Supporting Information

Arenediazonium Salts as Electrophiles for the Oxidative Addition of Gold(I)

Eric Omar Asomoza Solís, Jonathan Rojas Ocampo, Rubén Alfredo Toscano and Susana Porcel*
Instituto de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F., México
Fax: + 52(55)56162217
E-mail: sporcel@unam.mx

Contents

1. General information. 2
2. Synthesis of complexes $\mathbf{3 b}$ and $\mathbf{4}$ 2-3
3. General method for the coupling of anilines with silver acetylides. 3
4. Characterization of cross-coupling products. 4-9
5. Analysis by mass spectrometry of the products obtained in the coupling of $\mathbf{1}$ 10
with silver phenylacetylide mediated by $[\mathrm{AuCl}(\mathrm{IPr})]$
6. Selected crystal data of complexes $\mathbf{3 b}$ and 4. 11-13

General Information

All reactions were carried out under a nitrogen atmosphere using standard Schlenk tecniques. THF was dried over sodium and freshly distilled prior to use. CDCl_{3}, DMSO-d ${ }_{6}$ and commercial reagents were purchased from Aldrich and used as received without further purification. Silver acetylides were synthesized and stored protected from light. Reactions containing silver salts were protected from light in order to prevent its decomposition. Thin layer chromatography was carried out using TLC Alugram G/UV254 0.20 mm . Chromatography purifications were performed using flash grade silica gel (SDS Chromatogel 60 Acc, 40-60 $\mu \mathrm{m}$). NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Jeol Eclipse 300 Mz , Bruker Avance 400 Mz and Varian Unity Inova 500 MHz spectrometers. Chemical shifts are reported in ppm. High resolution mass spectra (HRMS) were recorded and on a Jeol The Accutof JMS-T100LC spectrometer using plolyethylene glycol as internal standard. Melting points were determined using a Reichert microscope apparatus and were uncorrected.

cis-(4-Benzoylphenyl)dichlorotriphenylphosfine gold(III) (3b):

To a solution of 4-aminobenzophenone ($10.05 \mathrm{mg}, 0.05 \mathrm{mmol}$) in THF (1.50 mL) was added $\mathrm{HCl} \cdot \mathrm{OEt}_{2}(102.00 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred until a white precipitate appeared then, was cooled to $-15^{\circ} \mathrm{C}$ and tert-butyl nitrite ($7.30 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over a period of 20 min , thereafter the solution was removed under vacuum. Next the diazonium salt was dissolved in DMSO (1.50 mL), and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]^{1}(25.00 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added under nitrogen. The temperature was up to $50{ }^{\circ} \mathrm{C}$ and the mixture was heated until total

[^0]consumption of the diazonium salt. Later the solvent was removed under vacuum and the residue obtained was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystalized by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$. The crystals obtained were washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried. Colourless crystals ($13.70 \mathrm{mg}, 38 \%$), $\mathrm{mp}=183-185{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.36(\mathrm{~m}$, $18 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.77 (C), 152.81 (C), 137.35 (C), 135.40 (C), 134.78 (d, $J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{CH}$), 133.22 (d, $\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}, \mathrm{CH}\right), 132.61(\mathrm{CH}), 131.35(\mathrm{CH}), 131.24(\mathrm{CH}), 130.06(\mathrm{CH}), 129.33\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $12.5 \mathrm{~Hz}, \mathrm{CH}$), $128.40(\mathrm{CH}), 123.77\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=68.4 \mathrm{~Hz}, \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (160 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 32.70. HRMS-DART calculated for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{AuClOP}[\mathrm{M}-\mathrm{Cl}]^{+}: 675.09188$; found: 675.09160 .

cis-(4-Nitrophenyl)dichlorotriphenylphosfine gold(III) (4):

This complex was synthesized following the protocol employed for the synthesis of $\mathbf{3 b}$. Colourless crystals ($21.50 \mathrm{mg}, 41 \%$), $\mathrm{mp}=185-187^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-$ $7.35(\mathrm{~m}, 17 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.62$ (C), 145.97 (C), $134.70\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}, \mathrm{CH}\right), 133.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}, \mathrm{CH}\right), 132.05(\mathrm{CH}), 129.41(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}, \mathrm{CH}\right), 124.10(\mathrm{CH}), 123.37\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=68.6 \mathrm{~Hz}, \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(160 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 32.93. HRMS-DART calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{AuClNO}_{2} \mathrm{P}[\mathrm{M}-\mathrm{Cl}]^{+}: 616.05074$; found: 616.05286.

General method for the coupling of anilines with silver acetylides:

To a solution of the corresponding aniline (0.05 mmol) in THF (1.50 mL) was added $\mathrm{HCl} \cdot \mathrm{OEt}_{2}(0.10 \mathrm{mmol}, 1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred until a white precipitate appeared then, was cooled to $-15^{\circ} \mathrm{C}$ and tert-butyl nitrite (0.06 mmol) was added dropwise. The reaction mixture was stirred from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over a period of 20 min , thereafter the solution was removed under vacuum. Next, the diazonium salt was dissolved in DMSO $(1.50 \mathrm{~mL})$, and $\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right]^{2}(0.05 \mathrm{mmol})$ was added under nitrogen. The temperature
${ }^{2}$ This complex was synthesized according to: M. Zhang, A. Abdukader, Y. Fu, C. Zhu,
was up to $50^{\circ} \mathrm{C}$ and the mixture was heated until total consumption of the diazonium salt (the reaction time was determined by ${ }^{1} \mathrm{HNMR}$). Later the reaction mixture was cooled to r.t. and the corresponding silver acetylide was added (0.07 mmol). The reaction was further stirred at r.t. for 1 h , then solvent was removed under vacuum, and product obtained was finally purified by silica gel chromatography using mixtures of hexane/EtOAc as eluent.

4-(Phenylethynyl)benzophenone: ${ }^{3}$

White solid. Obtained: $10.80 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.77(\mathrm{~m}, 4 \mathrm{H})$, 7.67-7.54 (m, 5H), 7.53-7.46(m, 2H), 7.40-7.35 (m, 3H). ${ }^{13} \mathrm{C}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.10(\mathrm{C}), 137.59(\mathrm{C}), 136.90(\mathrm{C}), 132.68(\mathrm{CH}), 131.90(\mathrm{CH}), 131.56(\mathrm{CH}), 130.23$ $(\mathrm{CH}), 130.12(\mathrm{CH}), 128.93(\mathrm{CH}), 128.59(\mathrm{CH}), 128.51(\mathrm{CH}), 127.75(\mathrm{C}), 92.62(\mathrm{C}), 88.81$ (C). HRMS-DART calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 283.11229; found: 283.11203. IR (ATR): $v 1642,1282,748,688,511 \mathrm{~cm}^{-1}$.

Diphenylacetylene: ${ }^{4}$

Yellowish solid. Obtained: $5.30 \mathrm{mg}(19 \%) .{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ - 7.52 (m, $4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.75(\mathrm{CH}), 128.48(\mathrm{CH})$, $128.40(\mathrm{CH}), 123.42(\mathrm{C}), 89.51(\mathrm{C})$.

4-(Phenylethynyl)-benzonitrile: ${ }^{5}$

Molecules, 2012, 17, 2812-2822.
${ }^{3}$ A. Fürstner, G. Seidel, Tetrahedron 1995, 51, 11165-11176.
${ }^{4}$ V. Sashuk, J. Ignatowska, K. Grela, J. Org. Chem. 2004, 69, 7748-7751.
${ }^{5}$ H. Huang, H. Liu, H. Jiang, K. Chen, J. Org. Chem. 2008, 73, 6037-6040.

Yellowish solid. Obtained: $9.5 \mathrm{mg}(48 \%){ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.59$ (m, $4 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.20$ $(\mathrm{CH}), 132.19(\mathrm{CH}) 131.92(\mathrm{CH}), 129.86(\mathrm{CH}), 128.64(\mathrm{CH}), 128.39(\mathrm{C}), 122.35(\mathrm{C})$, 118.67 (C), 111.61 (C), 93.92 (C), 87.86 (C). HRMS-DART calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{1}$ $[\mathrm{M}+\mathrm{H}]^{+}: 204.08132$; found: 204.08102. IR (ATR): 2223, 2211, 1600, 1499, 1272, 839, $759,690,555,530 \mathrm{~cm}^{-1}$.

1-Nitro-4-(2-phenylethynyl)benzene: ${ }^{6}$

Yellowish solid. Obtained: $13.8 \mathrm{mg}(60 \%){ }^{1} \mathrm{H} \mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18-8.11(\mathrm{~m}$, 2 H), $7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.11(\mathrm{C}), 132.40(\mathrm{CH}), 131.98(\mathrm{CH}), 130.40(\mathrm{C}), 129.41(\mathrm{CH}), 128.67(\mathrm{CH})$, $123.77(\mathrm{CH}), 122.23(\mathrm{C}), 94.84(\mathrm{C}), 87.69(\mathrm{C})$. HRMS-DART calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{1} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 224.07115$; found: 224.07120. IR (ATR): v 2211, 1508, 1342, 854, 761, 686, 505 cm^{-1}.

1-Bromo-4-(phenylethynyl)benzene: ${ }^{7}$

Yellowish solid. Obtained: $28 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.44$ (m, $4 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 133.16(\mathrm{CH}), 131.75(\mathrm{CH})$, $131.73(\mathrm{CH}), 128.83(\mathrm{C}), 128.65(\mathrm{CH}), 128.54(\mathrm{CH}), 123.04(\mathrm{C}), 122.38(\mathrm{C}), 90.64(\mathrm{C})$, 88.44 (C). HRMS-DART calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 256.99659$; found 256.99711.

[^1]IR (ATR): v 3051.38, 2659.62, 2915.44, 2845.21, 1601.40, 1492.65, 1389.57, 1074.65, 1004.41, 819.77, 754.07, $504.85 \mathrm{~cm}^{-1}$.

1-Chloro-4-(phenylethynyl)benzene: ${ }^{8}$

Yellowis solid. Obtained: $19 \mathrm{mg}(58 \%){ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 134.39$ (C), $132.95(\mathrm{CH}), 131.73(\mathrm{CH}), 128.83(\mathrm{CH}), 128.62(\mathrm{CH}), 128.53(\mathrm{CH}), 123.06(\mathrm{C}), 121.91$ (C), 90.45 (C), 88.37 (C). HRMS-DART calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 213.04710; found 213.04724. IR (ATR): v 3045.71, 2915.44, 2845.21, 2221.04, 1916.31, 1585.54, $1492.65,1091.64,1015.74,825.43,749.54,510.52 \mathrm{~cm}^{-1}$.

1-Chloro-3-(phenylethynyl)benzene: ${ }^{9}$

Yellowish oil. Obtained: $15 \mathrm{mg}(45 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 134.32$ (C), $131.82(\mathrm{CH}), 131.59(\mathrm{CH}), 129.86(\mathrm{CH}), 129.71(\mathrm{CH}), 128.76(\mathrm{CH}), 128.64(\mathrm{CH}), 128.55$ $(\mathrm{CH}), 125.16(\mathrm{C}), 122.9(\mathrm{C}), 90.68(\mathrm{C}), 88.06(\mathrm{C})$. HRMS-DART calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{1}$ $[\mathrm{M}+\mathrm{H}]^{+}: 213.04710$; found 213.04687. IR (ATR): v 3057.04, 2926.77, 2845.21, 2226.7, 1579.87, 1492.65, 874.14, $749.54,537.7 \mathrm{~cm}^{-1}$.

Methyl-4-(phenylethynyl)benzoate: ${ }^{10}$

[^2]Yellowish oil. Obtained: $8 \mathrm{mg}(32 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.5-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 166.71(\mathrm{C}=\mathrm{O}), 131.87(\mathrm{CH}), 131.64(\mathrm{CH}), 129.66(\mathrm{CH}), 129.63(\mathrm{C}), 128.89(\mathrm{CH})$, $128.57(\mathrm{CH}), 128.16(\mathrm{C}), 122.86(\mathrm{C}), 92.5(\mathrm{C}), 88.77(\mathrm{C}), 52.37\left(\mathrm{CH}_{3}\right)$. HRMS-DART calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 237.09155$; found 237.09194. IR (ATR): v 2921, 2850, $2215,1710,1406,1276,1101,852,759,695,516 \mathrm{~cm}^{-1}$.

1-Methyl-4-(2-phenylethynyl)benzene: ${ }^{11}$

Yellowish oil. Obtained: $3.5 \mathrm{mg}(35 \%) .{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.53(\mathrm{C}), 131.69(\mathrm{CH}), 131.64(\mathrm{CH}), 129.26(\mathrm{CH}), 128.45(\mathrm{CH}), 128.21$ $(\mathrm{CH}), 123.63(\mathrm{C}), 120.34(\mathrm{C}), 89.70(\mathrm{C}), 88.86(\mathrm{C}), 21.66\left(\mathrm{CH}_{3}\right)$. HRMS-DART calculated for $\mathrm{C}_{15} \mathrm{H}_{12}[\mathrm{M}]^{+}: 192.09390$; found: 192.09373. IR (ATR): v 2213, 1439, 1016, 815, 751, $686,513 \mathrm{~cm}^{-1}$.

1-Methyl-3-(2-phenylethynyl)-benzene: ${ }^{12}$

Yellowish oil. Obtained: $5.00 \mathrm{mg}(51 \%) .5 \mathrm{mg}(51 \%){ }^{1} \mathrm{H} \mathrm{RMN}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55$ $-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),-7.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.17(\mathrm{C}), 132.33(\mathrm{CH}), 131.74(\mathrm{CH})$, $129.30(\mathrm{CH}), 128.82(\mathrm{CH}), 128.47(\mathrm{CH}), 128.38(\mathrm{CH}), 128.31(\mathrm{CH}), 123.35(\mathrm{C}), 123.04$ (C), 89.53 (C), $89.00(\mathrm{C}), 21.24\left(\mathrm{CH}_{3}\right)$. HRMS-DART calculated for $\mathrm{C}_{15} \mathrm{H}_{13}[\mathrm{M}+\mathrm{H}]^{+}$:

[^3]193.10173; found: 193.10160. IR (film): v 3081, 3039, 2924, 2380, 1601, 1579, 1494, 1443, 1381, 1091, 1070, 1041, 916, $883 \mathrm{~cm}^{-1}$.

1-Methoxy-4-(2-phenylethynyl)-benzene: ${ }^{13}$

Yellowish oil. Obtained: $10.8 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.37$ (m, $4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.75 (C), $133.19(\mathrm{CH}), 131.59(\mathrm{CH}), 128.45(\mathrm{CH}), 128.07(\mathrm{CH}), 123.74(\mathrm{C}), 115.53(\mathrm{C})$, $114.14(\mathrm{CH}), 89.50(\mathrm{C}), 88.21(\mathrm{C}), 55.46\left(\mathrm{CH}_{3}\right)$. HRMS-DART calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{1}$ $[\mathrm{M}+\mathrm{H}]^{+}: 209.09664$; found: 209.09653. IR (ATR): v 2919, 2215, 1730, 1593, 1507, 1243, 1027, 831, 752, 690, $520 \mathrm{~cm}^{-1}$.

Phenyl[4-(3-phenylprop-1-yn-1-yl)phenyl]nethanone:

Yellowish oil. Obtained: $14.00 \mathrm{mg}(47 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.73$ (m, 4 H), $7.62-7.27(\mathrm{~m}, 10 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 196.17$ (C=O), 137.61 (C), $136.59(\mathrm{C}), 136.41(\mathrm{C}), 132.63(\mathrm{CH}), 131.63(\mathrm{CH}), 130.16(\mathrm{CH}), 130.10(\mathrm{CH})$, $128.79(\mathrm{CH}), 128.48(\mathrm{CH}), 128.19(\mathrm{C}), 128.11(\mathrm{CH}), 126.95(\mathrm{CH}), 91.23(\mathrm{C}), 82.21(\mathrm{C})$, $26.01\left(\mathrm{CH}_{2}\right)$. IR (film): v 3057, 2981, 2823, 2687, 2410, 2302, 1547, 1428, 1156, $895 \mathrm{~cm}^{-1}$. HRMS-DART calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 297.12794; found: 297.12798.

[4-(3-Phenoxyprop-1-yn-1-yl)pheny](phenyl)methanone:

${ }^{13}$ S. B. Park, H. Alper, Chem. Commun. 2004, 1306-1307.

Yellowish oil. Obtained: $14.00 \mathrm{mg}\left(43 \%\right.$ yield) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ - 7.74 $(\mathrm{m}, 4 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}) 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.9(\mathrm{~m}, 2 \mathrm{H})$, $7.06-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \square 196.023(\mathrm{C}=\mathrm{O}), 157.84$ (C), 137.41 (C), $137.37(\mathrm{C}), 132.75(\mathrm{CH}), 131.77(\mathrm{CH}), 130.1(\mathrm{CH}), 129.66(\mathrm{CH}), 128.51$ $(\mathrm{CH}), 126.6(\mathrm{C}), 121.73(\mathrm{CH}), 115.10(\mathrm{CH}), 87.15(\mathrm{C}), 86.47(\mathrm{C}), 56.66\left(\mathrm{CH}_{2}\right)$. IR (film): v 2981, 2685, 1601, 1595, 1422, 1161, 1150, $895 \mathrm{~cm}^{-1}$. HRMS-DART calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 313.12285$; found: 313.12246.

[4-(hex-1-yn-1-yl)phenyl](phenyl)methanone:

Yellowish oil. Obtained: $11.00 \mathrm{mg}(26 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75$ (m, $2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 4 \mathrm{H}), 2.47-2.43(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.98-9.94(\mathrm{t}, J=7.3 \mathrm{~Hz} 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \square 196.21(\mathrm{C}=\mathrm{O}), 137.69(\mathrm{C}), 136.23(\mathrm{C}), 132.55(\mathrm{CH}), 131.5(\mathrm{CH})$, $130.12(\mathrm{CH}), 130.08(\mathrm{CH}), 128.71(\mathrm{C}), 128.44(\mathrm{CH}), 94.26(\mathrm{C}), 80.25(\mathrm{C}), 30.83\left(\mathrm{CH}_{2}\right)$, $22.17\left(\mathrm{CH}_{2}\right), 19.37\left(\mathrm{CH}_{2}\right), 13.77\left(\mathrm{CH}_{3}\right)$. IR (film): v 3057.04, 2986.81, 2687.75, 2514.43, $2415.88,2302.6,2252.75,1655.77,1428.08,1264.96,1156.21,901.33,738.21 \mathrm{~cm}^{-1}$. HRMS-DART calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 263.14359$; found: 263.14412.

Analysis by mass spectrometry of the products obtained in the coupling of 1 with silver phenylacetylide mediated by [AuCl(IPr)]

Chyrtallographic data of structures 3b and 4.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-1442893 (3b), and CCDC-1442894 (4). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.Uk).

ORTEP diagram of 3b

Selected crystal data

Empirical formula	C31 H24 Au Cl2 O P
Formula weight	711.34
Temperature	$298(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Orthorombic
Space group	P b c a
Unit cell dimensions	$\mathrm{a}=13.4335(2) \AA, \mathrm{b}=9.7044(2) \AA, \mathrm{c}=$
	$42.1106(7) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$
Volume	$5489.71(17) \AA 3$
Z	8
Density (calculated)	$1.721 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient	$5.635 \mathrm{~mm}-1$
F(000)	2768
Crystal size/color/shape	$0.259 \times 0.242 \times 0.032 \mathrm{~mm} 3 /$
	colourless/lamina
Theta range for data collection	2.458 to 27.103°.
Index ranges	$-17 \leq h \leq 17,-7 \leq k \leq 12,-53 \leq 1 \leq 38$
Reflections collected	30849
Independent reflections	$6054[\mathrm{R}(\mathrm{int})=0.1142]$

${\text { Completeness to theta }=25.242^{\circ}}^{\circ} 99.8 \%$	
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	$6054 / 0 / 325$
Goodness-of-fit on F2	1.019
Final R indices [I >2 sigma(I) $]$	$\mathrm{R} 1=0.0451, \mathrm{wR} 2=0.0740$
R indices (all data)	$\mathrm{R} 1=0.0956, \mathrm{wR} 2=0.0931$
Largest diff. peak and hole	1.283 and -1.298 e. $\AA-3$

ORTEP diagram of 4

Empirical formula	C24 H19 Au Cl2 N O2 P
Formula weight	652.24
Temperature	$298(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=9.360(3) \AA, \mathrm{b}=16.371(5) \AA, \mathrm{c}=$
	$16.662(5) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$
Volume	$2540.9(14) \AA 3$
Z	4
Density (calculated)	$1.705 \mathrm{Mg} / \mathrm{m} 3$
Absorption coefficient	$6.083 \mathrm{~mm}-1$
F(000)	1256
Crystal size/color/shape	$0.367 \mathrm{x} 0.162 \times 0.128 \mathrm{~mm} 3 /$
colourless/prism	
Theta range for data collection	2.704 to 27.103..
Index ranges	$-11 \leq h \leq 11,-20 \leq k \leq 20,-21 \leq I \leq 21$
Reflections collected	36347
Independent reflections	$5575[\mathrm{R}($ int $)=0.0645]$
Completeness to theta $=25.242^{\circ}$	99.6%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2

Data / restraints / parameters	$5575 / 0 / 280$
Goodness-of-fit on F2	1.019
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0296, \mathrm{wR} 2=0.0602$
R indices (all data)	$\mathrm{R} 1=0.0473, \mathrm{wR} 2=0.0678$
Largest diff. peak and hole	0.589 and $-0.480 \mathrm{e} . \AA .3$

[^0]: ${ }^{1}$ This complex was synthesized according to: C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179.

[^1]: ${ }^{6}$ S. B. Park, H. Alper, Chem. Commun. 2004, 1306-1307.
 ${ }^{7}$ P. Karastatiris, J. A. Mikroyannidis, I. K. Spiliopoulos, Macromolecules 2004, 37, 78677878.

[^2]: ${ }^{8}$ L. Melzig, A. Metzger, P. Knochel, Chem. Eur. J. 2011, 17, 2948-2956.
 ${ }^{9}$ J. Moon, M. Jang, S. Lee, J. Org. Chem. 2009, 74, 1403-1406.
 ${ }^{10}$ M. Wu, J. Mao, J. Guo, S. Ji, Eur. J. Org. Chem. 2008, 4050-4054.

[^3]: ${ }^{11}$ N. Kakusawa, K. Yamaguchi, J. Kurita, J. Organomet. Chem. 2005, 690, 2956-2966. ${ }^{12}$ T. Suzuka, Y. Okada, K. Ooshiro, Y. Uozumi, Tetrahedron 2010, 66, 1064-1069.

