ice-cold diethylether to get a target compound. The crude product was used in the next step without any purification.

A mixture of acid (1.0 equiv), amine (1.1 equiv), EDCI (1.1 equiv), HOBt (1.1 equiv), and DIPEA (3.0 equiv) in DMF (0.2 M) was stirred at rt overnight. Water was added and the mixture was extracted with DCM. The combined organic layer was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give white solid with >70% yield.

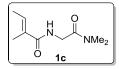

H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.18 – 7.13 (m, 3H), 6.54 (br s, 1H), 4.89 – 4.82 (m, 1H), 3.02 (s, 3H), 2.97 – 2.93 (m, 5H), 2.51 – 2.42 (m, 2H), 1.22 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.45, 171.26, 140.88, 128.59, 128.47, 126.30, 45.24, 38.43, 37.05, 35.82, 31.75, 18.75; HRMS Calcd for C₁₄H₂₀N₂O₂Na [M+Na⁺]: 271.1422; Found: 271.1423.

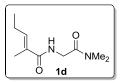
¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J*=15.6 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.38 – 7.31 (m, 3H), 6.85 (br s, 1H), 6.52 (d, *J* = 15.6 Hz, 1H), 4.96 (dd, *J* = 8.7, 6.9 Hz, 1H), 3.17 (s, 3H), 2.98 (s, 3H), 2.10 –2.01 (m,1H), 0.96 (dd, *J* = 13.3, 6.7 Hz, 6H), 0.90 – 0.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.20, 165.94, 141.25, 135.01, 129.72, 128.88, 127.91, 120.87, 53.79, 37.65, 35.81, 31.89, 19.65, 17.93; HRMS Calcd for C₁₆H₂₃N₂O₂Na [M+Na⁺]: 299.1735; Found: 299.1738.



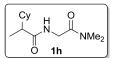
¹H NMR (400 MHz, DMSO) δ 12.49 (s, 1H), 8.20 (br s, 1H), 7.30 – 7.24 (m, 2H), 7.21 (d, J = 7.1 Hz, 2H), 7.17 (t, J = 7.1 Hz, 1H), 3.74 (d, J = 5.8 Hz, 2H), 2.81 (t, J = 7.8 Hz, 2H), 2.43 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 171.81, 171.43, 141.32, 128.30, 128.23, 125.89, 40.60, 36.70, 30.96; HRMS Calcd for C₁₁H₁₄NO₃ [M+H⁺]: 208.0974; Found: 208.0973.

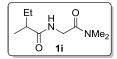
¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.22 (m, 2H), 7.17 – 7.15 (m, 3H), 5.93 (br s, 1H), 3.98 (d, *J* = 5.1 Hz, 2H), 3.70 (s, 3H), 2.96 – 2.91 (m, 2H), 2.54 – 2.48 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.39, 170.57, 140.77, 128.67, 128.43, 126.40, 52.51, 41.35, 38.10, 31.55; HRMS Calcd for C₁₂H₁₅NO₃Na [M+Na⁺]: 244.0950; Found: 244.0957.


6. General procedures for the preparation of various carboxylic acid substrates 1b-1d, 1h-1i, 1l

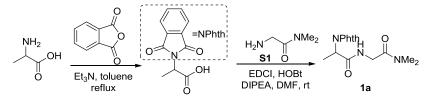

A mixture of carboxylic acid (1.0 equiv), **S1** (1.1 equiv), EDCI (1.1 equiv), HOBt (1.1 equiv), and DIPEA (3.0 equiv) in DMF (0.2 M) was stirred at rt overnight. Water was added and the mixture was extracted with DCM. The combined organic layer was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give corresponding carboxylic acid substrates as white solid or colourless liquid with >85% yield.

$$\underbrace{ \begin{pmatrix} H & O \\ N & I \\ O & 1b \end{pmatrix}}_{O \quad 1b} NMe_2$$


¹H NMR (400 MHz, CDCl₃) δ 6.63 (br s, 1H), 4.00 (d, *J*=4.0 Hz, 2H), 2.95 (s, 6H), 2.27 – 2.21 (m, 2H), 1.13 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.99, 168.24, 41.41, 36.04, 35.70, 29.63, 9.91; HRMS Calcd for C₇H₁₅N₂O₂ [M+H⁺]: 159.1134; Found: 159.1138.


¹H NMR (400 MHz, CDCl₃) δ 6.84 (br s, 1H), 6.59 – 6.41 (m, 1H), 4.04 (d, *J* = 3.5 Hz, 2H), 2.96 (s, 6H), 1.83 (s, 3H), 1.71 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.08, 168.29, 131.60, 131.05, 41.56, 35.93, 35.57, 13.95, 12.22; HRMS Calcd for C₉H₁₇N₂O₂ [M+H⁺]: 185.1290; Found: 185.1295.

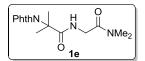
¹H NMR (400 MHz, CDCl₃) δ = 6.81 (br s, 1H), 6.31 (t, *J*=7.3 Hz, 1H), 3.98 (d, *J*=4.0 Hz, 2H), 2.90 (d, *J*=4.6 Hz, 6H), 2.09 – 2.01 (m, 2H), 1.76 (s, 3H), 0.92 (t, *J*=7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.00, 168.15, 138.24, 129.49, 41.39, 35.78, 35.39, 21.49, 13.12, 12.23; HRMS Calcd for C₁₀H₁₉N₂O₂ [M+H⁺]: 199.1447; Found: 199.1446.



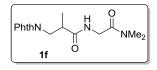
¹H NMR (400 MHz, CDCl₃) δ 6.55 (br s, 1H), 6.55 (s, 1H), 4.03 (d, *J* = 3.9 Hz, 2H), 2.98 (d, *J* = 6.3 Hz, 6H), 2.98 (d, *J* = 6.3 Hz, 6H), 2.08 – 1.98 (m, 1H), 1.80 – 1.60 (m, 5H), 1.55 – 1.43 (m, 1H), 1.28 – 1.17 (m, 2H), 1.15 – 1.07 (m, 4H), 1.02 – 0.84 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.44, 168.27, 47.53, 41.24, 40.99, 35.99, 35.66, 31.58, 30.03, 26.49, 26.39, 26.37, 14.86; HRMS Calcd for C₁₃H₂₅N₂O₂ [M+H⁺]: 241.1916; Found: 241.1918.

¹H NMR (400 MHz, CDCl₃) δ 6.58 (br s, 1H), 4.03 (d, J = 3.9 Hz, 2H), 2.98 (d, J = 6.3 Hz, 6H), 2.24 – 2.17 (m, 1H), 1.72 – 1.61 (m, 1H), 1.49 – 1.38 (m, 1H), 1.15 – 1.11 (m, 3H), 0.91 – 0.84 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.61, 168.29, 43.02, 41.28, 35.99, 35.65, 27.39, 17.48, 12.01; HRMS Calcd for C₉H₁₉N₂O₂ [M+H⁺]: 187.1447; Found: 187.1445.

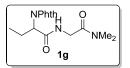
7. General procedures for the preparation of various amino acid substrates 1a, 1e-1g, 1j-1k, 1m



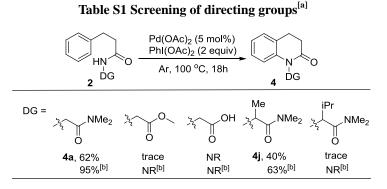
In RBF fitted with Dean-stark apparatus and a reflux condenser, phthalic acid anhydride (1.48 g, 10 mmol) and appropriate amino acids (10 mmol) were refluxed in toluene in the presence of 0.1 mL triethylamine for 3 hours. The organic solvents were removed under reduced pressure to get a sticky oily mass. Water was added to this oily mass and the mixture was acidified with hydrochloric acid, and stirred for 30 min to get a product. This product was filtered off, washed with water, and dried to get a target compound. The crude product was used in the next step without any purification.


A mixture of acid (1.0 equiv), **S1** (1.1 equiv), EDCI (1.1 equiv), HOBt (1.1 equiv), and DIPEA (3.0 equiv) in DMF (0.2 M) was stirred at rt overnight. Water was added and the mixture was extracted with DCM. The combined organic layer was washed with saturated ammonium chloride, sodium bicarbonate and brine, dried over Na_2SO_4 , and concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography to give corresponding carboxylic acid substratesas white solidor colourless liquid with >77% yield.

	O ↓ NMe₂
0 1i	a


¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.84 (m, 2H), 7.76 – 7.69 (m, 2H), 7.06 (br s, 1H), 5.00 – 4.95 (m, 1H), 4.06 (d, J = 3.8 Hz, 2H), 2.97 (d, J = 1.4, 6H), 1.73 (d, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.01, 167.87, 167.72, 134.32, 132.04, 123.70, 49.14, 41.79, 35.99, 35.68, 15.40; HRMS Calcd for C₁₅H₁₈N₃O₄ [M+H⁺]: 304.1297; Found: 304.1302.

¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.69 – 7.64 (m, 2H), 6.91 (br s, 1H), 4.05 (d, *J* = 3.8 Hz, 2H), 2.95 (d, *J* = 4.3 Hz, 6H), 1.84 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.89, 168.67, 167.93, 134.10, 131.94, 123.17, 61.28, 41.79, 35.90, 35.58, 24.78; HRMS Calcd for C₁₆H₂₀N₃O₄ [M+H⁺]: 318.1454; Found: 318.1456.



¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.81 (m, 2H), 7.71 – 7.69 (m, 2H), 6.73 (br s, 1H), 4.03 (d, J = 3.9 Hz, 2H), 3.95 – 3.89 (m, 1H), 3.81 – 3.68 (m, 1H), 2.95 (s, 6H), 2.10 – 1.70 (m, 1H), 1.20 (d, J = 4.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.54, 168.34, 167.93, 134.05, 132.07, 123.44, 41.44, 41.21, 39.90, 35.97, 35.61, 15.57; HRMS Calcd for C₁₆H₂₀N₃O₄ [M+H⁺]: 318.1454; Found: 318.1457.

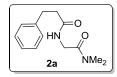
¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.75 – 7.70 (m, 2H), 7.17 (br s, 1H), 4.81 – 4.74 (m, 1H), 4.05 (d, *J* = 3.3 Hz, 2H), 2.96 (d, *J* = 3.6 Hz, 6H), 2.39 – 2.29 (m, 1H), 2.28 – 2.79 (m, 1H), 0.96 – 0.89 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.79, 168.23, 167.71, 134.36, 131.83, 123.76, 55.96, 41.75, 35.98, 35.67, 22.31, 11.11; HRMS Calcd for C₁₆H₂₀N₃O₄ [M+H⁺]: 318.1454; Found: 318.1460.

8. Screening of directing groups

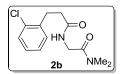
[a] Reactions were carried out on a 0.2 mmol scale under argon (1 atm), using DCE (2 mL) as the solvent. Yields were based on GC-MS. [b] **2** (0.2 mmol), Pd(OAc)₂ (5 mol%), PhI(OAc)₂ (2 equiv), HFIP (5 mL), 70 °C, Ar, 18 h.

9. Screening of reaction conditions of intramolecular δ -C(sp²)–H amination

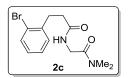
Table S2 Screening of reaction conditions^[a]

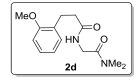

HN O Ar, 18h O O O O O O O O O O O O O O O O O O O							
	2a	NMe ₂		4a NMe ₂			
Entry	Pd(OAc) ₂	Oxidant	Solvent	Temperature	Yield		
	(mol%)	(equiv)	(mL)	(°C)	(%)		
1	5	$PhI(OAc)_2(2)$	DCE	100	61		
2	5	$PhI(OAc)_2(2)$	toluene	100	42		
3	5	$PhI(OAc)_2(2)$	HFIP	100	70		
4	5	$PhI(OAc)_2(2)$	HFIP	100	65		

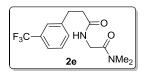
5	5	$PhI(OAc)_2(2)$	HFIP	80	80
6	5	$PhI(OAc)_2(2)$	HFIP	70	95 (91 ^[b])
7	5	$PhI(OAc)_2(2)$	HFIP	60	83
8	2.5	$PhI(OAc)_2(2)$	HFIP	70	71
9	0	$PhI(OAc)_2(2)$	HFIP	70	0
10	5	$PhI(OAc)_2(2)$	HFIP	70	90 ^[c]


[a] Reactions were carried out on a 0.1 mmol scale under argon (1 atm), using HFIP (2.5 mL) as the solvent. Yield was based on GC using tridecane as the internal standard. [b] Isolated yield on a 0.2 mmol scale. [c] TEMPO (1 equiv) was added.

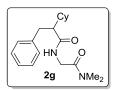
10. Palladium-catalyzed β-C(sp³)–H arylation

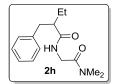

A mixture of carboxylic acid derivatives (0.2 mmol, 1.0 equiv), aryl iodide (1.5 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), AgOAc (33.4 mg, 2.0 equiv) and HFIP (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 36 hours. The reaction mixture was cooled to rt, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the arylation product.

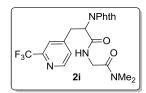

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 – 7.15 (m, 3H), 6.66 (br s, 1H), 4.01 (d, *J* = 3.9 Hz, 2H), 2.98 – 2.93 (m, 8H), 2.57 – 2.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.13, 168.01, 140.87, 128.54, 128.35, 126.22, 41.36, 38.06, 35.94, 35.60, 31.62; HRMS Calcd for C₁₃H₁₈N₂O₂ [M+H⁺]: 235.1447; Found: 235.1448.

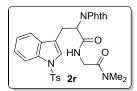

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 1H), 7.31 – 7.28 (m, 1H), 7.22 – 7.16 (m, 2H), 6.69 (br s, 1H), 4.07 (d, J = 3.9 Hz, 2H), 3.15 – 3.10 (m, 2H), 3.01 (s, 6H), 2.64 – 2.58 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.86, 167.99, 138.44, 133.97, 130.62, 129.61, 127.84, 126.99, 41.40, 36.02, 35.98, 35.63, 29.60; HRMS Calcd for C₁₃H₁₈ClN₂O₂ [M+H⁺]: 269.1057; Found: 269.1065.

¹H NMR (400 MHz, CDCl₃) δ = 7.50 – 7.46 (m, 1H), 7.25 – 7.15 (m, 2H), 7.04 – 7.00 (m, 1.8, 1H), 6.70 (br s, 1H), 4.00 (d, *J* = 4.0 Hz, 2H), 3.09 – 3.03 (m, 2H), 2.93 (s, 6H), 2.57 – 2.51 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.72, 167.95, 140.11, 132.85, 130.54, 128.01, 127.59, 124.33, 41.34, 36.07, 35.92, 35.57, 32.03; HRMS Calcd for C₁₃H₁₈BrN₂O₂ [M+H⁺]: 313.0552; Found: 313.0561.

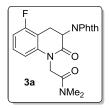

¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 2H), 6.87 – 6.80 (m, 2H), 6.64 (br s, 1H), 4.01 (d, *J* = 3.9 Hz, 2H), 3.81 (s, 3H), 2.95 (d, *J* = 4.0 Hz, 6H), 2.94 – 2.91 (m, 2H), 2.57 – 2.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.76, 168.11, 157.45, 130.01, 129.08, 127.57, 120.48, 110.24, 55.23, 41.35, 36.39, 35.96, 35.59, 26.80; HRMS Calcd for C₁₄H₂₁N₂O₃ [M+H⁺]: 265.2552; Found: 265.2553.

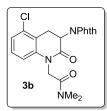

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.41 – 7.37 (m, 2H), 6.62 (br s, 1H), 4.01 (d, J = 4.0 Hz, 2H), 3.05 – 3.01 (m, 2H), 2.97 (d, J = 1.8 Hz, 6H), 2.59 – 2.54 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.57, 167.93, 141.87, 131.92 (d, $J_{C-F} = 1.0$ Hz), 130.85 (q, $J_{C-F} = 32.0$ Hz), 129.04, 125.21 (q, $J_{C-F} = 4.0$ Hz), 124.28 (q, $J_{C-F} = 260.0$ Hz), 123.23 (q, $J_{C-F} = 4.0$ Hz), 41.41, 37.73, 35.98, 35.66, 31.37; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.59; HRMS Calcd for C₁₄H₁₈F₃N₂O₂ [M+H⁺]: 303.1320; Found: 303.1357.


¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.15 – 7.11 (m, 2H), 6.61 (br s, 1H), 4.06 (d, *J* = 3.9 Hz, 2H), 3.03 (d, *J* = 5.6 Hz, 6H), 3.00 – 2.96 (m, 2H), 2.61 – 2.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.71, 167.95, 139.90, 131.68, 130.26, 120.12, 41.44, 37.84, 36.01, 35.71, 31.00; HRMS Calcd for C₁₃H₁₈BrN₂O₂ [M+H⁺]: 313.0552; Found: 313.0556.

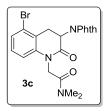

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 7.16 – 7.09 (m, 3H), 6.28 (br s, 1H), 4.02 (dd, J = 17.5, 4.4 Hz, 1H), 3.70 (dd, J = 17.5, 3.0 Hz, 1H), 2.90 (d, J = 11.2 Hz, 6H), 2.88 – 2.83 (m, 2H), 2.24 – 2.16 (m, 1H), 1.92 (d, J = 12.3 Hz, 1H), 1.78 – 1.63 (m, 4H), 1.29 – 1.11 (m, 4H), 1.08 – 0.98 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.25, 167.92, 140.49, 128.89, 128.37, 126.07, 56.37, 41.09, 40.37, 35.96, 35.88, 35.54, 31.15, 31.11, 26.49, 26.38; HRMS Calcd for C₁₉H₂₈N₂O₂Na [M+Na⁺]: 339.2048; Found: 339.2041.

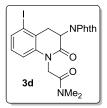
¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 7.16 – 7.11 (m, 3H), 6.48 (br s, 1H), 4.04 (dd, *J* = 17.5, 4.4 Hz, 1H), 3.83 (dd, *J* = 17.5, 3.5 Hz, 1H), 2.95 – 2.89 (m, 7H), 2.70 (dd, *J* = 13.5, 6.5 Hz, 1H), 2.38 – 2.31 (m, 1H), 1.71 – 1.60 (m, 1H), 1.54 – 1.45 (m, 1H), 0.88 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.93, 167.93, 139.86, 128.89, 128.34, 126.16, 51.27, 41.12, 38.80, 35.86, 35.50, 25.54, 12.03; HRMS Calcd for C₁₅H₂₂N₂O₂Na [M+Na⁺]: 285.1579; Found: 285.1582.

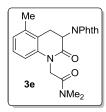

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 4.9 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.70 – 7.64 (m, 2H), 7.49 (s, 1H), 7.42 (br s, 1H), 7.33 (d, J = 4.8 Hz, 1H), 5.28 – 5.23 (m, 1H), 4.06 – 3.94 (m, 2H), 3.75 – 3.62 (m, 2H), 2.91 (s, 3H), 2.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.68, 167.58, 167.43, 150.16, 148.65, 148.39 (q, $J_{C-F} = 34.0$ Hz), 134.56, 131.24, 126.90, 123.74, 121.38 (q, $J_{C-F} = 272.0$ Hz), 121.13 (q, $J_{C-F} = 3.0$ Hz), 53.72, 41.58, 35.94, 35.53, 34.15; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.15; HRMS Calcd for C₂₁H₁₉F₃N₄O₄Na [M+Na⁺]: 471.1256; Found: 471.1251.

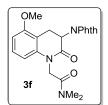

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.72 – 7.66 (m, 2H), 7.54 (t, *J* = 7.1, 3H), 7.35 (br s, 1H), 7.28 – 7.21 (m, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 2H), 5.29 – 5.22 (m, 1H), 4.06 (d, *J* = 3.7 Hz, 2H), 3.76 (dd, *J* = 15.2, 11.0 Hz, 1H), 3.63 (dd, *J* = 15.2, 5.1 Hz, 1H), 2.94 (d, *J* = 6.8 Hz, 6H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.04, 167.75, 167.51, 144.65, 135.11, 134.36, 131.52, 130.32, 129.77, 126.69, 124.96, 124.33, 123.74, 123.34, 119.40, 117.96, 113.67, 53.53, 41.75, 35.95, 35.63, 24.61, 21.60; HRMS Calcd for C₃₀H₂₉N₄O₆S [M+H⁺]: 573.1808; Found: 573.1818.

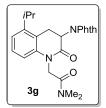
11. Synthesis of quinolinone from general acid derivatives with aryl idodies

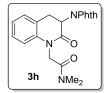

A mixture of acid derivatives (0.2 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), AgOAc (33.4 mg, 2.0 equiv) and HFIP (1 mL) in a 25 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 12 hours. The reaction mixture was cooled to rt, then $PhI(OAc)_2$ (160.5 mg, 2.5 equiv), PivOH (6.0 mg, 0.3 equiv) and HFIP (4 mL) were added in the 25 mL glass vial (purged with Ar, sealed with PTFE cap), which was heated at 70 °C for 18 hours. The reaction mixture was cooled to rt, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the cyclized product.

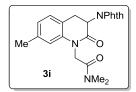

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.77 – 7.72 (m, 2H), 7.21 (dd, J = 14.7, 8.1 Hz, 1H), 6.82 (t, J = 8.5 Hz, 1H), 6.66 (d, J = 8.3 Hz, 1H), 5.21 (dd, J = 14.9, 6.4 Hz, 1H), 5.09 (d, J = 16.5 Hz, 1H), 4.36 (d, J = 16.5 Hz, 1H), 3.75 (t, J = 15.1 Hz, 1H), 3.33 (dd, J = 15.2, 6.4 Hz, 1H), 3.09 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.72, 166.35, 166.23, 159.64 (d, $J_{C-F} = 244.0$ Hz), 140.88 (d, $J_{C-F} = 7.0$ Hz), 134.34, 132.05, 129.00 (d, $J_{C-F} = 9.0$ Hz), 123.70, 111.29 (d, $J_{C-F} = 3.0$ Hz), 111.28 (d, $J_{C-F} = 21.0$ Hz), 110.86 (d, $J_{C-F} = 22.0$ Hz), 48.55, 45.92, 36.59, 36.00, 22.15 (d, $J_{C-F} = 4.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.56; HRMS Calcd for C₂₁H₁₈FN₃O₄Na [M+Na⁺]: 418.1179; Found: 418.1177.

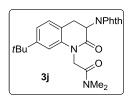

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.77 – 7.71 (m, 2H), 7.19 (t, *J* = 8.1 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.21 (dd, *J* = 14.9, 6.4 Hz, 1H), 5.10 (d, *J* = 16.5 Hz, 1H), 4.34 (d, *J* = 16.5 Hz, 1H), 3.83 (t, *J* = 15.2 Hz, 1H), 3.47 (dd, *J* = 15.5, 6.4 Hz, 1H), 3.09 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.71, 166.34, 166.21, 140.69, 134.34, 133.33, 132.05, 128.73, 124.69, 123.69, 122.10, 114.30, 48.56, 46.04, 36.61, 36.00, 26.72; HRMS Calcd for C₂₁H₁₈ClN₃O₄Na [M+Na⁺]: 434.0876; Found: 434.0876.

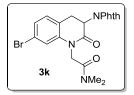

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.77 – 7.70 (m, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.11 (t, *J* = 8.1 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 5.21 (dd, *J* = 14.9, 6.3 Hz, 1H), 5.08 (d, *J* = 16.5 Hz, 1H), 4.33 (d, *J* = 16.5 Hz, 1H), 3.86 (t, *J* = 15.2 Hz, 1H), 3.45 (dd, *J* = 15.5, 6.3 Hz, 1H), 3.09 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.69, 166.33, 166.25, 140.62, 134.33, 132.04, 129.06, 127.89, 123.88, 123.68, 123.65, 115.00, 48.64, 46.05, 36.60, 36.00, 29.62; HRMS Calcd for C₂₁H₁₉BrN₃O₄ [M+H⁺]: 456.0559; Found: 456.0553.

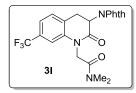

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.76 – 7.71 (m, 2H), 7.56 (d, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 1H), 5.22 (dd, *J* = 14.9, 6.2 Hz, 1H), 5.07 (d, *J* = 16.5 Hz, 1H), 4.32 (d, *J* = 16.5 Hz, 1H), 3.93 (t, *J* = 15.1 Hz, 1H), 3.31 (dd, *J* = 15.4, 6.3 Hz, 1H), 3.09 (s, 3H), 2.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.73, 166.40, 166.38, 139.78, 134.50, 134.35, 132.06, 129.48, 127.23, 123.71, 116.06, 99.79, 48.94, 46.07, 36.64, 36.03, 35.09; HRMS Calcd for C₂₁H₁₉IN₃O₄ [M+H⁺]: 504.0420; Found: 504.0416.

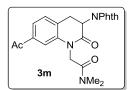

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.75 – 7.71 (m, 2H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 1H), 5.20 (dd, *J* = 14.9, 6.2 Hz, 1H), 5.07 (d, *J* = 16.5 Hz, 1H), 4.38 (d, *J* = 16.4 Hz, 1H), 3.80 (t, *J* = 15.0 Hz, 1H), 3.12 (d, *J* = 6.3 Hz, 1H), 3.09 (s, 3H), 2.97 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.86, 166.72, 166.36, 139.31, 135.84, 134.24, 132.10, 127.65, 125.75, 123.60, 122.39, 113.66, 49.05, 45.99, 36.59, 35.98, 26.18, 19.73; HRMS Calcd for C₂₂H₂₂N₃O₄ [M+H⁺]: 392.1610; Found: 392.1619.

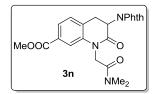

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.84 (m, 2H), 7.77 – 7.66 (m, 2H), 7.19 (t, *J* = 8.3 Hz, 1H), 6.65 (d, *J* = 8.3 Hz, 1H), 6.52 (d, *J* = 8.2 Hz, 1H), 5.16 (dd, *J* = 14.8, 6.6 Hz, 1H), 5.05 (d, *J* = 16.5 Hz, 1H), 4.40 (d, *J* = 16.5 Hz, 1H), 3.82 (s, 3H), 3.59 (t, *J* = 15.1 Hz, 1H), 3.41 (dd, *J* = 15.3, 6.6 Hz, 1H), 3.09 (s, 3H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.79, 166.77, 166.60, 156.46, 140.24, 134.19, 132.14, 128.50, 123.58, 111.99, 108.41, 106.31, 55.80, 49.03, 45.93, 36.60, 35.99, 22.55; HRMS Calcd for C₂₂H₂₂N₃O₅ [M+H⁺]: 408.1559; Found: 408.1560.


¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.77 – 7.70 (m, 2H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 1H), 5.19 (dd, *J* = 14.9, 5.9 Hz, 1H), 5.10 (d, *J* = 16.5 Hz, 1H), 4.35 (d, *J* = 16.4 Hz, 1H), 3.84 (t, *J* = 14.9 Hz, 1H), 3.24 (dd, *J* = 15.0, 5.9 Hz, 1H), 3.15 – 3.05 (m, 4H), 2.98 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 3H), 1.17 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.92, 166.78, 166.53, 146.26, 139.44, 134.27, 132.16, 127.99, 123.64, 121.55, 120.84, 113.62, 49.25, 46.27, 36.63, 36.03, 29.50, 25.66, 23.33, 23.25; HRMS Calcd for C₂₄H₂₆N₃O₄ [M+H⁺]: 420.1923; Found: 420.1922.

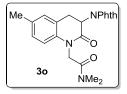

¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.85 (m, 2H), 7.74 – 7.72 (m, 2H), 7.27 – 7.23 (m, 1H), 7.18 (d, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 5.23 (dd, *J* = 15.1, 6.1 Hz, 1H), 5.07 (d, *J* = 16.4 Hz, 1H), 4.39 (d, *J* = 16.4 Hz, 1H), 4.07 (t, *J* = 14.9 Hz, 1H), 3.10 (s, 3H), 3.01 – 2.92 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 167.81, 166.63, 166.56, 139.25, 134.25, 132.10, 128.26, 123.72, 123.62, 115.59, 49.27, 45.76, 36.61, 35.99, 29.82; HRMS Calcd for C₂₁H₂₀N₃O₄ [M+H⁺]: 378.1454; Found: 378.1444.


¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.73 – 7.71 (m, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.67 (s, 1H), 5.20 (dd, *J* = 15.0, 6.1 Hz, 1H), 5.05 (d, *J* = 16.4 Hz, 1H), 4.36 (d, *J* = 16.4 Hz, 1H), 4.01 (t, *J* = 14.8 Hz, 1H), 3.10 (s, 3H), 2.98 (s, 3H), 2.92 (dd, *J* = 14.6, 6.1 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.83, 166.71, 166.68, 139.15, 138.10, 134.22, 132.11, 128.05, 124.42, 123.59, 120.75, 116.27, 49.45, 45.83, 36.62, 36.00, 29.46, 21.66; HRMS Calcd for C₂₂H₂₁N₃O₄Na [M+Na⁺]: 414.1430; Found: 414.1428.

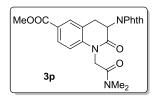

¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.75 – 7.69 (m, 2H), 7.14 – 7.05 (m, 2H), 6.96 (d, J = 1.4 Hz, 1H), 5.21 (dd, J = 15.0, 6.1 Hz, 1H), 4.96 (d, J = 16.2 Hz, 1H), 4.56 (d, J = 16.2 Hz, 1H), 4.02 (t, J = 14.6 Hz, 1H), 3.11 (s, 3H), 2.96 (s, 3H), 2.95 – 2.90 (m, 1H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.83, 166.95, 166.56, 151.50, 138.68, 134.22, 132.11, 127.84, 123.59, 120.82, 120.75, 113.06, 49.44, 45.79, 36.81, 36.06, 34.90, 31.35, 29.27; HRMS Calcd for C₂₅H₂₂N₃O₄ [M+H⁺]: 434.2080; Found: 434.2084.


¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.85 (m, 2H), 7.74 – 7.72 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 5.21 (dd, *J* = 15.0, 6.1 Hz, 1H), 5.09 (d, *J* = 16.5 Hz, 1H), 4.27 (d, *J* = 16.5 Hz, 1H), 3.99 (t, *J* = 14.9 Hz, 1H), 3.10 (s, 3H), 2.99 (s, 3H), 2.94 (dd, *J* = 14.9, 6.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.73, 166.45, 166.04, 140.69, 134.34, 132.02, 129.54, 126.59, 123.69, 122.76, 121.64, 118.71, 48.91, 45.82, 36.60, 36.02, 29.44; HRMS Calcd for C₂₁H₁₉BrN₃O₄ [M+H⁺]: 456.0559; Found: 455.0560.

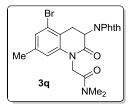
¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.76 – 7.74 (m, 2H), 7.32 (s, 2H), 7.07 (s, 1H), 5.25 (dd, J = 15.1, 6.0 Hz, 1H), 5.14 (d, J = 16.5 Hz, 1H), 4.34 (d, J = 16.5 Hz, 1H), 4.13 (t, J = 15.1 Hz, 1H), 3.13 (s, 3H), 3.05 (dd, J = 15.0, 6.0 Hz, 1H), 3.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.76, 166.44, 166.01, 140.03, 134.41, 132.03, 130.72 (q, $J_{C-F} = 33.0$ Hz), 128.82, 127.76 (d, $J_{C-F} = 1.0$ Hz), 123.90 (q, $J_{C-F} = 270.0$ Hz), 123.76, 120.57 (q, $J_{C-F} = 4.0$ Hz), 112.43 (q, $J_{C-F} = 4.0$ Hz), 48.73, 45.76, 36.67, 36.07, 29.82; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.44; HRMS Calcd for C₂₂H₁₉F₃N₃O₄ [M+H⁺]: 446.1328; Found: 446.1326.

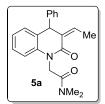


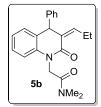
¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.76 – 7.74 (m, 2H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.46 (s, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 5.23 (dd, *J* = 15.0, 6.0 Hz, 1H), 5.11 (d, *J* = 16.5 Hz, 1H), 4.48 (d, *J* = 16.5 Hz, 1H), 4.13 (t, *J* = 15.2 Hz, 1H), 3.13 (s, 3H), 3.07 (dd, *J* = 15.1, 6.0 Hz, 1H), 2.98 (s, 3H), 2.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.36, 167.68, 166.34, 166.05, 139.85, 137.24, 134.31, 131.98, 129.14, 128.48, 124.13, 123.64, 114.48, 48.71, 45.43, 36.57, 35.94, 29.94, 26.71; HRMS Calcd for C₂₃H₂₂N₃O₅ [M+H⁺]: 420.1559; Found: 420.1561.

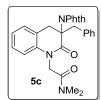


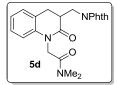
¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.86 (m, 2H), 7.76 – 7.71 (m, 3H), 7.49 (s, 1H), 7.27 (d, *J* = 5.7 Hz, 1H), 5.24 (dd, *J* = 15.1, 6.0 Hz, 1H), 5.12 (d, *J* = 16.5 Hz, 1H), 4.42 (d, *J* = 16.5 Hz, 1H), 4.13 (t, *J*

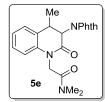

= 15.1 Hz, 1H), 3.90 (s, 3H), 3.12 (s, 3H), 3.05 (dd, J = 15.1, 6.0 Hz, 1H), 2.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.77, 166.63, 166.42, 166.12, 139.67, 134.35, 132.04, 130.31, 128.94, 128.46, 124.92, 123.72, 116.32, 52.46, 48.77, 45.56, 36.61, 36.03, 30.02; HRMS Calcd for C₂₃H₂₂N₃O₆ [M+H⁺]: 436.1509; Found: 436.1513.


¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (m, 2H), 7.77 – 7.69 (m, 2H), 7.04 (d, *J* = 8.2 Hz, 1H), 6.99 (s, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 5.20 (dd, *J* = 15.0, 6.1 Hz, 1H), 5.02 (d, *J* = 16.4 Hz, 1H), 4.40 (d, *J* = 16.4 Hz, 1H), 4.04 (t, *J* = 14.8 Hz, 1H), 3.09 (s, 3H), 2.96 (s, 3H), 2.90 (dd, *J* = 14.7, 6.1 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.82, 166.73, 166.40, 136.80, 134.21, 133.28, 132.10, 128.90, 128.63, 123.58, 123.51, 115.47, 49.34, 45.73, 36.60, 35.97, 29.79, 20.68; HRMS Calcd for C₂₂H₂₂N₃O₄ [M+H⁺]: 392.1610; Found: 392.1620.


¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 1H), 7.89 – 7.87 (m, 3H), 7.75 – 7.73 (m, 2H), 6.90 (d, *J* = 8.5 Hz, 1H), 5.25 (dd, *J* = 15.1, 6.1 Hz, 1H), 5.14 (d, *J* = 16.5 Hz, 1H), 4.37 (d, *J* = 16.5 Hz, 1H), 4.08 (t, *J* = 14.9 Hz, 1H), 3.90 (s, 3H), 3.12 (s, 3H), 3.05 (dd, *J* = 14.9, 6.1 Hz, 1H), 2.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.73, 166.67, 166.45, 166.17, 143.20, 134.38, 132.06, 130.12, 129.69, 125.33, 123.75, 123.61, 115.40, 52.28, 48.93, 45.79, 36.64, 36.04, 29.65; HRMS Calcd for C₂₃H₂₂N₃O₆ [M+H⁺]: 436.1509; Found: 436.1515.

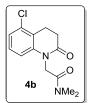

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.75 – 7.73 (m, 2H), 7.14 (s, 1H), 6.64 (s, 1H), 5.19 (dd, *J* = 14.8, 6.3 Hz, 1H), 5.07 (d, *J* = 16.5 Hz, 1H), 4.32 (d, *J* = 16.5 Hz, 1H), 3.82 (t, *J* = 15.1 Hz, 1H), 3.40 (dd, *J* = 15.4, 6.4 Hz, 1H), 3.11 (s, 3H), 2.99 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.77, 166.49, 166.42, 140.37, 139.35, 134.33, 132.10, 128.47, 123.71, 123.37, 120.96, 115.83, 48.86, 46.19, 36.68, 36.07, 29.33, 21.40; HRMS Calcd for C₂₂H₂₁N₃O₄ [M+H⁺]: 470.0715; Found: 470.0707.


¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.46 – 7.41 (m, 1H), 7.33 – 7.27 (m, 4H), 7.21 – 7.15 (m, 2H), 7.10 (d, *J* = 8.4 Hz, 1H), 5.25 (d, *J* = 16.4 Hz, 1H), 4.99 (d, *J* = 16.4 Hz, 1H), 4.55 – 4.49 (m, 1H), 3.14 (s, 3H), 2.98 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.59, 161.94, 144.80, 138.86, 137.36, 135.15, 129.81, 128.72, 128.48, 127.87, 126.33, 122.20, 120.71, 114.08, 44.36, 39.19, 36.57, 35.99, 20.49; HRMS Calcd for C₂₁H₂₃N₂O₂ [M+H⁺]: 335.1760; Found: 335.1755.

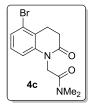

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.33 (d, J = 7.0 Hz, 2H), 7.27 (d, J = 9.2 Hz, 2H), 7.20 – 7.18 (m, 1H), 7.17 – 7.15 (m, 1H), 7.09 (d, J = 8.5 Hz, 1H), 5.24 (d, J = 16.4 Hz, 1H), 4.96 (d, J = 16.4 Hz, 1H), 4.25 (dd, J = 9.1, 6.2 Hz, 1H), 3.11 (s, 3H), 2.97 (s, 3H), 2.13 – 2.06 (m, 1H), 2.02 – 1.94 (m, 1H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.56, 162.08, 143.16, 138.79, 136.37, 134.99, 129.76, 128.70, 128.47, 128.39, 126.33, 122.17, 120.73, 114.07, 46.67, 44.42, 36.53, 35.96, 27.52, 12.75; HRMS Calcd for C₂₂H₂₅N₂O₂ [M+H⁺]: 349.1916; Found: 349.1921.

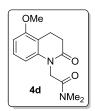
¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 4H), 7.35 – 7.29 (m, 2H), 7.15 – 7.11 (m, 4H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = 8.1 Hz, 1H), 5.23 (d, *J* = 16.4 Hz, 1H), 4.47 (d, *J* = 16.4 Hz, 1H), 4.31 (d, *J* = 15.7 Hz, 1H), 3.80 (d, *J* = 13.8 Hz, 1H), 3.50 (d, *J* = 13.8 Hz, 1H), 3.21 (d, *J* = 15.6 Hz, 1H), 3.08 (s, 3H), 2.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.08, 167.86, 166.99, 139.36, 136.09, 134.03, 131.16, 131.12, 129.02, 128.12, 127.73, 126.92, 124.81, 123.35, 123.05, 114.64, 62.25, 45.30, 39.74, 36.54, 35.94, 35.15; HRMS Calcd for C₂₂H₂₆N₃O₄ [M+H⁺]: 468.1923; Found: 468.1931.

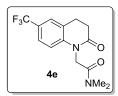
¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.82 (m, 2H), 7.74 – 7.68 (m, 2H), 7.16 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.1 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 4.98 (d, J = 16.5 Hz, 1H), 4.44 (d, J = 16.5 Hz, 1H), 4.29 (dd, J = 14.0, 5.8 Hz, 1H), 3.87 (dd, J = 14.1, 9.0 Hz, 1H), 3.25 – 3.16 (m, 1H), 3.11 (s, 3H), 2.97 (s, 3H), 2.88 (d, J = 8.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.49, 168.39, 166.76, 139.59, 134.11, 132.12, 128.27, 127.81, 124.83, 123.46, 123.23, 114.96, 44.68, 39.30, 38.27, 36.51, 35.95, 29.41; HRMS Calcd for C₂₂H₂₂N₃O₄ [M+H⁺]: 392.1610; Found: 392.1617.

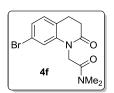

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.81 – 7.79 (m, 2H), 7.39 – 7.33 (m, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.99 – 6.96 (m, 1H), 5.13 (d, J = 16.4 Hz, 1H), 4.91 (d, J = 14.0 Hz, 1H), 4.49 (d, J = 16.4 Hz, 1H), 4.17 – 4.09 (m, 1H), 3.16 (s, 3H), 3.03 (s, 3H), 1.42 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.12, 166.67, 166.55, 138.87, 134.30, 132.08, 128.68, 128.25, 125.41, 124.08, 123.71, 115.60, 55.39, 45.97, 36.68, 36.05, 31.75, 14.32; HRMS Calcd for C₂₂H₂₂N₃O₄ [M+H⁺]: 392.1610; Found: 392.1616.

12. Palladium-catalyzed Intramolecularδ-C(sp²)-H amination


A mixture of derivatives **2** (0.2 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), $PhI(OAc)_2$ (128.8 mg, 2.0 equiv) and HFIP (5 mL) in a 25 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 70 °C for 18 hours. The reaction mixture was cooled to rt,and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the cyclized product.

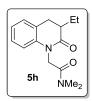

¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.13 (m, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 4.69 (s, 2H), 3.12 (s, 3H), 2.98 (s, 3H), 2.96 – 2.91 (m, 2H), 2.73 – 2.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.98, 166.91, 140.12, 127.85, 127.52, 126.36, 123.01, 114.93, 44.58, 36.51, 35.94, 31.59, 25.49; HRMS Calcd for C₁₃H₁₇N₂O₂ [M+H⁺]: 233.1290; Found: 233.1284.

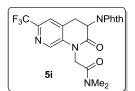

¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 6.9 Hz, 1H), 6.67 (d, J = 7.1 Hz, 1H), 4.69 (s, 2H), 3.12 (s, 3H), 3.11 – 3.06 (m, 2H), 2.99 (s, 3H), 2.76 – 2.69 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.53, 166.67, 141.70, 133.23, 128.07, 124.61, 124.04, 113.70, 44.89, 36.56, 36.01, 30.79, 22.40; HRMS Calcd for C₁₃H₁₆ClN₂O₂ [M+H⁺]: 267.0900; Found: 267.0907.


¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.1 Hz, 1H), 7.03 (t, J = 8.1 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 4.67 (s, 2H), 3.11 (s, 3H), 3.09 – 3.03 (m, 2H), 2.97 (s, 3H), 2.74 – 2.66 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.51, 166.60, 141.54, 128.37, 127.16, 126.32, 123.57, 114.36, 44.85, 36.50, 35.94, 30.85, 25.32; HRMS Calcd for C₁₃H₁₆BrN₂O₂ [M+H⁺]: 311.0395; Found: 311.0405.

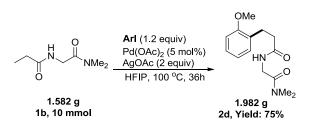
¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 8.3 Hz, 1H), 6.61 (d, *J* = 8.3 Hz, 1H), 6.41 (d, *J* = 8.2 Hz, 1H), 4.70 (s, 2H), 3.83 (s, 3H), 3.12 (s, 3H), 2.98 (s, 3H), 2.96 – 2.91 (m, 2H), 2.70 – 2.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.07, 167.10, 156.47, 141.28, 127.79, 114.61, 108.00, 105.81, 55.78, 44.79, 36.54, 35.99, 31.07, 18.05; HRMS Calcd for C₁₄H₁₉N₂O₃ [M+H⁺]: 263.1396; Found: 263.1388.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 10.6 Hz, 2H), 6.82 (d, J = 8.3 Hz, 1H), 4.72 (s, 2H), 3.14 (s, 3H), 3.03 – 2.98 (m, 5H), 2.77 – 2.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.70, 166.42, 143.12 (d, $J_{C-F} = 1.0$ Hz), 128.44 (q, $J_{C-F} = 54.0$ Hz), 126.77, 124.95 (q, $J_{C-F} = 4.0$ Hz), 124.89 (q, $J_{C-F} = 4.0$ Hz), 124.03 (q, $J_{C-F} = 269.0$ Hz), 114.97, 44.50, 36.56, 36.00, 31.17, 25.41; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.03; HRMS Calcd for C₁₄H₁₆F₃N₂O₂ [M+H⁺]: 301.1164; Found: 301.1163.

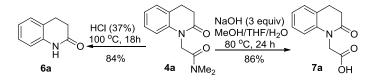

¹H NMR (400 MHz, CDCl₃) δ 7.10 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 1.7 Hz, 1H), 4.65 (s, 2H), 3.13 (s, 3H), 3.00 (s, 3H), 2.91 – 2.87 (m, 2H), 2.72 – 2.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.70, 166.37, 141.65, 129.16, 125.84, 125.39, 120.88, 118.10, 44.62, 36.55, 36.00, 31.34, 25.15; HRMS Calcd for C₁₃H₁₆BrN₂O₂ [M+H⁺]: 311.0395; Found: 311.0399.


¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 5.9 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.00 (t, *J* = 7.4 Hz, 1H), 5.78 – 5.71 (m, 1H), 2.92 – 2.85 (m, 2H), 2.82 (d, *J* = 8.0 Hz, 6H), 2.72 – 2.59 (m, 2H), 1.56 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.72, 170.05, 138.16, 128.17, 127.66, 126.94, 123.53, 116.38, 50.22, 36.92, 36.52, 32.27, 25.66, 15.57; HRMS Calcd for C₁₄H₂₈N₂O₂Na [M+Na⁺]: 269.1266; Found: 269.1269.

¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 7.5 Hz, 1H), 7.14 (d, J = 7.4 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.79 (d, J = 16.4 Hz, 1H), 4.57 (d, J = 16.4 Hz, 1H), 3.12 (s, 3H), 2.99 (s, 3H), 2.95 – 2.92 (m, 1H), 2.91 – 2.83 (m, 2H), 2.44 (dd, J = 12.5, 6.9 Hz, 1H), 1.75 (d, J = 11.8 Hz, 2H), 1.65 (dd, J = 29.1, 11.1 Hz, 4H), 1.26 – 1.17 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 172.59, 167.08, 139.89, 128.09, 127.43, 126.00, 122.93, 114.66, 46.47, 44.80, 36.53, 36.03, 35.99, 31.34, 29.66, 27.68, 26.48, 26.41, 26.35; HRMS Calcd for C₁₉H₂₇N₂O₂ [M+H⁺]: 315.2073; Found: 315.2076.



¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 2H), 6.98 (t, *J* = 7.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 4.69 (s, 2H), 3.13 (s, 3H), 3.03 (dd, *J* = 15.6, 5.5 Hz, 1H)., 2.99 (s, 3H), 2.75 (dd, *J* = 15.4, 9.0 Hz, 1H), 2.59 – 2.52 (m, 1H), 1.92 – 1.86 (m, 1H), 1.53 – 1.45 (m, 1H), 1.00 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.25, 167.05, 139.87, 128.24, 127.50, 125.66, 122.93, 114.65, 44.72, 42.07, 36.53, 35.99, 30.29, 22.68, 11.62; HRMS Calcd for C₁₅H₂₁N₂O₂ [M+H⁺]: 261.1603; Found: 261.1608.


¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.90 – 7.88 (m, 2H), 7.78 – 7.76 (m, 2H), 7.54 (s, 1H), 5.28 (dd, *J* = 15.0, 6.3 Hz, 1H), 5.21 (d, *J* = 16.6 Hz, 1H), 4.42 (d, *J* = 16.6 Hz, 1H), 4.17 (t, *J* = 15.2 Hz, 1H), 3.17 – 3.09 (m, 4H), 3.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.56, 166.17, 165.32, 143.29 (q, *J*_{C-F} = 33.0 Hz), 138.29 (d, *J*_{C-F} = 1.0 Hz), 136.58, 134.57, 133.06, 131.96, 123.91, 122.49 (q, *J*_{C-F} = 272.0 Hz), 119.84 (q, *J*_{C-F} = 2.0 Hz), 47.86, 45.01, 36.57, 36.08, 29.37; ¹⁹F NMR (376 MHz, 100 MHz), 136.58, 134.57, 136.58, 134.57, 136.58, 134.57, 136.58, 134.57, 135.58, 135.58, 1

13. Gram scale reaction

A mixture of **1b** (1.582 g, 10 mmol, 1.0 equiv), $Pd(OAc)_2$ (55.0 mg, 0.025 equiv), AgOAc (3.34 g, 2 equiv) and HFIP (25 mL) in a 100 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 100 °C for 36 hours. The reaction mixture was cooled to rt, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give **2d** as yellow solid in 75% yield.

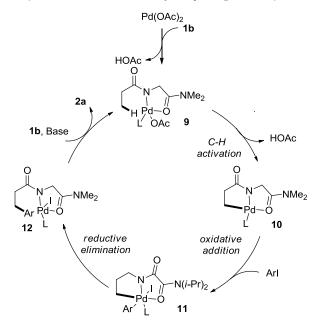
14. The removal and transformation of directing group

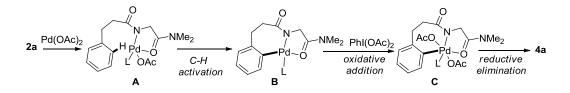
14.1. The removal of directing group

A mixture of the cyclized product **4a** (0.2 mmol, 1.0 equiv) and hydrochloric acid (1 mL) in a 15 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 100 °C for 18 hours. The reaction mixture was cooled to rt. Water was added and the mixture was extracted with DCM. The combined organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **7a**.

¹H NMR (400 MHz, CDCl₃) δ 8.54 (br s, 1H), 7.17 (t, *J* = 7.7 Hz, 2H), 7.04 (t, *J* = 7.0 Hz, 1H), 6.79 (d, *J* = 7.7 Hz, 1H), 2.99 – 2.95 (m, 2H), 2.66 – 2.63 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.98, 137.37, 128.11, 127.67, 123.81, 123.24, 115.53, 30.87, 25.48; HRMS Calcd for C₉H₉NONa [M+Na⁺]: 170.0582; Found: 170.0581.

14.2. The transformation of directing group

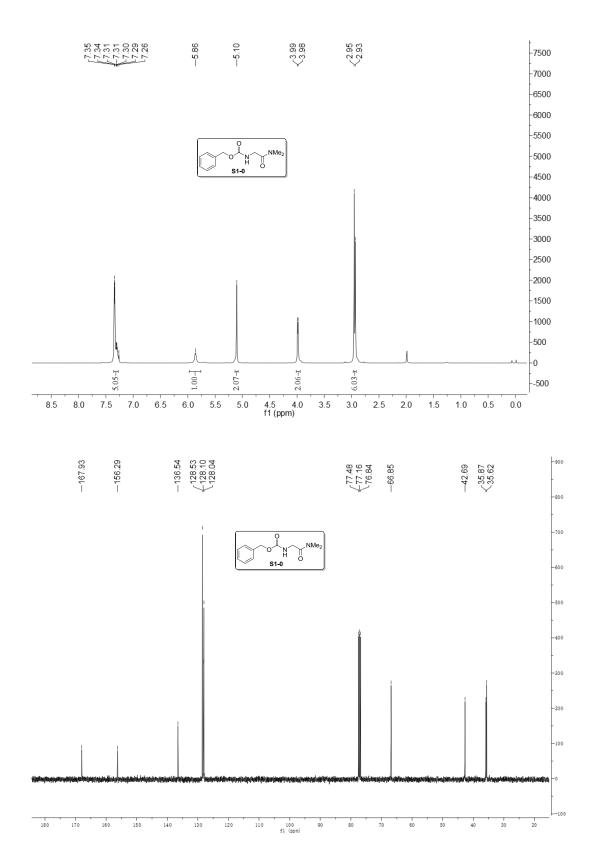

A mixture of the cyclized product **4a** (0.2 mmol, 1.0 equiv) and NaOH (1.0 mmol, 5.0 equiv) were dissolved in MeOH/THF/water/ (1/1/1, 2/15 M) in a 15 mL glass vial (under air atmosphere, sealed with PTFE cap) was heated at 80 °C for 24 hours. The reaction mixture was cooled to rt. HCl was added dropwise until pH =2 and the mixture was extracted with DCM. The combined organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **8a**.

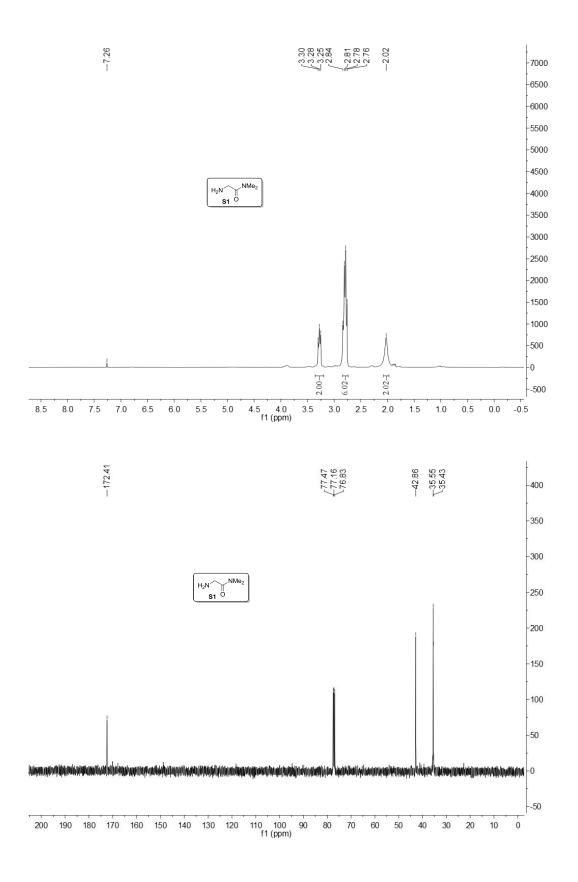

¹H NMR (400 MHz, DMSO) δ 7.20 (t, *J* = 7.2 Hz, 2H), 6.98 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 1H), 4.50 (s, 2H), 2.87 (t, *J* = 7.1 Hz, 2H), 2.59 – 2.51 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 169.56, 139.80, 127.69, 127.21, 125.96, 122.43, 114.85, 44.40, 31.07, 24.69; HRMS Calcd for C₁₁H₁₃NO₃ [M+H⁺]: 206.0817; Found: 206.0815.

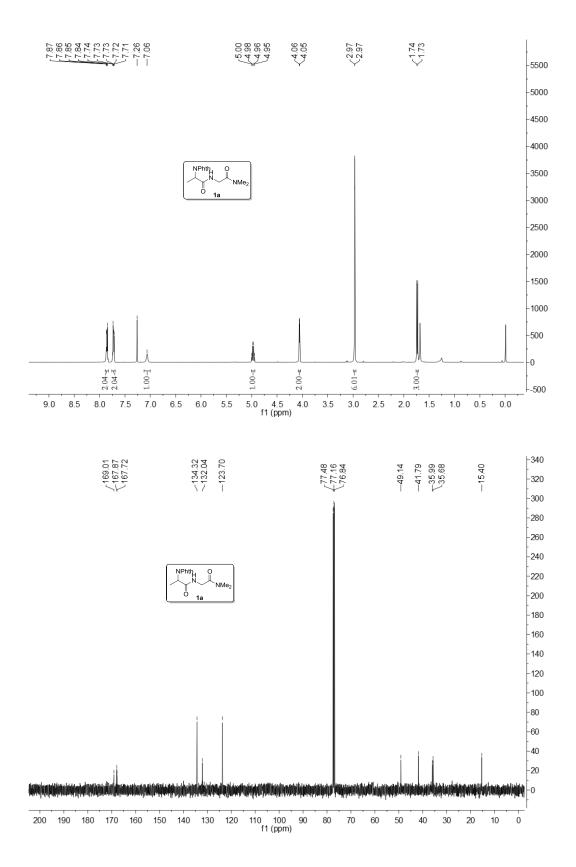
15. Proposed reaction mechanism

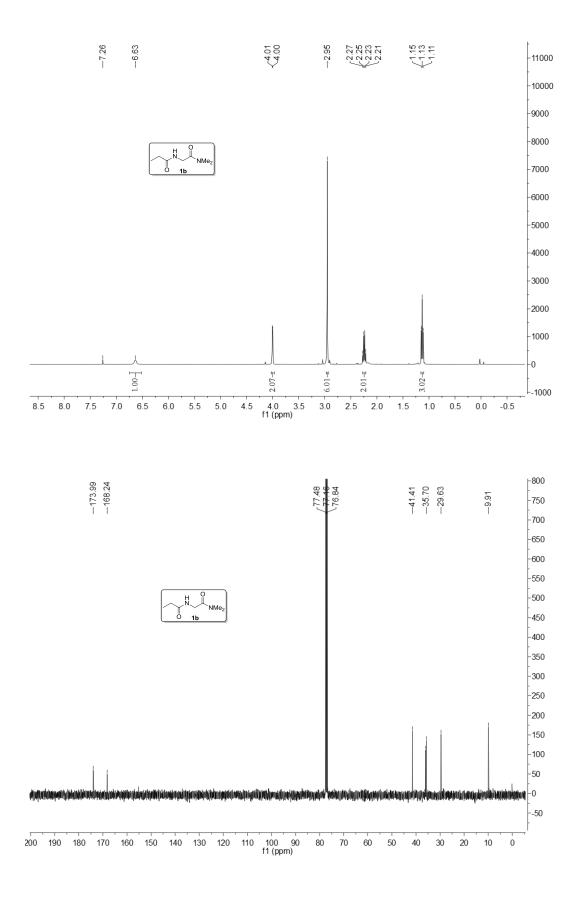
15.1. Proposed catalytic cycle for Palladium-catalyzed β-C(sp³)–H arylation^[3]

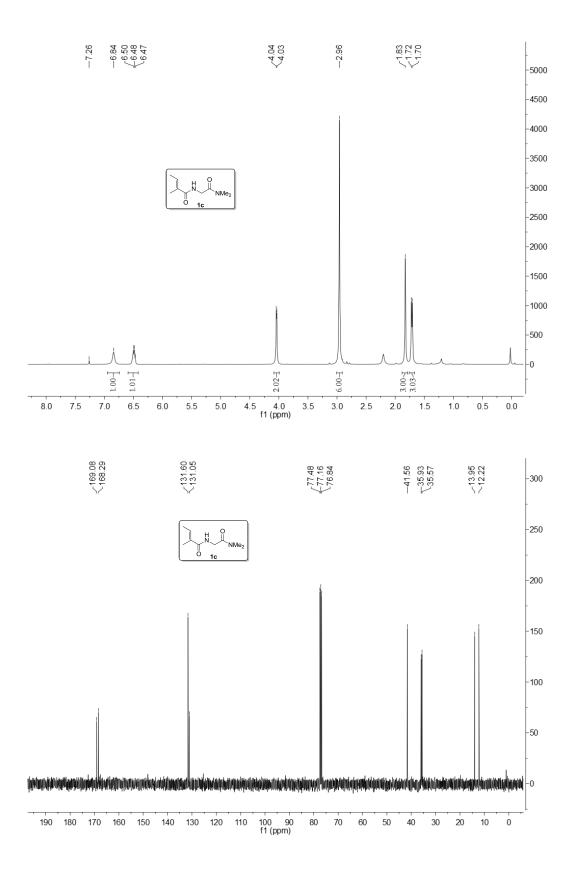
14.2. Proposed reaction mechanism for Palladium-catalyzed intramolecular δ -C(sp²)–H amination^[2]

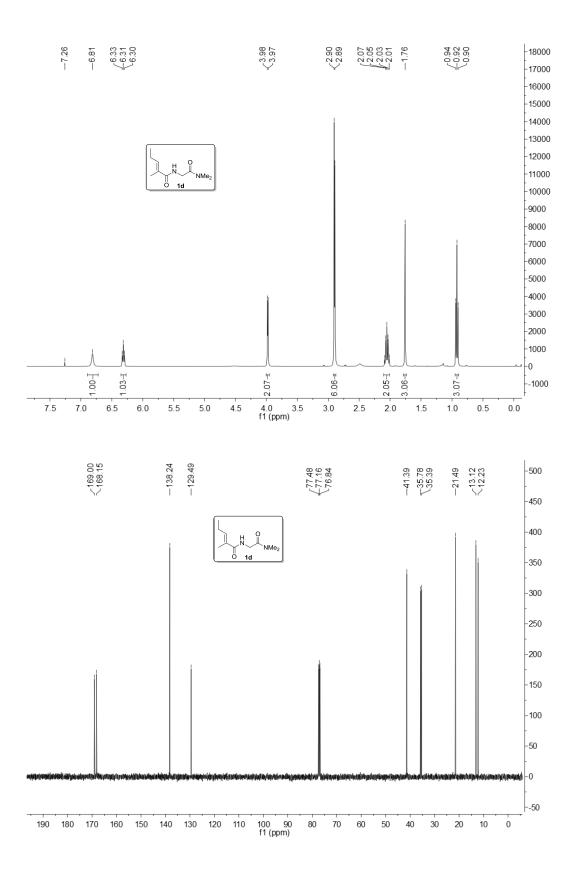


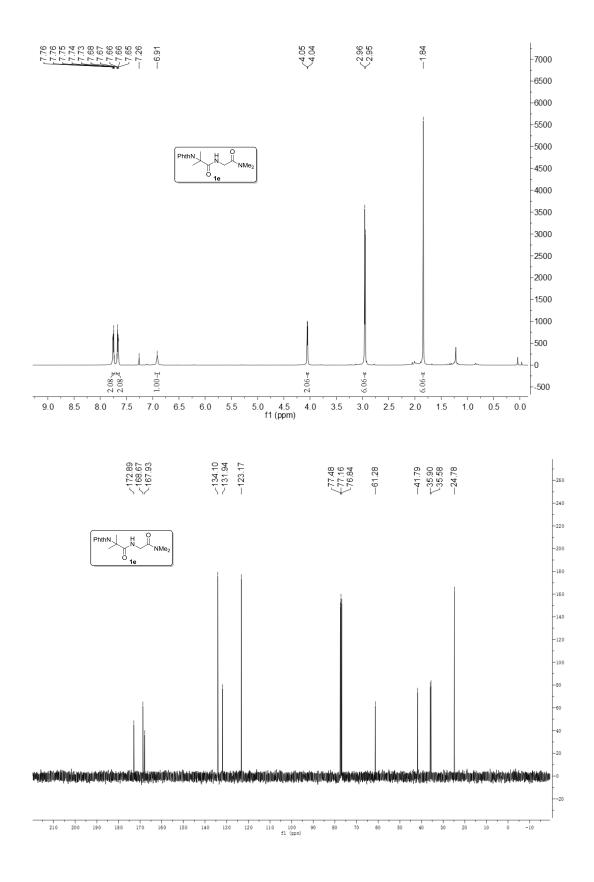

16. References

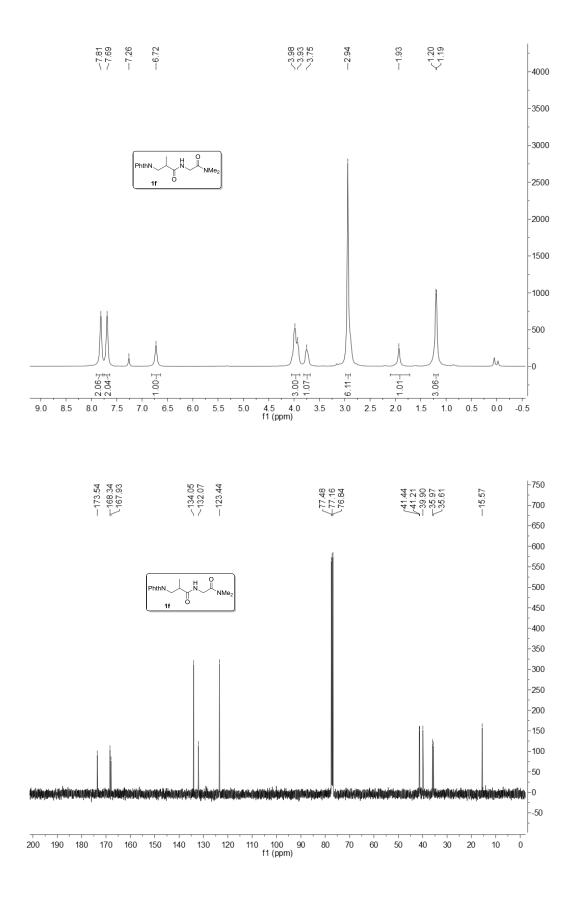

[1] Y. Zhao, G. Chen, Org. Lett. 2011, 13, 4850.

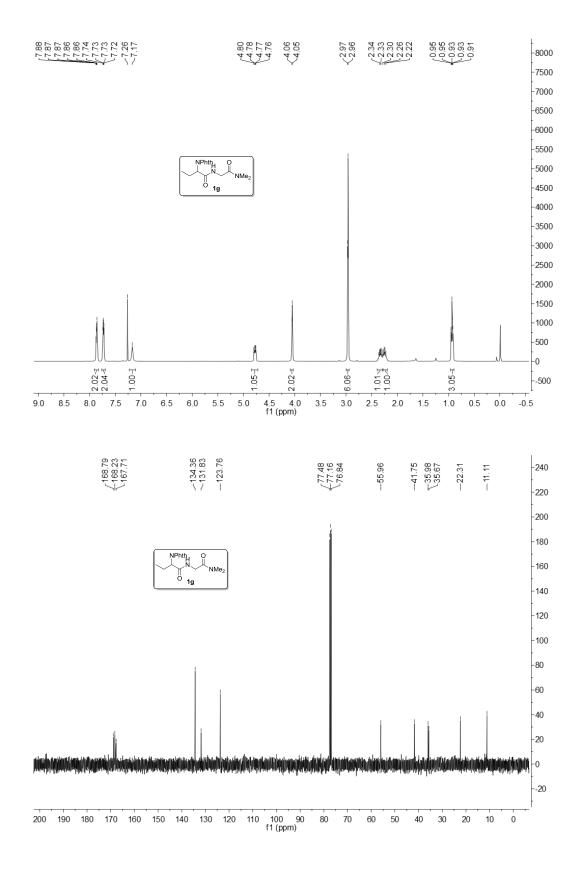

[2] G. He, C.-X. Lu, Y.-S. Zhao, W. A. Nack, G. Chen, Org. Lett. 2012, 14, 2944.

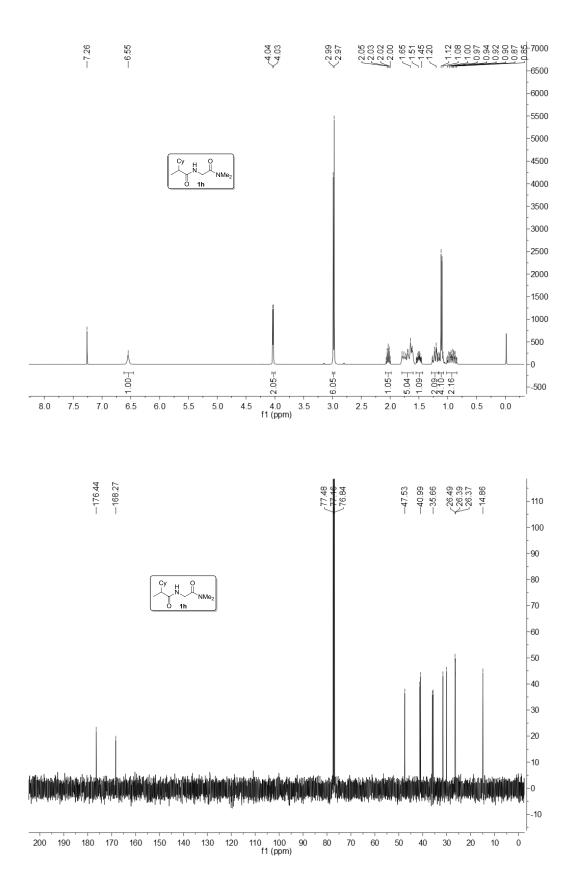

[3] J. Han, Y.-X. Zheng, C. Wang, Y. Zhu, D.-Q. Shi, R.-S. Zeng, Z.-B. Huang, Y.-S. Zhao, J. Org. Chem. 2015, 80, 9297.

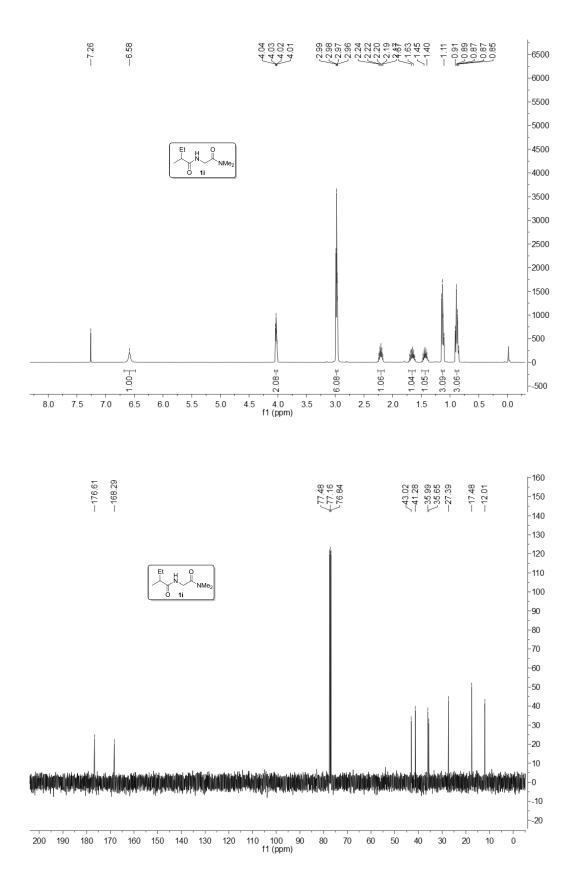


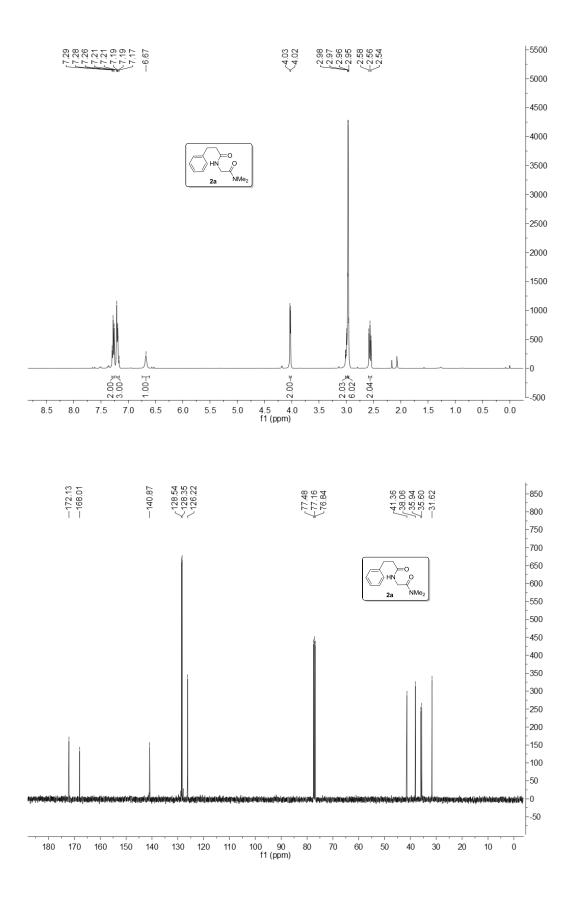


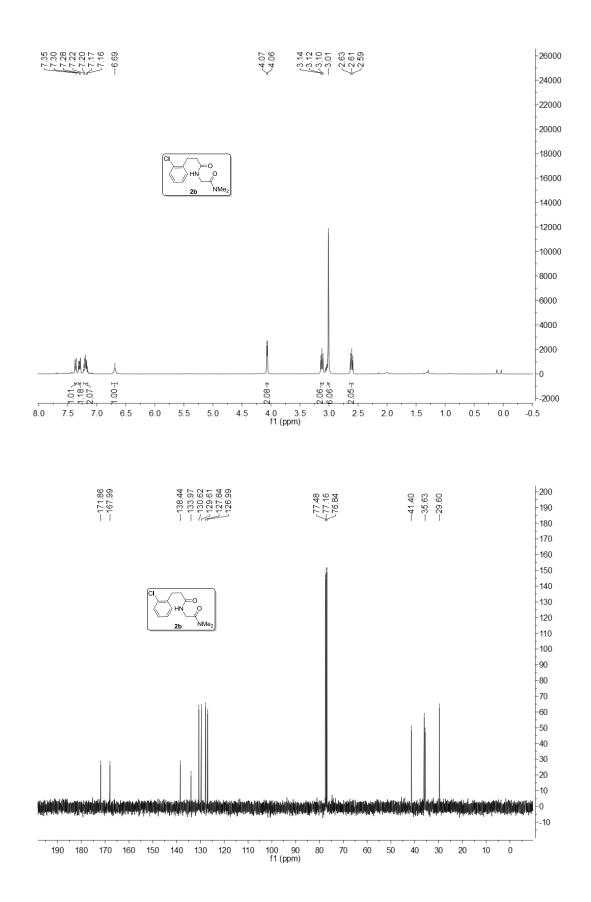


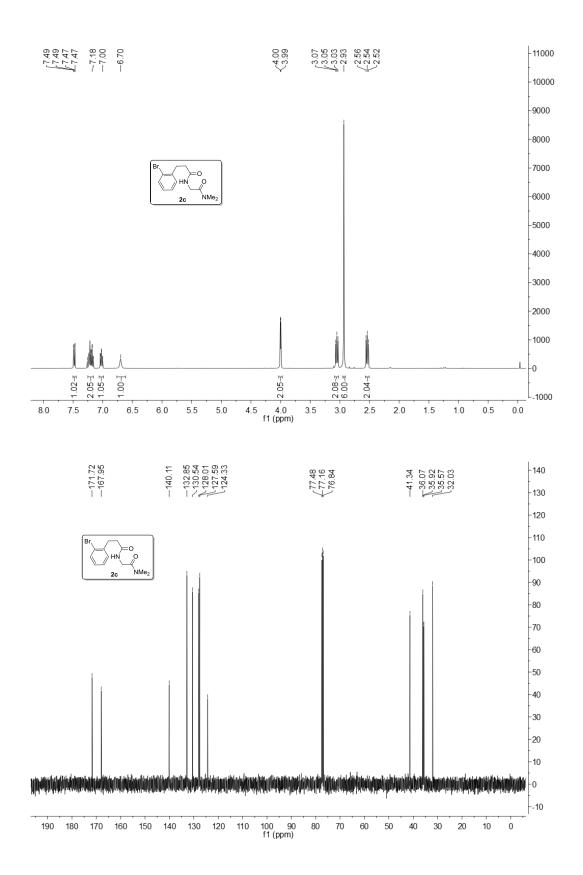


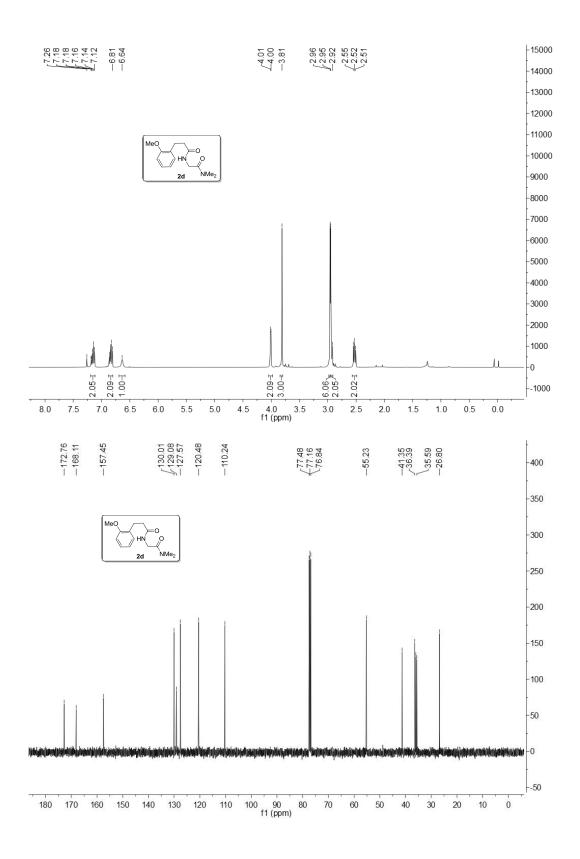


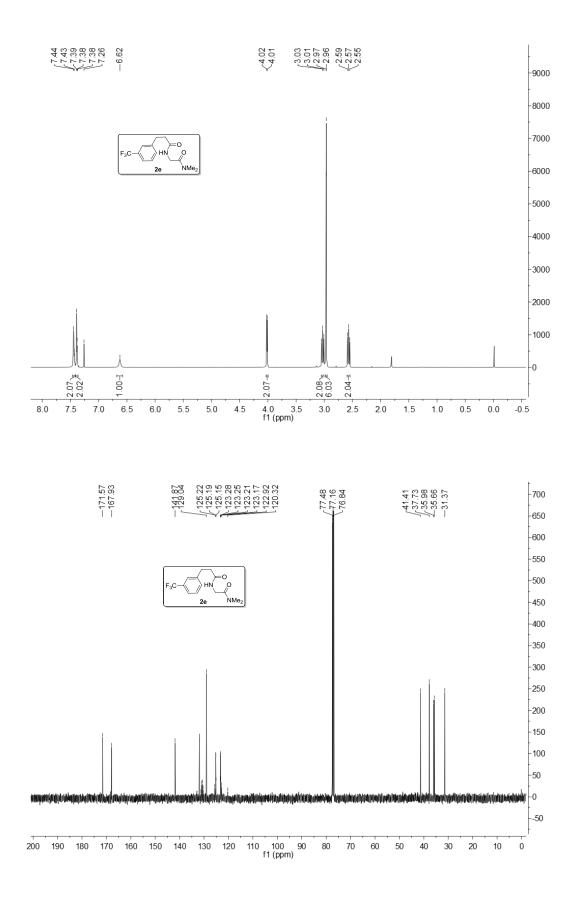


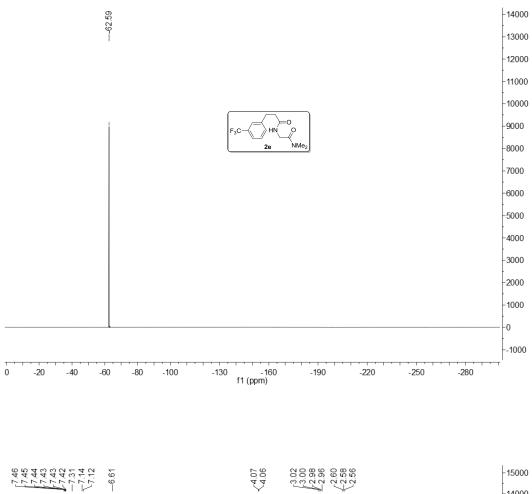


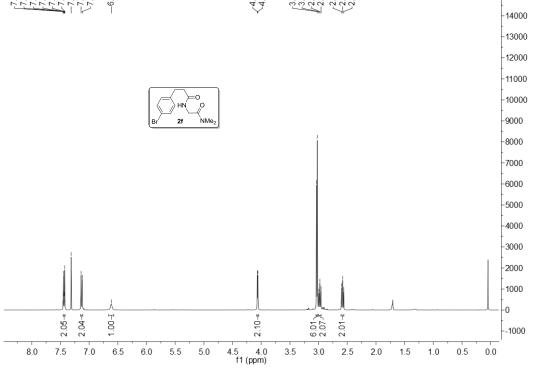


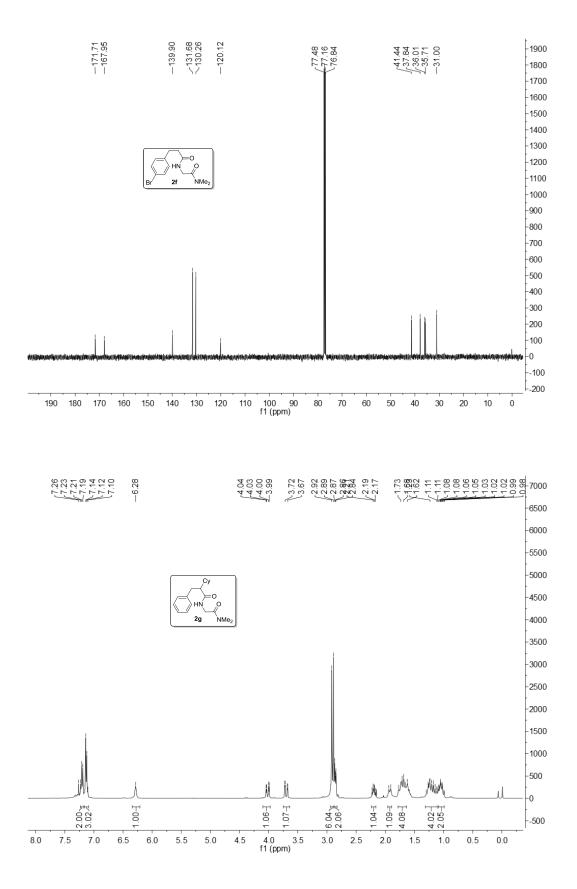


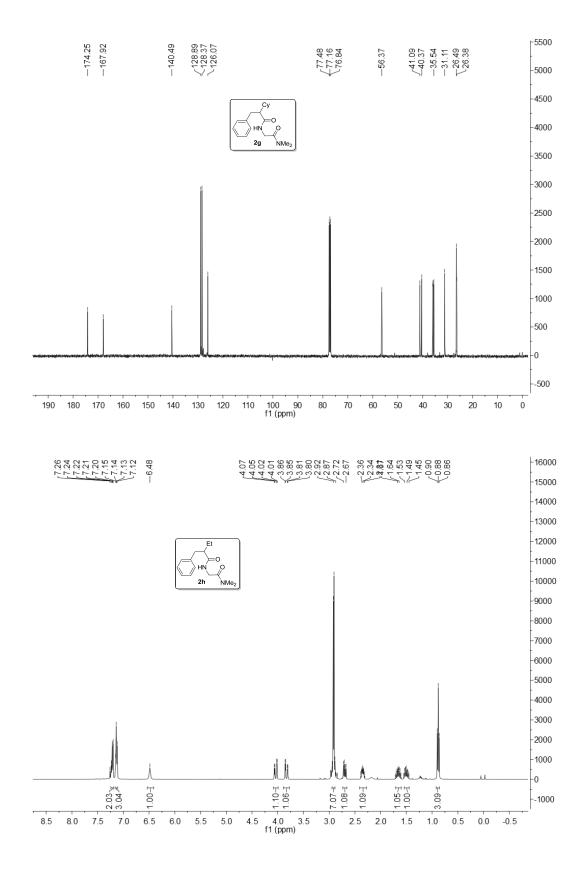


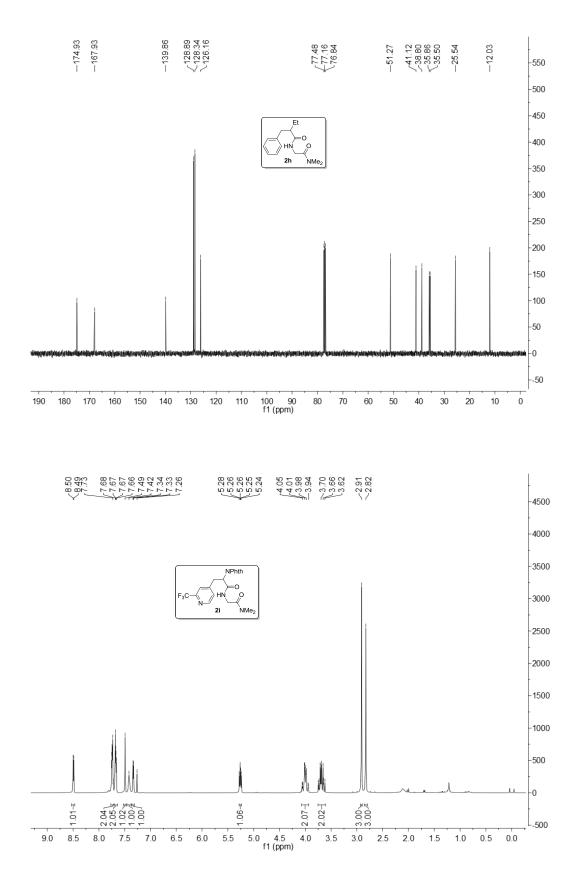


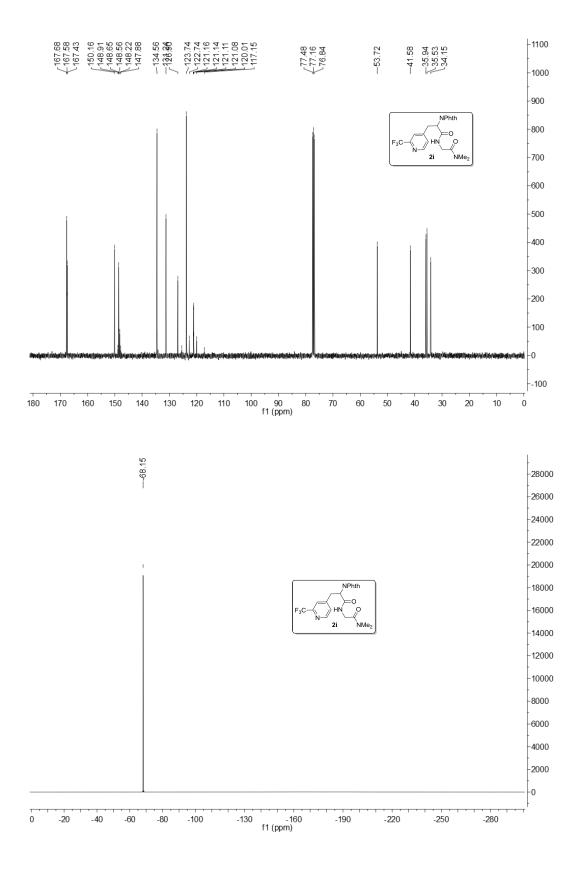


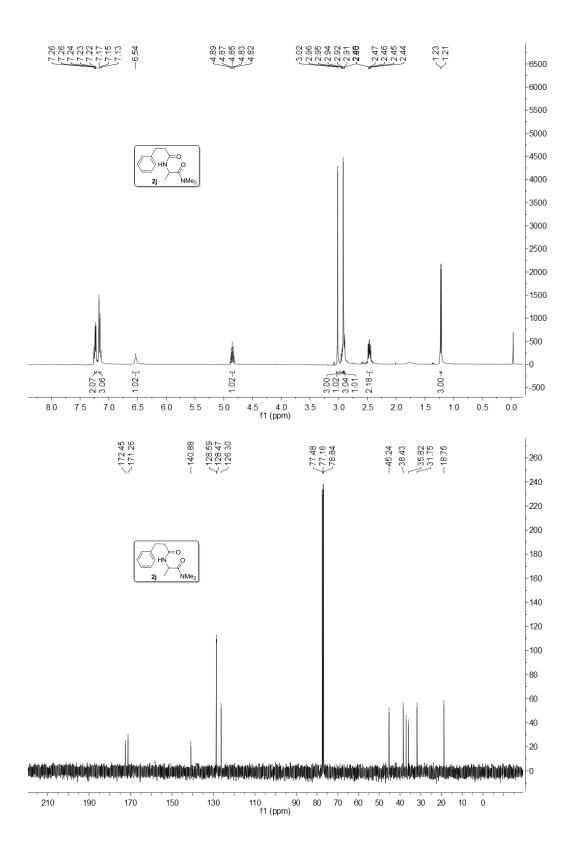


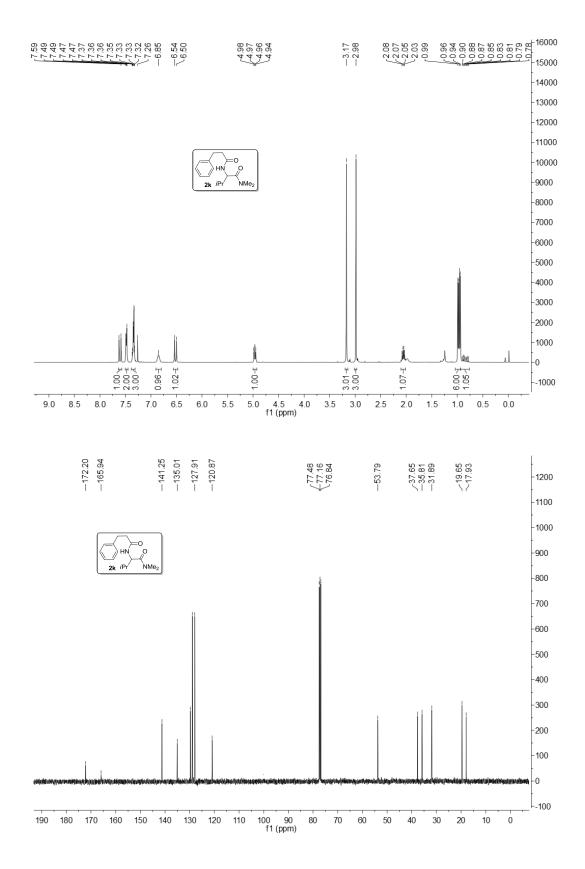


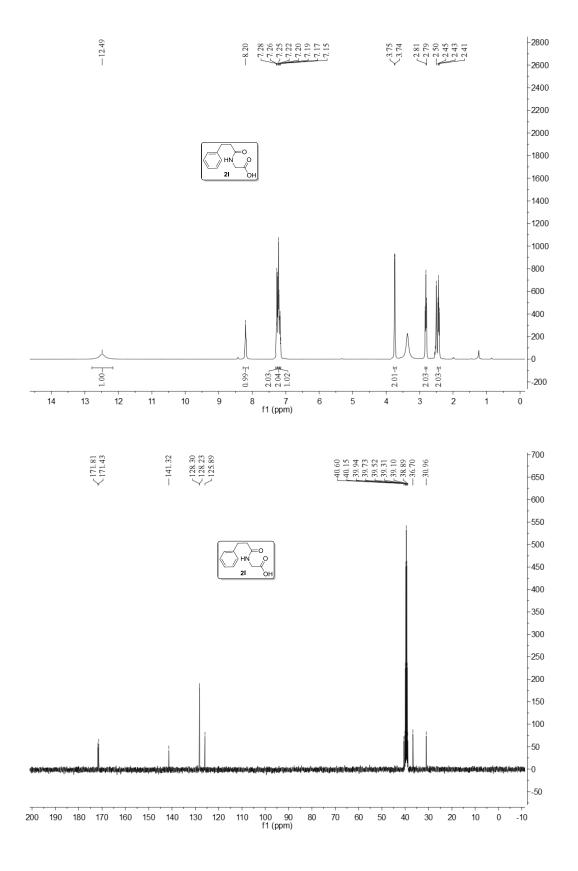


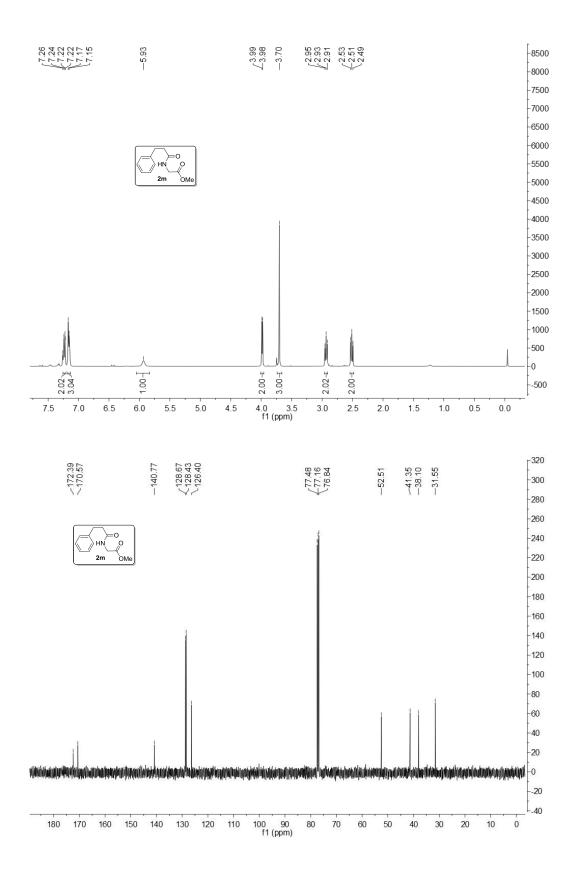


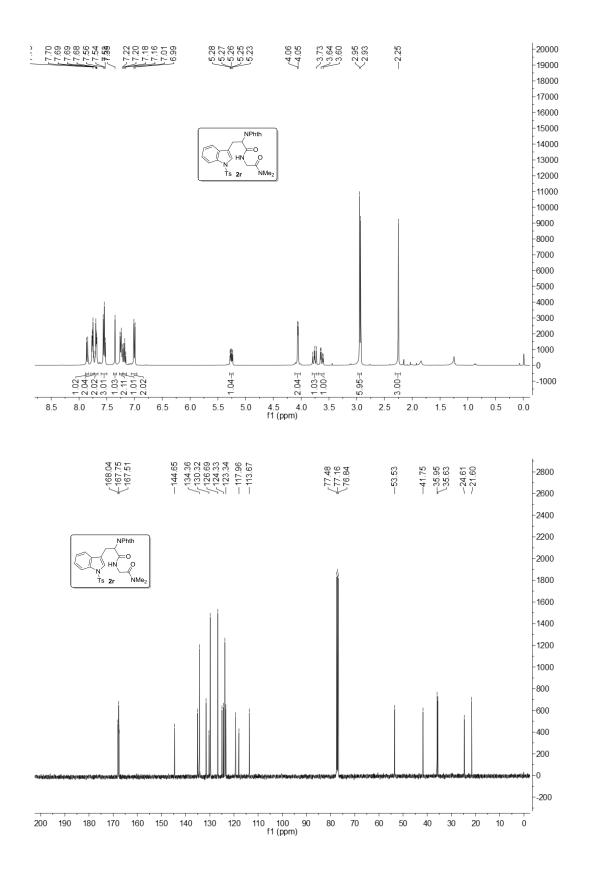


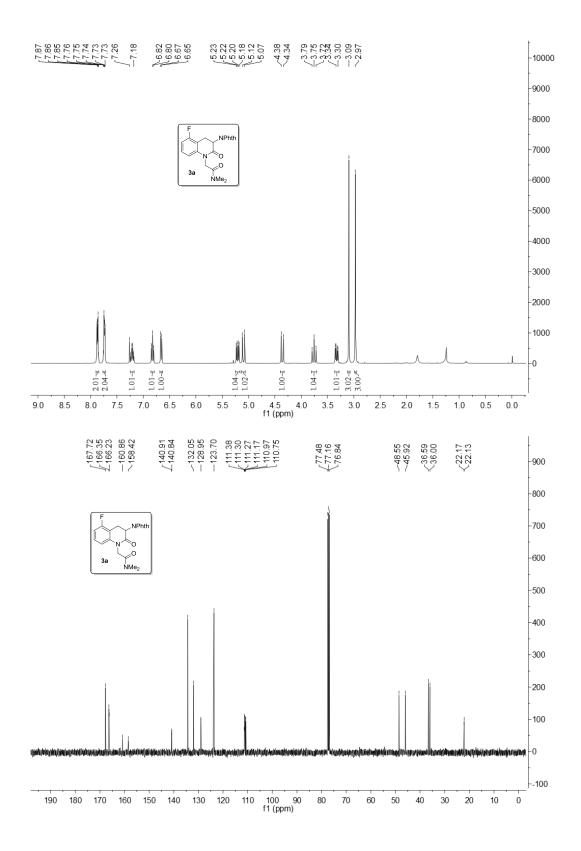


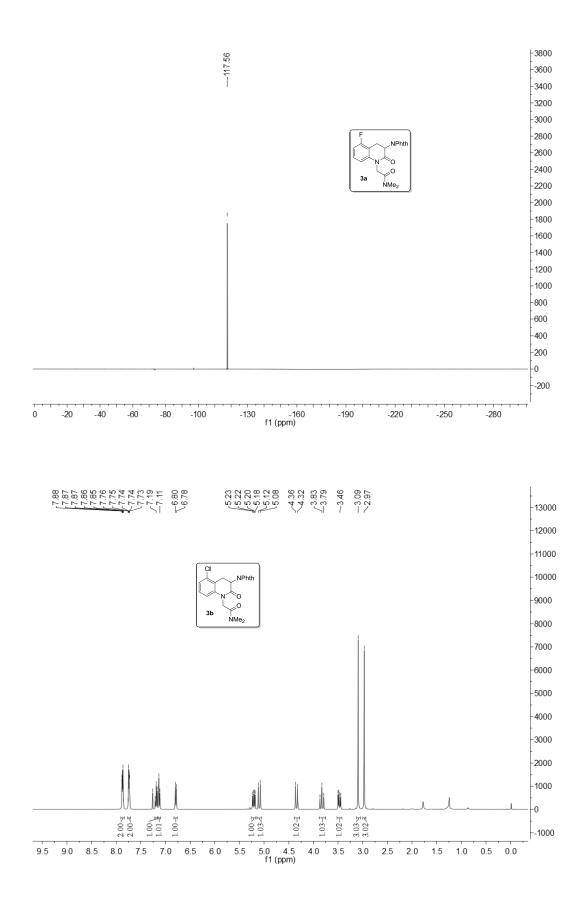


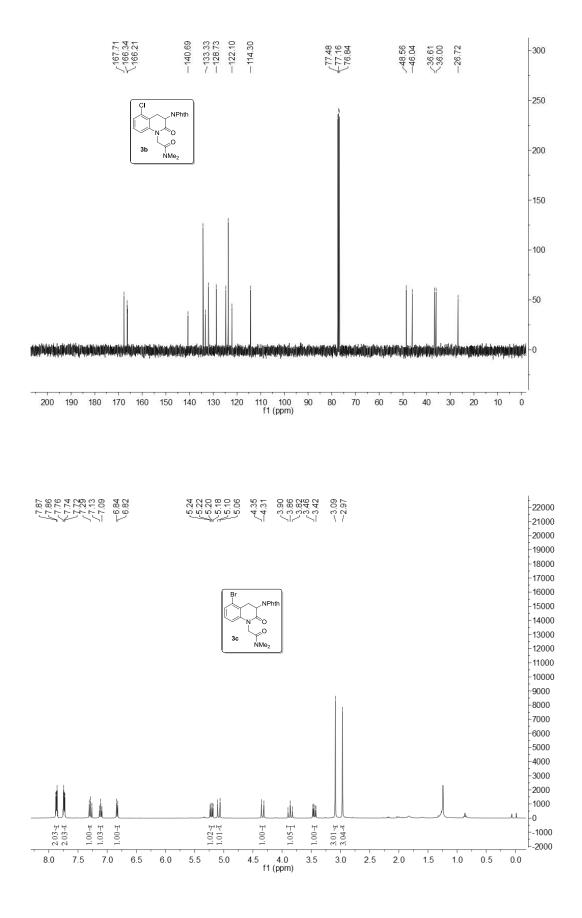


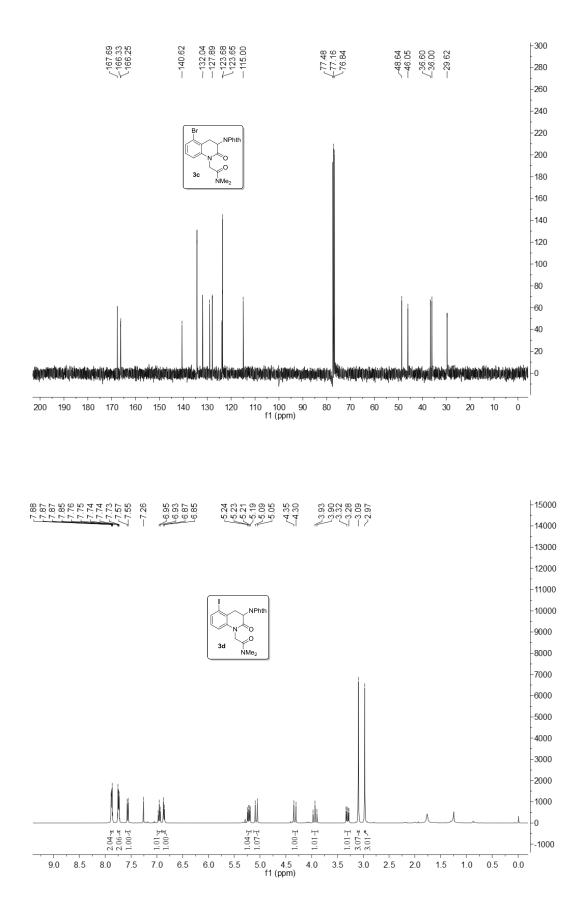


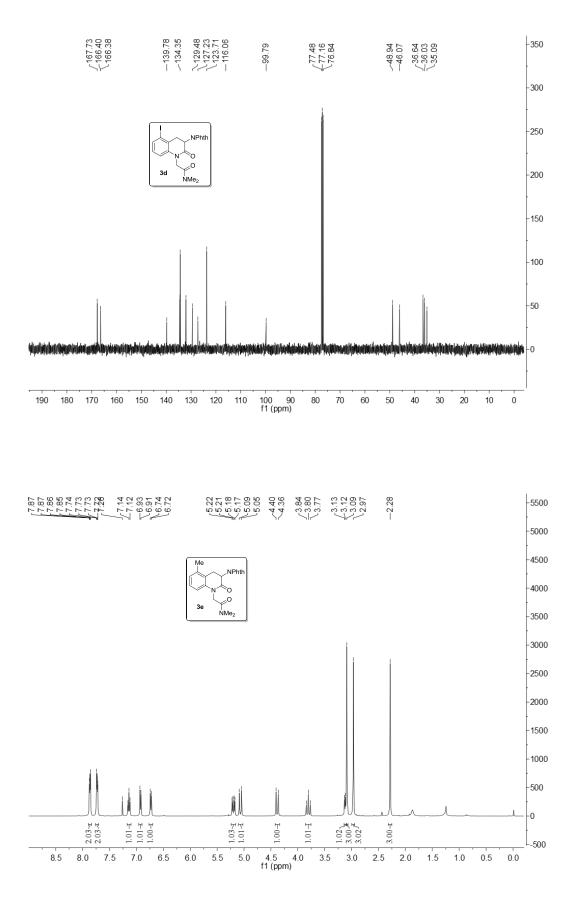


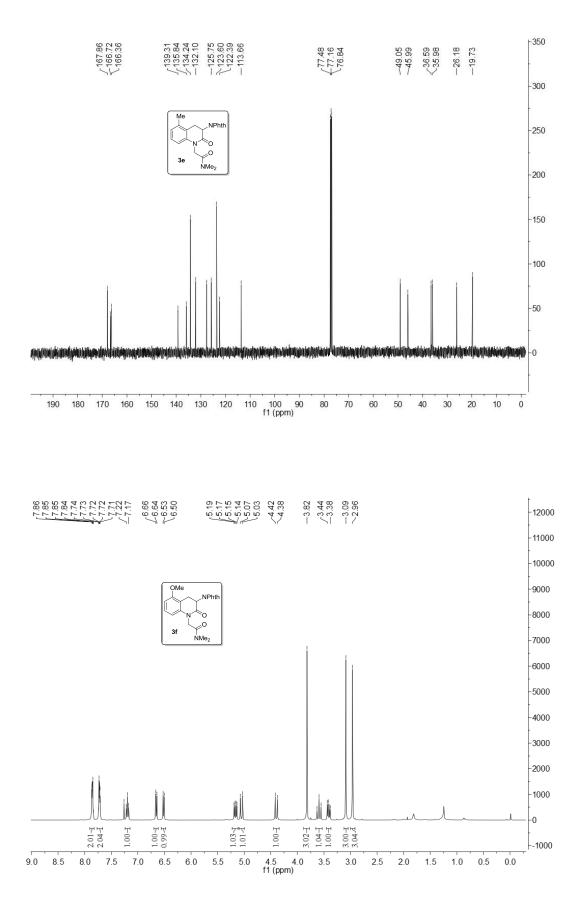


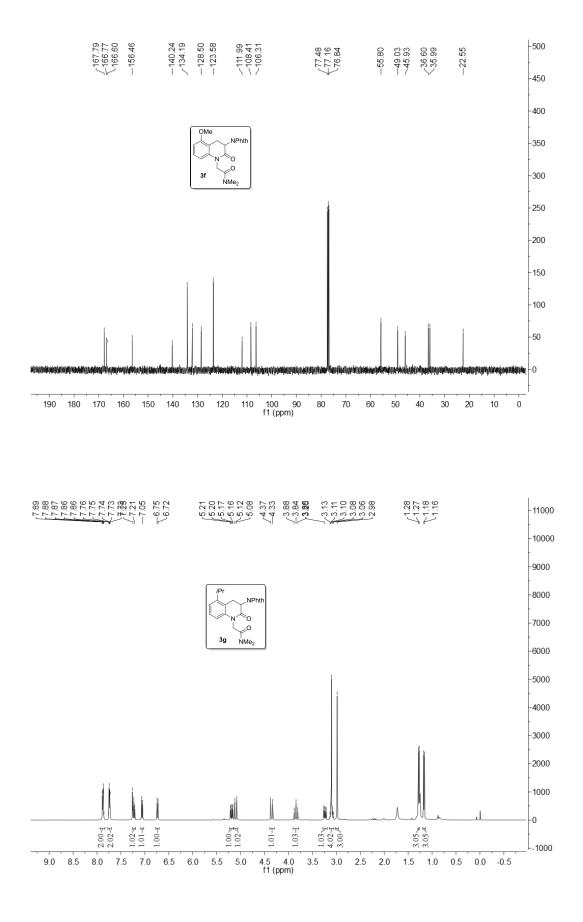


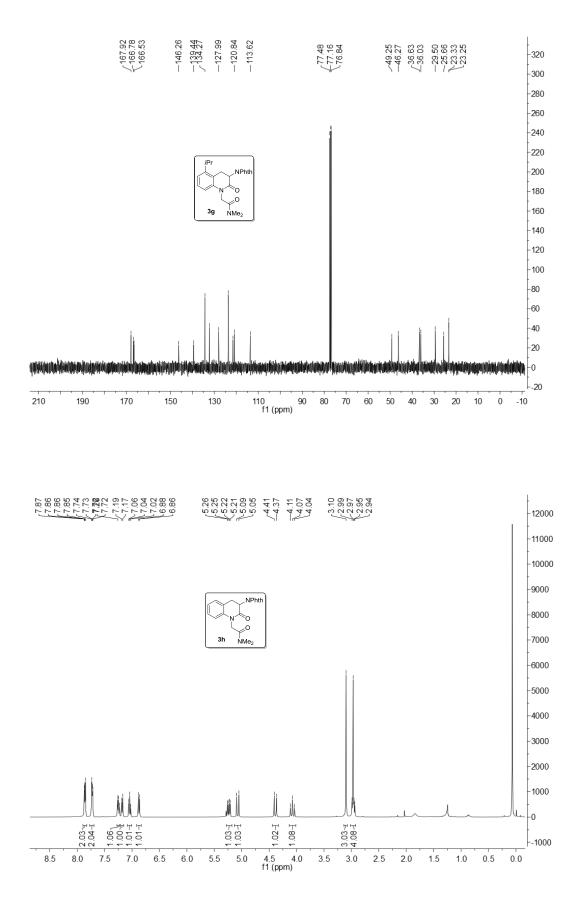


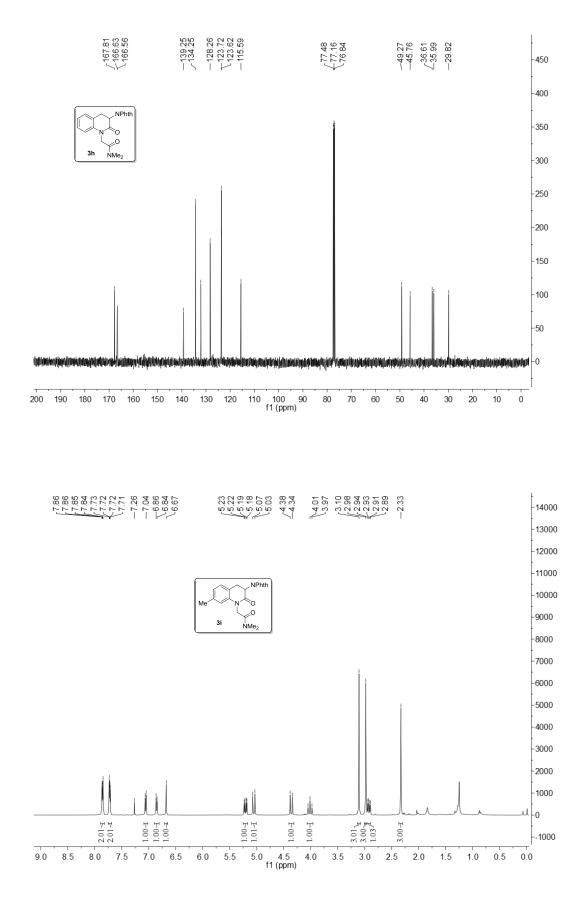


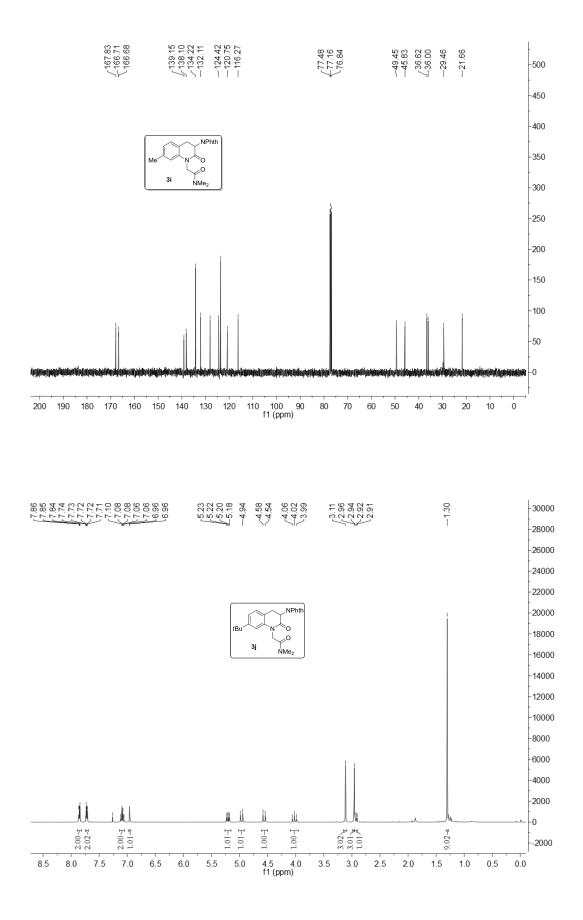


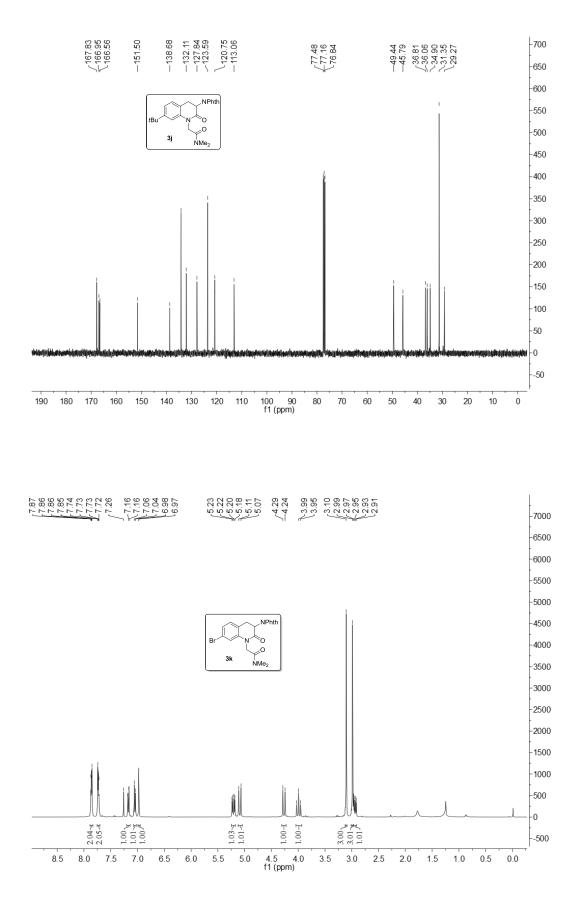


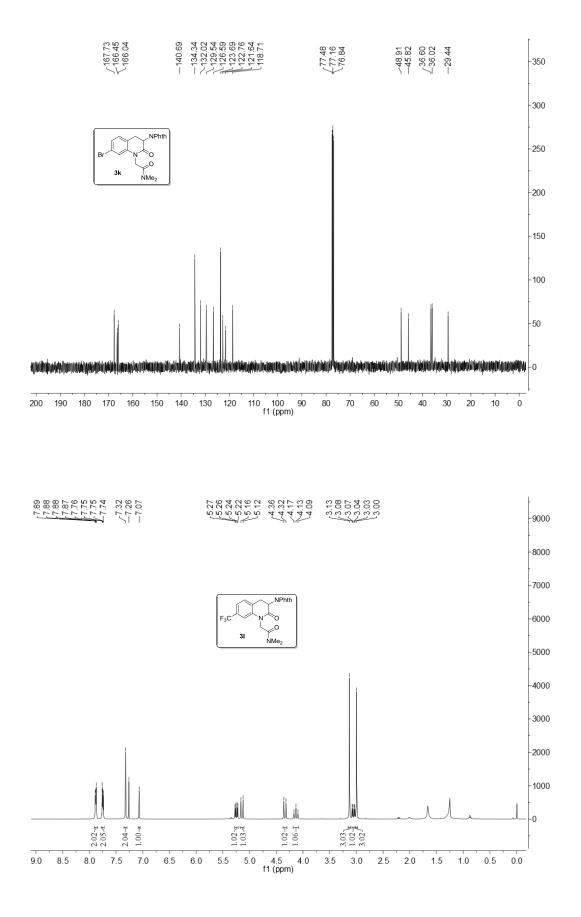


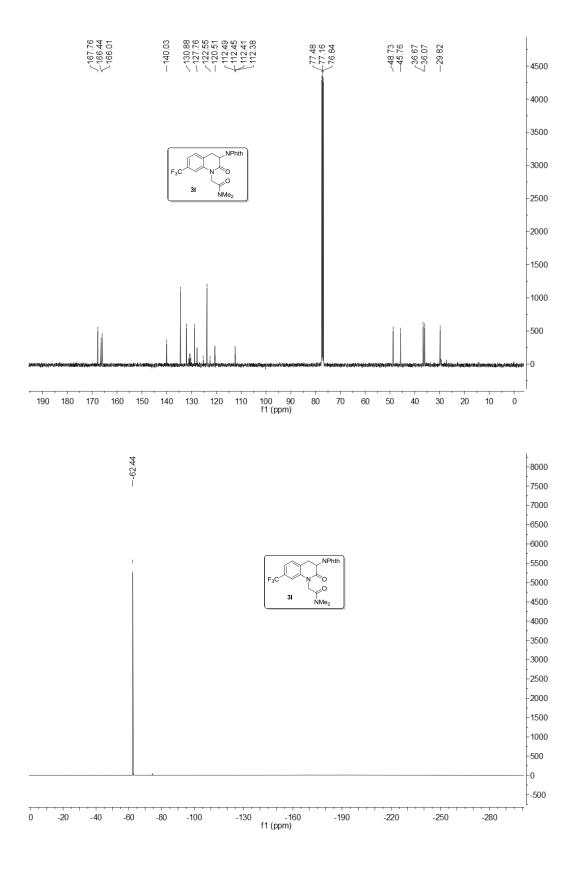











S55

