Supporting information

Double C-H Amination by Consecutive SET Oxidations

Christopher J. Evoniuk, Sean P. Hill, Kenneth Hanson and Igor V. Alabugin*

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390

Email: alabugin@chem.fsu.edu

Table of contents

1.	General information	S2
2.	Materials	S2
3.	Synthesis of Wittig Salts	S 3
4.	Synthesis of Boronic Acids	S 4
5.	Synthesis of Substrates	S5
6.	Optimization studies	S17
7.	Mechanistic studies	S18
8.	General procedure (F) for iron-catalyzed intramolecular C-H amination	S18
9.	Spectroscopic Data for Products	S19
10.	Cyclic Voltammetry for Substrates 1a and 1p	S23
11.	Gaussian Calculations	S25
12.	Copies of ¹ H and ¹³ C NMR spectra	S29
13.	References	S75

1. General Information

Unless otherwise noted, all ¹H NMRs were run on 400 MHz and 600 MHz spectrometer in CDCl₃ and all ¹³C NMR were run on 100 MHz and 150 MHz spectrometer in CDCl₃. Proton chemical shifts are given relative to the residual proton signal of CDCl₃ (7.26 ppm). Carbon chemical shifts were internally referenced to CDCl₃ (77.23 ppm) signal. Data are reported as follows: chemical shift in ppm(δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constant (Hz), and integration. Infrared spectra (IR) were obtained on a Perkin Elmer Lambda 950 or Perkin Elmer Spectrum 100; absorptions are reported in reciprocal centimeters. High resolution mass spectra (HRMS) were obtained on a JEOL TheMSroute JMS-600H with Agilent 6890 Series GC System.

2. Materials

Acetonitrile, benzene, diethyl-ether, dichloromethane, toluene and tetrahydrofuran (THF) were obtained from a SPS-4 Solvent Purification System. Hexanes for column chromatography and preparatory thin layer chromatography were distilled prior to use. Dichloromethane was dried using 4 Å molecular sieves and stored under N₂ prior to use. All other solvents were used as purchased. Column chromatography was performed using silica gel (60 Å) and preparatory thin layer chromatography was performed using a 1000 µm glass backed plate containing UV dye. N-butyl Lithium was purchased from SigmaAldrich as a 2.5M solution in hexanes. AlCl₃ was purchased from AlfaAesar and freshly sublimed before use. Pd(PPh₃)₄ was purchased from SigmaAldrich and stored under Ar at -25°C.Triphenylphospine was purchased from SigmaAldrich. Trimethoxyborane was purchased from SigmaAldrich. Phenethyl-bromide, 4-methyl-phenethyl-bromide, 4-methoxy-phenethyl-bromide, 1-(2-bromoethyl)naphthalene, iodo-butane, 2-bromo-benzylbromide, pyrrolidine were all purchased from SigmaAldrich. Phenylboronic acid (Acros Organics), 4-tolylphenylboronic acid (Matrix).

3. Synthesis of Wittig Salts

Preparation of Wittig salt - phenethyltriphenylphosphoniumbromide, W1

(2-bromoethyl)benzene (10.0 mmol) was added dropwise into a solution of triphenylphosphine (10.0 mmol) in toluene at room temperature. The solution was stirred for 48 hours in refluxing toluene. The resulting oily substance was collected and washed with hexane. Product was obtained as off white glassy substance and was used without further purification. Yield: 92%.¹

Preparation of Wittig salt - (4-methylphenethyl)triphenylphosphonium bromide, W2

1-(2-bromoethyl)-4-methylbenzene (10.0 mmol) was added dropwise into a solution of triphenylphosphine (10.0 mmol) in toluene at room temperature. The solution was stirred for 48 hours in refluxing toluene. The resulting oily substance was collected and washed with hexane. The product was obtained as slightly yellow glass substance and was used without further purification. Yield: 86%.

Preparation of Wittig salt - (4-methoxyphenethyl)triphenylphosphonium bromide, W3

1-(2-bromoethyl)-4-methoxyybenzene (10.0 mmol) was added dropwise into a pressure tube containing triphenylphosphine (10.0 mmol) at room temperature. The solution was stirred for 48 hours in refluxing toluene. The resulting oily substance was collected and washed with hexane. The product was obtained as a light brown glassy substance and was used without further purification. Yield: 81%.

Preparation of Wittig salt - triphenyl(4-(trifluoromethyl)phenethyl)phosphonium bromide, W4

1-(2-bromoethyl)-4-trifluoromethylbenzene (10.0 mmol) was added dropwise into a solution of triphenylphosphine (10.0 mmol) in toluene at room temperature. The solution was stirred for 48 hours in refluxing toluene. The resulting oily substance was collected and washed with hexane. Product was obtained as off white glassy substance and was used without further purification. Yield: 87%.

Preparation of Wittig salt - (2-(naphthalen-1-yl)ethyl)triphenylphosphonium bromide, W5

1-(2-bromoethyl)-4-methylbenzene (10.0 mmol) was added dropwise into a solution of triphenylphosphine (10.0 mmol) in toluene at room temperature. The solution was stirred for 48 hours in refluxing toluene. The separated solid was filtered through a Buchner funnel and the residue was washed with hexane. The product was obtained as an off white solid and was used without further purification. Yield: 88%.

Preparation of Wittig salt - butyltriphenylphosphonium iodide, W6

Iodobutane (12.0 mmol) was added dropwise into a solution of triphenylphosphine (10.0 mmol) in toluene in a pressure tube at room temperature. It was stirred for 48 hours in refluxing toluene. The separated solid was filtered through a Buchner funnel and the residue was washed with hexane. The product was obtained as off white solid and was used without further purification. Yield: 85%.

4. Synthesis of boronic acids:

Preparation of boronic acid - (2-benzylphenyl)boronic acid, B1

Boronic acid B1: Following a procedure by Dine et al.; To a flame dried 1 neck round bottom flask containing a solution of 2-bromobenzylbromide (1g, 4 mmol) in 12 mL of benzene was added a magnetic stir bar and AlCl₃ (336.6 mg, 4 mmol) dissolved in 5 mL of nitrobenzene all conducted under a stream of N₂. The mixture was then allowed to reflux for 6 h. Upon completion the mixture was allowed to cool to room temperature and was extracted with Et₂O (3 x 15 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The crude residue was purified via column chromatography with silica gel and hexane as the eluent to afford benzyl-2bromobenzene (0.79 g, 3.2 mmol, 80%). Benzyl-2-bromobenzene (0.750 g, 3.0 mmol) was then added to a flame dried one neck round bottom flask equipped with a magnetic stir bar and kept under a stream of N₂. To this flask was added dry THF (15 mL) and the vessel was then added to a dewer containing dry ice and acetone. To this flask was added dropwise *n*-BuLi (1.24 mL, 2.5M) and the solution was allowed to stir for 1.5 hours, while maintaining inert atmosphere at -78°C. After the 1.5 hours, B(OMe)₃ (3.0 mL, 27mmol) was added over the course of 15 minutes. The resulting solution was allowed to stir for 8 hours. After the allotted time, H_2O (15 mL) was added to the solution slowly followed by HCl (15 mL, 2M) and the solution was allowed to stir for an additional 1 h. This mixture was then neutralized with Na_2CO_3 and extracted with ether (3 x 15 mL). The resulting organic solution was dried with Na₂SO₄ and the solution was concentrated under reduced vacuum. The resulting oil was dissolved in CH_2Cl_2 (2 mL) and then hexane was added (15 mL) and the solution was placed in the freezer (-25°C) overnight. The resulting solid was filtered to afford **B1** as an off-white crystalline solid, (0.382 g, 1.8 mmol, 60%) which was used without further purification.²

Preparation of boronic acid - (2-(4-methylbenzyl)phenyl)boronic acid, B2

Boron acid **B2**: Following a procedure by Anselmi et al.; To a 1 neck round bottom flask equipped with a magnetic stirring bar and reflux condenser was added 2-bromobenzyl bromide (1g, 4 mmol), 4-methylphenylboronic acid (544 mg, 4 mmol), Na₂CO₃ (4.5 mL, 1.5M), toluene (8 mL) EtOH (4 mL). This solution was allowed to stir and was outgassed with argon for 0.5 h, then the outlet needle was removed and the solution was kept under inert atmosphere for the remainder of the reaction. To this solution was then added $Pd(PPh_3)_4$ (140 mg, 3 mol%). The reaction was allowed to stir at 90°C for 8 h. Upon completion the mixture was diluted with ethyl acetate (10mL) and H_2O (10 mL) and added to a separatory funnel. The aqueous layer was washed with ethyl acetate (1 x 15mL). The organic layers were collected and washed with H_2O (2 x 15 mL) followed by brine (1 x 20 mL). The resulting organic solution was dried over Na₂SO₄, and concentrated under reduced pressure to afford a dark colored oil. This oil was then subjected to column chromatography (hexanes) to afford 1-bromo-2-(4-methylbenzyl)benzene as a light yellow oil (0.868 g, 3 mmol, 75%). 1-bromo-2-(4-methylbenzyl)benzene (0.78 g, 2.7 mmol) was then added to a flame dried one neck round bottom flask equipped with a magnetic stir bar and kept under a stream of N_2 . To this flask was added dry THF (15 mL) and the vessel was then added to a dewer containing dry ice and acetone. To this flask was added *n*-BuLi (1.2 mL, 2.5M) and the solution was allowed to stir for 1.5 hours, while maintaining inert atmosphere as well as -78°C. After the 1.5 hours, B(OMe)₃ (2.86 mL, 25.7 mmol) was added over the course of 15 minutes. The resulting solution was allowed to stir for 8 hours. After the allotted time, H₂O (15 mL) was added to the solution slowly followed by HCl (15 mL, 2M) and the solution was allowed to stir for an

additional 1 h. This mixture was then neutralized with Na_2CO_3 and extracted with ether (3 x 15 mL). The resulting organic solution was dried with Na_2SO_4 and the solution was concentrated under reduced pressure. The resulting oil was dissolved in CH_2Cl_2 (2 mL) and then hexane was added (15 mL) and the solution was placed in the freezer (-25°C) overnight. The resulting solid was filtered to afford **B2** (0.397 g, 1.8 mmol, 65%) as an off white crystalline solid, which was used without further purification.³

Preparation of boronic acid - (2-(pyrrolidin-1-ylmethyl)phenyl)boronic acid, B3

Boron acid B3: Following a procedure by Wilson et al.; 2-bromobenzylbromide (1 g, 4 mmol) was added to a flask containing and pyrollidine (0.299 g, 4.2 mmol). To this solution was added dry methylene chloride (5 mL). After addition of solvent the mixture was allowed to stir for 24 h. To the solution was added NaOH (15 mL, 2M) and allowed to stir for an additional 30 minutes. Upon completion the mixture was diluted with ethyl acetate (15 mL) and $H_2O(15 \text{ mL})$ and added to a separatory funnel. The aqueous layer was washed with ethyl acetate (1 x 15mL). The organic layers were collected and washed with H_2O (2 x 15 mL) followed by brine (1 x 20 mL). The resulting organic solution was dried over Na₂SO₄, and concentrated under reduced pressure to yield 1-(2bromobenzyl)pyrrolidine (0.826 g, 3.44 mmol, 86%) which was used in next step without further purification. 1-(2-bromobenzyl)pyrrolidine (0.800 g, 3.3 mmol) was then added to a flame dried one neck round bottom flask equipped with a magnetic stir bar and kept under a stream of N₂. To this flask was added dry THF (12 mL) and the vessel was then added to a dewer containing dry ice and acetone. To this flask was added *n*-BuLi (1.5 mL, 2.5M) and the solution was allowed to stir for 1.5 hours, while maintaining inert atmosphere as well as -78C. After the 1.5 hours, B(OMe)₃ (3.5 mL, 31 mmol) was added over the course of 15 minutes. The resulting solution was allowed to stir for 8 hours. After the allotted time, H_2O (15 mL) was added to the solution slowly followed by HCl (15 mL, 2M) and the solution was allowed to stir for an additional 1 h. This mixture was then neutralized with Na_2CO_3 and extracted with ether (3 x 15 mL). The resulting organic solution was dried with Na_2SO_4 and the solution was concentrated under reduced pressure to afford **B3** (0.515 g, 2.51 mmol, 76%) as a light yellow oil, which was used without further purification.⁴

5. Synthesis of substrates via Wittig, Grignard or Suzuki routes:

Wittig route:

General procedure (A) for Wittig reaction:

To a solution of the Wittig salt (1.2 equiv) in anhydrous THF (10mL) at -78°C was added slowly n-BuLi (1.5M solution in hexane, 1.2 equiv). After 45 min, a solution of desired aldehyde (1 equiv) in THF (10 mL) was added dropwise. The resulting solution was stirred for 1 h at -78 °C and then at room temperature for 12 h and quenched with saturated NH_4Cl solution. The aqueous phase was extracted with Et_2O (3 × 30 mL), and the combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and evaporated under reduced pressure. The crude was purified by column chromatography (hexane:EtOAc) on silica gel affording desired alkene. The alkenes are reported as a mixture of E:Z isomers that were unable to be separated.

General procedure (B) for iron reduction of nitro group:

To a solution of nitro compound (1 equiv) in 15 ml of absolute ethanol was added 15 ml of glacial acetic acid and iron powder (5 equiv). The mixture was heated to reflux. After 6 h, the crude mixture was cooled and filtered

through a pad of Celite. The filtrate was concentrated in *vacuo*. Purification by flash chromatography on silica gel (Hexanes:EtOAc) afforded desired aniline.

Synthesis of 1-nitro-2-(3-phenylprop-1-enyl)benzene, S1a

S1a was prepared following general procedure (A) using 2-nitrobenzaldehyde and Wittig salt **W1**. The crude was purified by column chromatography (hexane) on silica gel affording 1-nitro-2-(3-phenylprop-1-enyl)benzene in an inseparable mixture of isomers (E : Z = 1:3,75%) as dark yellow oil. 'H NMR (400 MHz, CDCl₃) δ 8.12 – 8.05 (m, 3H), 7.96 – 7.90 (m, 0.3H), 7.58 – 7.55 (m, 0.3H), 7.50 – 7.19 (m, 9H), 6.98 (t, *J* = 10.4 Hz, 0.6H), 6.92 (d, *J* = 11.4 Hz, 1H), 6.39 (dt, *J* = 15.5, 7.0 Hz, 0.3H), 6.08 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.64 (dd, *J* = 7.0, 1.0 Hz, 0.6H), 3.50 (dd, *J* = 7.7, 0.8 Hz, 2H). HRMS (ESI): Calcd for C₁₅H₁₃NNaO₂ 262.0844, Found: 262.0845. Spectral data match those previously reported.¹

Synthesis of 2-(3-phenylprop-1-en-1-yl)aniline, 1a

Aniline **1a** was prepared following general procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc) afforded **1b** in an inseparable mixture of isomers as a dark brown oil 1.1 g (E:Z = 1:3, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.04 (m, 6H), 6.81 – 6.69 (m, 2H), 6.67 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.49 (d, *J* = 15.5 Hz, 1H), 6.44 (d, *J* = 11.1 Hz, 1H), 6.24 (dt, *J* = 15.5, 6.9 Hz, 0.3H), 5.99 (dt, *J* = 11.1, 7.5 Hz, 1H), 3.69 (s, 6H), 3.58 (d, *J* = 7.0 Hz, 3H), 3.52 (d, *J* = 7.5 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz) 144.8, 143.4, 136.2, 133.4, 130.2, 129.8, 128.8, 128.6, 126.9, 126.5, 123.0, 121.0, 120.5, 56.6, 35.5, 31.5, 21.6. HRMS (ESI): Calcd for C₁₅H₁₅N 209.1250, Found: 209.1260 Spectral data match those previously reported. ¹

1-(3-(2-nitrophenyl)allyl)naphthalene, S1f

Sif was prepared following the general procedure (A) from 2-nitro-benzaldehyde and Wittig salt **W5**. The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give the title compound **Sif** in an inseparable mixture of isomers (E:Z = 0.4:1, 83%) as a brown oil. $R_f = 0.43$ (hexanes/EtOAc 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (dd, *J* = 8.5, 1.1 Hz, 0.5H), 8.10 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.00 – 7.73 (m, 4H), 7.71 – 7.37 (m, 10H), 7.30 (ddd, *J* = 8.5, 7.2, 1.5 Hz, 0.5H), 7.07 (d, *J* = 15.7 Hz, 0.5H), 6.99 (d, *J* = 11.4 Hz, 1H), 6.46 (dt, *J* = 15.6, 6.7 Hz, 0.4H), 6.18 (dt, *J* = 11.4, 7.5 Hz, 1H), 4.08 (dd, *J* = 6.7, 1.6 Hz, 1H), 4.01 – 3.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 147.6, 134.5, 133.9, 133.8, 132.9, 132.9, 132.3, 131.9, 131.8, 131.7, 128.8, 128.6, 128.1, 127.7, 127.4, 127.2, 126.8, 126.7, 126.5, 126.1, 126.0, 125.7, 125.7, 125.7, 125.5, 124.7, 124.4, 123.9, 123.6, 36.8, 31.9. HRMS (ESI): Calcd for C₁₉H₁₅NNaO₂ 311.000, Found: 311.0996

2-(3-(naphthalen-1-yl)prop-1-en-1-yl)aniline, 1f

Aniline **1f** was prepared by reduction of nitro group following procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc, 7:1) afforded **1f** in an inseparable mixture of isomers as a dark brown oil 1.1 g (E:Z = 0.4:1, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.19 (m, 0.3H), 8.05 – 7.94 (m, 3H), 7.86 (ddd, *J* = 9.7, 7.9, 1.6 Hz, 2H), 7.70 – 7.44 (m, 6H), 7.36 (dd, *J* = 7.7, 1.6 Hz, 0.5H), 7.33 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.26 (td, *J* = 7.7, 1.6 Hz, 1H), 7.16 (td, *J* = 7.6, 1.6 Hz, 0.4H), 6.91 (td, *J* = 7.4, 1.2 Hz, 1H), 6.85 (ddd, *J* = 8.0, 5.2, 1.2 Hz, 1H), 6.71 (dd, *J* = 7.9, 1.2 Hz, 0.4H), 6.64 – 6.55 (m, 2H), 6.48 (dt, *J* = 15.7, 6.3 Hz, 0.4H), 6.15 (dt, *J* = 11.2, 7.3 Hz, 1H), 4.11 (dd, *J* = 6.3, 1.4 Hz, 0.8H), 4.07 (dd, *J* = 7.3, 1.7 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 136.8, 136.3, 133.9, 132.4, 132.0, 132.0, 130.7, 129.8, 128.8, 128.7, 128.4, 128.2, 127.4, 127.2, 127.1, 127.0, 126.4, 126.2, 126.0, 125.9, 125.7, 125.7, 125.7, 125.6, 124.1, 123.9, 122.6, 118.9, 118.2, 116.0, 115.3, 36.8, 32.3. IR (neat, cm⁻¹): 3464, 3372, 3042, 3008, 2954, 2922, 2853, 1927, 1614, 1575, 1508, 1490, 1454, 1394, 1302, 1262, 1214, 1157, 1140, 1077, 1017, 969, 935, 857, 790, 776, 748, 699. HRMS (ESI): Calcd for C₁₉H₁₇N 259.1395, Found: 259.1390

2-(3-(4-methoxyphenyl)prop-1-en-1-yl)-5-(trifluoromethyl)aniline, 1g

Aniline **1g** was prepared by following the general procedure (A) to prepare the nitro compound above. The nitro compound was subsequently reduced to the aniline following procedure (B), which yielded **1g** in an inseparable mixture of isomers as a dark brown oil (E:Z, o.45:1, 73%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.32 (d, *J* = 8.0 Hz, o.45H), 7.21 – 7.15 (m, 2H), 7.09 (dd, *J* = 8.8, o.7 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.88 (d, *J* = 8.7 Hz, 1H), 6.87 – 6.84 (m, 2H), 6.43 (d, *J* = 15.6 Hz, o.46H), 6.38 (d, *J* = 11.2 Hz, 1H), 6.30 (dt, *J* = 15.5, 6.8 Hz, o.44H), 6.05 (dt, *J* = 11.1, 7.5 Hz, 1H), 4.03 (s, 3H), 3.81 (s, 2H), 3.80 (s, 3H), 3.56 – 3.51 (m, 1H), 3.42 (dd, *J* = 7.6, 1.7 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 158.2, 144.4, 134.9, 134.2, 132.3, 131.8, 130.6, 130.2, 129.7, 129.5, 129.4, 127.9, 126.1, 125.3, 124.7, 115.7, 114.8, 114.7, 114.2, 114.0, 111.7, 111.7, 100.1, 55.4, 38.9, 34.0. HRMS (ESI): Calcd for C₁₇H₁₆F₃NO 307.1218, Found: 307.1215.

2-(3-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)aniline, 1i

Aniline **ii** was prepared following the general procedure (A) to acquire the nitro substrate above (70%). The nitro compound was successfully reduced following general procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc, 5:1) afforded **ii** in an inseparable mixture of isomers as a brown oil (1.1 g, 3.9 mmol, 85%, E:Z = 1:3). (E:Z = 0.24:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 (td, *J* = 7.6, 1.5 Hz, 2H), 7.09

(dd, *J* = 7.9, 1.3 Hz, 1H), 6.83 – 6.69 (m, 3H), , 6.56 – 6.46 (m, 2H), 6.22 (dt, *J* = 15.6, 6.9 Hz, 0.24H), 5.96 (dt, *J* = 11.1, 7.4 Hz, 1H), 3.73 (s, 3H), 3.63 (d, *J* = 6.9 Hz, 1H), 3.58 (dd, *J* = 7.5, 1.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 144.9, 144.3, 131.7, 130.4, 130.0, 129.7, 129.1, 128.8, 128.6, 128.0, 127.6, 127.1, 126.4, 126.4, 125.6, 125.6, 125.6, 125.5, 125.5, 122.4, 119.2, 118.3, 116.2, 116.1, 115.4, 34.7, 29.9. HRMS (ESI): Calcd for C₁₆H₁₄F₃N 277.112, Found: 277.1107

Synthesis of 4-chloro-1-nitro-2-(3-phenylprop-1-en-1-yl)benzene, S1j

Sij was prepared following general procedure (A) using 5-chloro-2-nitrobenzaldehyde and Wittig Salt **W1** which was purified using column chromatography (Hexanes:EtOAc, 15:1) to afford desired compound (o.4 g, 1.5 mmol, 74%). E:Z, o.3:1 isomer: 'H NMR (400 MHz, Chloroform-d) δ 8.16 (dd, J = 9.0, 5.1 Hz, 1H), 8.02 (dd, J = 9.0, 5.2 Hz, o.3H), 7.61 – 7.55 (m, o.3H), 7.40 – 7.22 (m, 5H), 7.22 – 7.06 (m, 4H), 7.05 – 6.97 (m, o.3H), 7.02(m, 1H), 6.38 (dt, J = 15.6, 7.0 Hz, o.3H), 6.10 (dt, J = 11.4, 7.7 Hz, 1H), 3.64 (dd, J = 6.9, 1.5 Hz, o.6H), 3.49 (dd, J = 7.7, 1.6 Hz, 2H). E isomer: 'H NMR (400 MHz, Chloroform-d) δ 8.06 (d, J = 9.3 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.39 – 7.32 (m, 2H), 7.30 – 7.25 (m, 1H), 7.23 – 7.16 (m, 2H), 6.87 (d, J = 11.5 Hz, 1H), 6.12 (dt, J = 11.5, 7.7 Hz, 1H), 3.50 (d, J = 7.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 139.4, 139.2, 134.4, 133.2, 131.7, 128.8, 128.3, 128.2, 126.5, 126.3, 125.5, 34.6. HRMS (ESI): Calcd for C₁₅H₁₂CINO₂ 275.0527. Found: 275.0523

Synthesis of 4-chloro-2-(3-phenylprop-1-en-1-yl)aniline, 1j

Aniline **1** was prepared by reduction of nitro group following general procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc, 6:1) afforded **1** as a dark brown oil (1.1 g, 4.5 mmol, 85%, E:Z = 1:3). (E:Z = 1:10, 85%). 'H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.33 (m, 2H), 7.32 – 7.21 (m, 4H), 7.20 – 7.03 (m, 2H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.39 (d, *J* = 11.3 Hz, 1H), 6.12 – 5.99 (m, 1H), 3.74 (s, 2H), 3.58 – 3.48 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.8, 140.3, 134.0, 129.2, 128.6, 128.4, 128.0, 126.2, 124.8, 124.0, 122.5, 116.3, 34.8. HRMS (ESI): Calcd for C₁₅H₁₄ClN 245.0785, Found: 245.0783

1-nitro-2-(3-(p-tolyl)prop-1-en-1-yl)benzene, S1k

S1k was prepared following general procedure (A) using 2-nitrobenzaldehyde and Wittig salt **W2**. The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give the title compound as a brown oil (0.3 g, 1.1 mmol, 78%, E:Z = 0.4:1). $R_f = 0.48$ (hexanes/EtOAc 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.90 (dd, *J* = 8.2, 1.3 Hz, 0.36H), 7.62 – 7.55 (m, 2H), 7.55 – 7.49 (m, 0.5H), 7.48 – 7.40 (m, 2H), 7.35 (ddd, *J* = 8.6, 6.1, 1.5 Hz, 0.5H), 7.16 (s, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 15.6 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.34 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.03 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.34 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.03 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.34 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.03 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.94 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.03 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.34 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.03 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.94 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.93 (dt, *J* = 11.4, 7.7 Hz, 1H), 3.57 (dd, *J* = 6.9, 1.5 Hz, 0.45H), 6.91 – 6.84 (m, 1H), 6.94 (dt, *J* = 15.6, 7.0 Hz, 0.4H), 6.93 (dt, *J* = 10.45H), 6.91 –

0.7H), 3.46 – 3.38 (m, 2H), 2.35 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 136.3, 136.1, 135.9, 135.3, 133.3, 133.0, 132.9, 132.6, 132.5, 131.9, 129.4, 129.4, 128.7, 128.2, 128.1, 127.7, 126.4, 126.2, 124.8, 124.6, 39.3, 34.1, 21.1. HRMS (ESI): Calcd for C₁₆H₁₅NNaO₂ 276.1000, Found: 276.1002

Synthesis of 4-fluoro-1-nitro-2-(3-phenylprop-1-en-1-yl)benzene, Sıl

S1 was prepared following general procedure (A) using 5-fluoro-2-nitrobenzaldehyde and Wittig salt **W1**. The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give the title compound (1.7 g, 6.0 mmol, 83%, E:Z = 1:3) as a light brown oil. $R_f = 0.6$ (hexanes/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, J = 8.7, 5.1 Hz, 1H), 8.00 (dd, J = 9.1, 5.2 Hz, 1H), 6.37 (d, J = 15.5 Hz, 1H), 6.09 (dt, J = 11.4, 7.7 Hz, 1H), 3.62 (d, J = 6.7 Hz, 1H), 3.48 (d, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 163.2, 139.5, 136.2, 136.0, 135.9, 132.9, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8, 127.7, 126.7, 126.5, 126.2, 126.0, 118.7, 118.5, 115.3, 115.1, 39.6, 34.5. HRMS (ESI): Calcd for $C_{15}H_{12}FNNaO_2$ 280.0742, Found: 280.0744¹

Synthesis of 4-fluoro-2-(3-phenylprop-1-en-1-yl)aniline, 1l

Aniline **1** was prepared following general procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc) afforded **1** as a dark brown oil (1.1 g, 4.8 mmol, 85%, E:Z = 1:3). The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give (E:Z = 1:3, 78%) of the title compound as a brown oil. $R_f = 0.44$ (hexanes/EtOAc 7:1). ¹H NMR (400 MHz, CDCl₃) δ 6.99 (dt, *J* = 9.5, 3.2 Hz, 1H), 6.67 (ddd, *J* = 8.4, 4.8, 1.4 Hz, 1H), 6.64 – 6.58 (m, 1H), 6.45 (d, *J* = 15.2 Hz, 1H), 6.40 (d, *J* = 11.4 Hz, 1H), 6.32 – 6.20 (m, 1H), 6.09 – 5.96 (m, 1H), 3.52 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.1, 154.8, 140.4, 133.8, 132.4, 128.8, 128.7, 128.7, 128.5, 128.5, 126.4, 126.3, 126.1, 125.3, 124.0, 123.9, 116.2, 116.1, 115.9, 114.9, 114.7, 39.7, 34.8. HRMS (ESI): Calcd for C₁₅H₁₅FN 227.1188, Found: 227.1199. Spectral data match those previously reported. ¹

Synthesis of 4-methoxy-1-nitro-2-(3-phenylprop-1-en-1-yl)benzene, S1m

Sim was prepared following general procedure (A) using 5-methoxy-2-nitrobenzaldehyde and Wittig salt **W1**. The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give the title compound (2.0 g, 7.4 mmol, 83%, E:Z = 0.6:1) as a dark brown oil. R_f = 0.4 (hexanes/EtOAc 10:1). 'H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.9 Hz, 1H), 7.98 (d, *J* = 9.2 Hz, 0.5H), 7.42 – 7.29 (m, 4H), 7.28 – 7.16 (m, 4H), 7.09 (d, *J* = 15.5 Hz, 1H), 7.00 – 6.92 (m, 2H), 6.90 – 6.82 (m, 2H), 6.79 (dd, *J* = 9.1, 2.8 Hz, 1H), 6.32 (dt, *J* = 15.5, 6.9 Hz, 1H), 6.03 (dt, *J* = 11.4, 7.8 Hz, 1H), 3.82 (s, 1.5H), 3.77 (s, 3H), 3.70 – 3.57 (m, 1H), 3.49 (dd, *J* = 7.7, 1.6 Hz, 2H). '³C NMR (100 MHz, CDCl₃) δ 162.8, 162.6, 140.7, 140.2, 139.7, 139.1, 136.0, 135.0, 134.1, 130.8, 128.3, 128.0, 127.9, 127.4, 127.2, 127.1, 127.0, 126.1, 125.9, 116.1, 113.1, 112.7, 112.4, 55.4, 39.1, 34.1. HRMS (ESI): Calcd for C₁₅H₁₅NNaO₃ 269.1052, Found: 269.1049

2-(3-methoxyprop-1-en-1-yl)aniline, 1m

Aniline **im** was prepared following general procedure (B). Purification by flash chromatography on silica gel (Hexanes:EtOAc) afforded **im** as a dark brown oil (1.2 g, 5.0 mmol, 85%, E:Z = 0.6:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.25 (m, 9H), 6.99 (d, *J* = 2.9 Hz, 1H), 6.85 (t, *J* = 2.0 Hz, 1H), 6.82 (d, *J* = 2.9 Hz, 1H), 6.79 (dd, *J* = 8.6, 2.9 Hz, 1H), 6.75 (dd, *J* = 8.3, 0.7 Hz, 1H), 6.69 (d, *J* = 8.6 Hz, 1H), 6.61 (d, *J* = 15.6 Hz, 0.6H), 6.54 (dd, *J* = 11.1, 1.7 Hz, 1H), 6.36 (dt, *J* = 15.6, 6.9 Hz, 1H), 6.08 (dt, *J* = 11.1, 7.5 Hz, 1H), 3.82 (s, 2H)3.80 (s, 3H), 3.66 (td, *J* = 7.4, 1.5 Hz, 4H), 3.55 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.8, 152.1, 140.5, 137.9, 137.2, 132.6, 131.0, 128.5, 128.5, 128.3, 126.6, 126.0, 124.8, 123.7, 117.4, 116.4, 114.9, 114.3, 114.0, 112.0, 77.5, 77.2, 76.9, 55.6, 55.6, 39.6, 34.7. IR (neat, cm⁻¹): 3446, 3372, 2910, 2860, 1630, 1500, 1033, HRMS (ESI): Calcd for C₁₆H₁₇NO 239.1344, Found: 239.1340.

Synthesis of 1-nitro-2-(pent-1-en-1-yl)benzene, S1c

Sic was prepared following general procedure (A) using 2-nitrobenzaldehyde and Wittig salt **W6** The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give the title compound as a light brown oil (0.5 g, 2.6 mmol, 73%, E:Z = 1:2). $R_f = 0.73$ (hexanes/EtOAc 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 8.2, 1.0 Hz, 1H), 7.86 – 7.76 (m, 1H), 7.60 – 7.43 (m, 2H), 7.41 – 7.24 (m, 3H), 6.80 (d, J = 15.7 Hz, 1H), 6.66 (d, J = 11.6 Hz, 1H), 6.20 (dt, J = 15.6, 6.9 Hz, 1H), 5.78 (dt, J = 11.6, 7.5 Hz, 1H), 2.20 (qd, J = 7.3, 1.5 Hz, 1H), 2.03 (qd, J = 7.5, 1.7 Hz, 2H), 1.57 – 1.43 (m, 1H), 1.42 – 1.31 (m, 2H), 0.93 (t, J = 7.4 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 134.5, 133.3, 132.8, 132.6, 131.9, 128.3, 127.6, 127.3, 125.1, 125.0, 124.3, 124.3, 35.2, 30.4, 22.7, 22.2, 13.6, 13.6. HRMS (ESI): Calcd for C₁₁H₁₂NO₂ 191.0946, Found: 191.0942. Spectral data match those previously reported.¹

Synthesis of 2-(pent-1-en-1-yl)aniline, 1c

Substrate 1c was prepared following general procedure (B) for nitro reduction. The crude product was purified by flash chromatography (Hexanes:EtOAc, 10:1) to give of the title compound as a light brown oil (0.1 g, 0.6 mmol, 88%, E:Z = 1:2). R_f = 0.44 (hexanes/EtOAc 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.28 (m, 1H), 7.21 – 7.04 (m, 1H), 6.90 – 6.65 (m, 1H), 6.54 – 6.42 (m, 1H), 6.35 (d, *J* = 11.3 Hz, 1H), 6.14 (dtd, *J* = 9.1, 6.9, 2.2 Hz, 1H), 5.85 (dtd, *J* = 9.5, 7.4, 2.1 Hz, 1H), 3.71 (s, 1H), 2.38 – 2.05 (m, 1H), 1.66 – 1.40 (m, 1H), 1.21 – 0.85 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.0, 143.4, 134.8, 133.1, 129.8, 128.0, 127.9, 127.4, 125.5, 125.0, 124.5, 123.4, 119.0, 118.0, 116.0, 115.6, 115.1, 35.6, 30.7, 23.0, 22.7, 13.9, 13.8. HRMS (ESI): Calcd for C₁₁H₁₆N 162.1282, Found: 162.1295. Spectral data match those previously reported. ¹

Synthesis of N-(2-(3-phenylprop-1-en-1-yl)phenyl)formamide, 1a'

A solution of aniline 1a (1.3 g, 6.4 mmol) and ethyl formate (3 ml) in anhydrous THF (10 ml) was added dropwise to a suspension of NaH (60% in mineral oil, 0.5 g, 14 mmol) in anhydrous THF (5 ml). The resulting mixture was stirred at r.t. for 24 h, then the reaction was quenched with cold water (5 mL). The solvents were removed under reduced pressure, and the residue was dissolved in ethyl acetate/water (20/5 mL). The aqueous phase was extracted with ethyl acetate (3 x 20 mL), the combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated. The residue was washed thoroughly with hexane (3 x 30 mL) and dried in vacuo to give 1.3 g (E : Z = 1:3, 87%) of the title compound as a dark yellow liquid that slowly crystallized. 'H NMR (400 MHz, Chloroform-*d*, inseparable mixture of rotamers & E:Z isomers): 'H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 11.3 Hz, 1H), 8.49 (d, *J* = 11.2 Hz, 1H), 8.39 (dd, *J* = 6.6, 1.7 Hz, 1H), 8.36 – 8.26 (m, 2H), 7.99 (d, *J* = 10.9 Hz, 1H), 7.91 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.81 (s, 1H), 7.56 (d, *J* = 4.8 Hz, 1H), 7.50 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.43 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.39 – 7.08 (m, 24H), 6.63 (dd, *J* = 23.0, 15.6 Hz, 1H), 6.51 (dd, *J* = 11.2, 4.6 Hz, 2H), 6.40 – 6.24 (m, 1H), 6.12 (ddt, *J* = 17.2, 11.2, 7.6 Hz, 2H), 3.49 (d, *J* = 7.6 Hz, 2H), 3.44 (d, *J* = 7.6 Hz, 2H), 3.45, 132.5, 125.3, 125.1, 125.0, 124.4, 121.5, 119.5, 119.3, 77.5, 77.2, 76.9, 39.7, 34.7, 34.6.. HRMS (ESI): Calcd for C₁₆H₁₅NNaO 260.1051, Found: 260.1057. Spectral data match those previously reported.'

Grignard route:

Substrate synthesis via Grignard route:

General procedure (C) for Grignard reaction:

Following a procedure by Chen et al.; To a N_2 purged, flame dried round bottom flask equipped with a magnetic stir bar and reflux condenser was charged Mg turnings (1.5 equiv). To the Mg turnings was added dry THF (20 mL) and a single crystal of I_2 and the solution was allowed to stir at 50°C for 1 h. The solution was allowed to cool to room temperature. To the solution was added dropwise, alkyl-bromide (1 equiv). This solution was then heated to 50°C and allowed to stir for 1.5 h. The generated Grignard reagent was then added dropwise to a round bottom flask containing carbonyl species (0.4 equiv) in THF (10 mL). This solution was then allowed to stir at 50°C overnight. To this mixture was then stirred with HCl 2M for 0.5 h, where upon the mixture was then washed with Brine (2 x 10 mL) and extracted with Et₂O (3 x 15 mL) and dried over Na₂SO₄. Column chromatography using silica gel and EtOAc: Hexanes as eluent afforded the desired product.⁵

General procedure (D) for dehydration reaction:

To a flask equipped with reflux condenser and magnetic stir bar was added desired tertiary alcohol (1 equiv), *p*-TsOH (20 mol%), toluene (15 mL). This mixture was allowed to stir at reflux for 24 h. The solution was then washed with H_2O (3 x 15 mL), Brine (2 x 15 mL) and extracted with Et_2O (3 x 15 mL) and dried over Na_2SO_4 . The crude residue was purified via column chromatography using EtOAc:Hexanes as the eluent to afford the desired olephin.

2-(4-phenylbut-2-en-2-yl)aniline, 1n

11 was prepared following the general procedure (C) to afford a crude dark brown oil which was subsequently subjected to general procedure (D) to afford a dark crude oil that was purified via flash chromatography (Hexanes:EtOAc, 8:1) to afford **1j** as a light brown oil (0.201 g, .0.9 mmol, 65%). ¹H NMR (600 MHz, Chloroform*d*) δ 7.54 - 7.48 (m, 2H), 7.45 - 7.40 (m, 1H), 7.39 (ddd, *J* = 7.6, 1.3, 0.6 Hz, 2H), 7.35 (ddd, *J* = 8.0, 7.3, 1.6 Hz, 1H), 7.27 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.04 (td, *J* = 7.4, 1.2 Hz, 1H), 6.93 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.05 - 6.00 (m, 1H), 3.84 (s, 2H), 3.44 (d, *J* = 7.5 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 142.93, 141.15, 134.67, 128.84, 128.44, 128.41, 128.07, 127.95, 127.21, 125.88, 118.35, 115.10, 35.56, 24.57. IR (neat, cm⁻¹) 3070, 3033, 2956, 2821, 1643, 1599, 1550, 1300, 1250, 1248, 1143, 1100, 1059, 1011. HRMS (ESI): Calcd for C₁₆H₁₇N 223.1395, Found: 223.1391. Spectral data match those previously reported.⁶

1-(2-amino-5-chlorophenyl)-1,3-diphenylpropan-1-ol, S10

S10 was prepared following the general procedure (C). Purification via flash chromotagraphy (Hexanes:EtOAc, 5:1) yielded the desired product as a brown/black oil (70%). ¹H NMR (600 MHz, Chloroform-d) δ 7.48 – 7.40 (m, 3H), 7.35 (dd, J = 8.4, 6.9 Hz, 2H), 7.28 (tt, J = 8.1, 1.6 Hz, 3H), 7.20 (d, J = 7.4 Hz, 1H), 7.18 – 7.14 (m, 2H), 7.09 (dd, J = 8.4, 2.4 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H), 3.75 (s, 4H), 2.93 – 2.74 (m, 1H), 2.55 (ddd, J = 14.2, 12.6, 4.4 Hz, 1H), 2.50 – 2.35 (m, 2H). ¹³C NMR (150 MHz, CDCl3) δ 144.9, 142.3, 128.6, 128.4, 128.4, 127.3, 126.6, 126.0, 125.9, 120.2, 78.0, 44.3, 29.9. HRMS (ESI): Calcd for C₂₁H₂₀CINO 339.1204, Found 339.1203.

4-chloro-2-(1,3-diphenylprop-1-en-1-yl)aniline, 10

Following the general procedure (D) using 1-(2-amino-5-chlorophenyl)-1,3-diphenylpropan-1-ol (0.54 g, 1.6 mmol), substrate **10** was prepared as a deep brown oil(0.42 g, 1.3 mmol, 83%). (E:Z = 1:0.8) ¹H NMR (600 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 7.42 – 7.26 (m, 11H), 7.25 – 7.20 (m, 7H), 7.16 (d, *J* = 2.5 Hz, 1H), 7.13 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.59 (d, *J* = 8.5 Hz, 1H), 6.56 (t, *J* = 7.5 Hz, 1H), 6.14 (t, *J* = 7.7 Hz, 1H), 3.73 (m, 5H), 3.48 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 143.0, 142.7, 140.6, 140.3, 139.7, 139.3, 138.5, 137.6, 131.7, 130.9, 130.5, 130.4, 129.5, 129.1, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.2, 127.8, 127.7, 126.4, 126.3, 126.2, 126.1, 122.8, 122.8, 117.0, 116.6, 77.4, 77.2, 77.0, 36.2, 35.5. IR (neat, cm⁻¹): 3351, 3060, 3030, 1680, 1590, 1484, 1448, 1357, 1264, 1156, 1077, 1028. HRMS (ESI): Calcd for C₂₁H₁₈CIN 321.1098, Found: 321.1100.

Suzuki route:

General procedure (E) for Suzuki coupling:

To a round bottom flask equipped with a magnetic stirring bar and reflux condenser was added 2-haloaniline (1 equiv), boronic acid (1.2 equiv), Na_2CO_3 (4 equiv, 1.5M), toluene (8 mL), EtOH (4 mL). This solution was allowed

to stir and was outgassed with argon for 0.5 h, then the outlet needle was removed and the solution was kept under inert atmosphere for the remainder of the reaction. To this solution was then added $Pd(PPh_3)_4$ (5 mol%). The reaction was allowed to stir at reflux for 8 h. Upon completion the mixture was diluted with ethyl acetate (10mL) and H₂O (10 mL) and added to a separatory funnel. The aqueous layer was washed with ethyl acetate (1 x 15mL). The organic layers were collected and washed with H₂O (2 x 15 mL) followed by brine (1 x 20 mL). The resulting organic solution was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then subjected to column chromatography (hexanes:EtOAc) to afford desired product.

(E)-2-(3-phenylprop-1-en-1-yl)aniline, 1aE

Following the general procedure (E) using 2-iodoaniline (0.2 g, 0.91 mmol) and (E)-(3-phenylprop-1-en-1-yl)boronic acid (0.178 g, 1.1 mmol), substrate **1aE** was synthesized as a dark brown oil (0.162 g, 0.77 mmol, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.33 (m, 2H), 7.33 – 7.21 (m, 4H), 7.21 – 7.07 (m, 2H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.39 (d, *J* = 11.2 Hz, 1H), 6.13 – 5.99 (m, 1H), 3.74 (s, 3H), 3.59 – 3.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 140.3, 134.0, 129.2, 128.6, 128.4, 128.0, 126.2, 124.8, 124.0, 122.5, 116.3, 34.8. HRMS (ESI): Calcd for C₁₅H₁₅N 209.1250, Found: 209.1260. Spectral data match those previously reported.⁷

4-methyl-2-(3-phenylprop-1-en-1-yl)aniline, 5h

Following the general procedure (E) using 2-iodoaniline (0.2 g, 1.07 mmol) and (E)-(3-phenylprop-1-en-1-yl)boronic acid (0.208 g, 1.28 mmol), substrate **1h** was obtained as a dark yellow oil (0.205 g, 0.92 mmol, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.37 (m, 3H), 7.37 – 7.27 (m, 4H), 7.17 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 8.0, 2.1 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.31 (dt, *J* = 15.6, 6.9 Hz, 1H), 3.65 (dd, *J* = 6.9, 1.4 Hz, 4H), 2.31 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.0, 140.3, 130.8, 128.9, 128.7, 128.6, 128.2, 127.8, 126.8, 126.3, 123.9, 116.3, 39.8, 20.6. HRMS (ESI): Calcd for C16H17N 223.1395, Found: 223.1400. IR (neat, cm⁻¹) 3060, 3026, 2920, 2860, 1686, 1626, 1600, 1494, 1452, 1294, 1268, 1159, 1107, 1073, 1029. HRMS (ESI): Calcd for C₁₆H₁₇N 223.1395, Found 223.1397. Spectral data match those previously reported. ¹

2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine, 1p

Following the general procedure (E) using 2-iodoaniline (0.19 g, 0.87 mmol) and boronic acid **B**₂ (0.235 g, 1.04 mmol), substrate **1p** was obtained as a brown oil (0.219 g, 0.8 mmol, 92%). 'H NMR (400 MHz, Chloroform-*d*) δ 7.50 - 7.38 (m, 4H), 7.34 (tdd, *J* = 8.2, 2.6, 1.3 Hz, 1H), 7.18 (ddt, *J* = 6.3, 5.0, 2.2 Hz, 3H), 7.07 (dd, *J* = 8.0, 3.7 Hz,

2H), 7.01 – 6.93 (m, 1H), 6.87 (dd, *J* = 7.9, 1.3 Hz, 1H), 4.01 (qd, *J* = 15.2, 3.8 Hz, 2H), 3.51 (s, 2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.9, 140.5, 138.5, 138.0, 135.2, 130.5, 130.1, 129.0, 128.9, 128.5, 128.0, 127.1, 126.6, 126.6, 118.2, 115.2, 38.6, 21.1. IR (neat, cm⁻¹): 3461, 3376, 3049, 3019, 2919, 2857, 1613, 1499, 1478, 1444, 1296, 1183, 1156, 115, 1047, 1005. HRMS (ESI): Calcd for C₂₀H₁₉N 273.1517, Found: 273.1520.

6-amino-2'-benzyl-[1,1'-biphenyl]-3-carbonitrile, 1q

Following the general procedure (E) using 2-iodoaniline (o.2 g, o.82 mmol) and boronic acid **B1** (o.209 g, o.98 mmol), substrate **1q** was obtained as a dark yelllow oil (o.203 g, o.71 mmol, 87%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.34 (s, 1H), 7.33 – 7.28 (m, 1H), 7.23 – 7.09 (m, 5H), 7.01 – 6.81 (m, 2H), 6.68 (d, *J* = 8.4 Hz, 1H), 3.87 (s, 2H), 3.86 – 3.69 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 148.3, 140.5, 136.1, 134.6, 132.9, 130.8, 130.5, 128.9, 128.9, 128.4, 127.3, 126.7, 126.2, 120.2, 114.7, 100.0, 39.5. IR (neat, cm⁻¹): 3480, 3366, 3215, 3027, 2919, 2217, 1617, 1502, 1452, 1414, 1316, 1154, 1074, 1026. HRMS (ESI): Calcd for C₂₀H₁₆N₂ 284.1313, Found: 284.1310.

methyl 2-amino-2'-benzyl-5-chloro-[1,1'-biphenyl]-3-carboxylate, 1r

Following the general procedure (E) using methyl 2-amino-5-chloro-3-iodobenzoate(0.2 g, 0.64 mmol) and boronic acid **B1** (0.163 g, 0.77 mmol), substrate **1r** was obtained as a light brown oil (0.193 g, 0.55 mmol, 86%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 2.6 Hz, 1H), 7.39 – 7.27 (m, 3H), 7.23 – 7.10 (m, 4H), 6.95 (d, *J* = 2.6 Hz, 1H), 6.94 – 6.90 (m, 2H), 5.60 (s, 2H), 3.89 (s, 3H), 3.87 – 3.69 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.0, 147.1, 140.5, 140.5, 136.3, 135.0, 130.7, 130.6, 129.9, 129.8, 129.1, 129.0, 128.4, 127.3, 126.2, 120.2, 111.4, 52.0, 39.4. IR (KBr, cm⁻¹): 3485, 3364, 3061, 3026, 2950, 2844, 1693, 1604, 1556, 1494, 1436, 1303, 1221, 1127, 1090, 1030. HRMS (ESI): Calcd for C₂₁H₁₈CINO₂ 351.1026, Found: 351.1022.

2'-isopropyl-[1,1'-biphenyl]-2-amine, 15

Following the general procedure (E) using 2-iodoaniline (0.139g, 0.63mmol) and 2-isopropylphenylboronic acid (0.135 g, 0.82mmol), substrate **1p** was obtained as a light brown oil (0.11 g, 0.52mmol, 82%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.44 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.30 (td, *J* = 7.3, 1.5 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.09 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.87 (td, *J* = 7.4, 1.2 Hz, 1H), 6.81 (dd, *J* = 7.9, 1.2 Hz, 1H), 3.48 (s, 2H), 2.93 (p, *J* = 6.9 Hz, 1H), 1.27 (d, *J* = 6.9 Hz, 1H), 1.16 (d, *J* = 6.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 147.9, 144.0, 137.5, 130.5, 130.3, 128.4, 128.3, 127.3, 126.1, 125.9, 118.1, 115.0, 30.0, 24.8, 23.6. Spectral data match those previously reported.⁸

2',6'-dimethyl-[1,1'-biphenyl]-2-amine, 1b

Following the general procedure (E) using 2-iodoaniline (0.2 g, 0.91 mmol) and 2,6-dimethylphenylboronic acid (0.164 g, 1.1 mmol), substrate **1q** was obtained as a brown oil (0.142 g, 0.72mmol, 79%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.11 (m, 4H), 6.93 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.84 (dd, *J* = 7.4, 1.2 Hz, 1H), 6.79 (dd, *J* = 7.9, 1.2 Hz, 1H), 3.43 (s, 2H), 2.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 137.0, 136.9, 134.8, 129.9, 128.4, 128.0, 126.1, 118.4, 114.9, 20.1. Spectral data match those previously reported.⁹

2'-(pyrrolidin-1-ylmethyl)-[1,1'-biphenyl]-2-amine, 1e

Following the general procedure (E) using 2-iodoaniline (0.2 g, 0.91 mmol) and boronic acid **B3** (0.225 g, 1.1 mmol), substrate **10** was obtained as a light brown oil (0.202 g, 0.8 mmol, 88%).¹H NMR (400 MHz, Chloroform*d*) δ 7.67 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.42 (td, *J* = 7.5, 1.6 Hz, 1H), 7.37 (td, *J* = 7.4, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.23 (td, *J* = 7.6, 1.6 Hz, 1H), 7.08 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.86 (td, *J* = 7.4, 1.2 Hz, 1H), 6.79 (dd, *J* = 8.0, 1.2 Hz, 1H), 3.83 (s, 2H), 3.56 (dd, *J* = 105.1, 13.6 Hz, 2H), 2.52 (dtd, *J* = 9.3, 4.8, 2.7 Hz, 4H), 1.86 – 1.69 (m, 4H). ¹³C NMR (100 MHz, Chloroform*-d*) δ 144.4, 138.6, 138.2, 130.5, 130.3, 129.4, 128.3, 127.6, 127.3, 127.0, 118.0, 115.3, 57.1, 54.0, 23.5. IR (neat, cm⁻¹): 3462, 3374, 3191, 3058, 3021, 2962, 2928, 2907, 2873, 2789, 2734, 2684, 1613, 1479, 1447, 1375, 1347, 1295, 1240, 1197, 1127, 1095, 1049, 1005. HRMS (ESI): Calcd for C₁₇H₂₀N₂ 252.1626, Found: 252.1629.

3-(2-aminophenyl)prop-2-en-1-ol, 1d'

To prepare substrate 1d', a one neck round bottom flask was equipped with a magnetic stir bar, 2-iodoaniline (9.636g, 44mmol), ethyl acrylate (17.6g, 176mmol), Pd(OAc)₂ (1g, 4.45mmol), P(o-tolyl)₃ (2.7g, 8.9mmol), Triethylamine (15 mL), and CH₃CN (30 mL). The mixture was then purged with N₂ and refluxed for 24 h. The reaction was then cooled to room temperature and 20 mL of H₂O were added and the resulting phases were separated. The resulting aqueous phase was extracted with 3 x 10 mL of ethyl acetate. The resulting oranic phases were then washed with water (1 x 20 mL) followed by a saturated solution of brine (1 x 20 mL). The resulting organic phase was then dried using Na_2SO_4 and filtered. The solvent was removed under reduced pressure in vacuo and the crude product was purified using flash chromatography on silica gel (n-hexane/EtOAc 10:1 as eluent) to give the desired ester product (92%) as a dark yellow oil that slowly crystallized. 1s' was prepared by DIBAL reduction of ester substrate. To a flame dried round bottom flask was added ester-aniline (3.06g, 16mmol), magnetic stirbar and dry THF (20 mL). The resulting mixture was placed into an ice bath under an inert atmosphere of N₂. To the resulting solution was added drop wise diisobutyl aluminum hydride (37 mL, 1M solution). The resulting mixture was allowed to stir for 8 h under N_2 . Upon completion of the reaction, MeOH and H_2O were added (10 mL) and allowed to stir for another 2 h. The resulting mixture was then filtered and the resulting phases were separated. The aqueous phase was extracted with 3×10 mL ethyl acetate. The resulting organic phases were then washed with water (1 x 20 mL) followed by a saturated solution of brine (1 x 20 mL). The resulting organic phase was then dried using Na₂SO₄ and filtered. The solvent was removed under reduced pressure in vacuo and the crude product was purified using flash chromatography on silica gel (n-hexane/EtOAc 6:1 as eluent) to give the desired products 1s' (87%) as a yellow oil. H NMR (400 MHz, Chloroform-d) δ 7.24 (dd, J = 7.7, 1.1 Hz, 1H), 7.08 (td, J = 7.9, 1.4 Hz, 1H), 6.84 - 6.72 (m, 1H), 6.70 - 6.57 (m, 2H), 6.17 (dt, J = 15.7, 5.3 Hz, 1H), 4.23 (d, *J* = 5.4 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.6, 130.2, 128.5, 127.2, 125.9, 123.2, 119.1, 116.4, 77.5, 77.2, 76.9, 63.2. HRMS (EI): Calcd for (2M + Na) C₁₈H₂₂N₂O₂Na 321.1413, Found: 321.1399. Spectral data match those previously reported.¹

2-(3-methoxyprop-1-en-1-yl)aniline, 1d

Substrate 1s was obtained by treating **1d**' (0.11 g, 0.7 mmol) with NaH (0.02g, 0.8mmol) in dry THF (10 mL). This solution was allowed to stir in an ice bath for 30 min. Then to the solution was added MeI (0.115g, 0.81mmol). The solution was allowed to stir for 1 h, and was monitored by TLC. Upon completion, 5 mL of water was added. The aqueous phase was separated and washed with ethyl acetate (1 x 20 mL). The organic phases were collected and washed with water (1 x 20 mL) followed by saturated solution of brine (1 x 20 mL). The organic phases were separated and dried using Na₂SO₄ and filtered. The solvent was removed under reduced pressure in vacuo and the crude product was purified using flash chromatography on silica gel (n-hexane/EtOAc, 10:1 as eluent) to give the desired product **1d** (60%) as a crème colored oil that slowly crystallized. 'H NMR (400 MHz, Chloroform-*d*) δ 7.27 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.14 – 7.03 (m, 1H), 6.76 (ddd, *J* = 7.6, 1.1, 0.6 Hz, 1H), 6.72 – 6.54 (m, 1H), 6.17 (dt, *J* = 15.8, 6.0 Hz, 1H), 4.10 (dd, *J* = 6.0, 1.5 Hz, 1H), 3.75 (s, 1H), 3.41 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 143.9, 128.7, 128.1, 127.5, 127.5, 123.0, 118.9, 116.1, 77.5, 77.2, 76.9, 73.3, 58.0. HRMS(ESI) calculated for C₁₀H₁₃NO 163.0997, found 163.1003. Spectral data match those previously reported.¹

6. Optimization Studies

Entry	Metal	Oxidant	Solvent	Temp.	Yield% ^g
				(∘C)	
1	Co(acac) ₂ ^a	DDQ ^c	CH₃CN	80	trace
2	TiCl ₄ ^a	DDQ ^c	CH₃CN	80	20
3	Cul ^a	DDQ ^c	CH₃CN	80	60
4	ZnCl ₂ ^a	DDQ ^c	CH₃CN	80	0
5	$FeCl_2^{a}$	DDQ ^c	CH₃CN	80	66
6	$FeCl_3 \bullet 6H_2O^a$	DDQ ^c	CH₃CN	80	60
7	Fe(acac)₃ ^a	DDQ ^c	CH₃CN	80	62
8	FeCl₃ ^a	DDQ ^c	CH₃CN	80	69
9	FeCl ₃ ^a	TBHP ^c	CH₃CN	80	61
10	FeCl₃ ^a	DTBP ^c	CH₃CN	80	59
11	FeCl₃ ^a	BPO ^c	CH₃CN	80	51
12	FeCl ₃ ^a	$Na_2S_2O_8^c$	CH₃CN	80	40
13	FeCl ₃ ^b	DDQ ^c	CH₃CN	80	86
14	None	DDQ ^c	CH₃CN	80	31
15	FeCl ₃ ^b	DDQ^d	CH₃CN	80	81
16	FeCl ₃ ^b	DDQ ^e	CH₃CN	80	45
17	FeCl ₃ ^b	None	CH₃CN	80	trace
18	FeCl ₃ ^b	DDQ ^c	CIC ₆ H ₆	80	78
19	FeCl ₃ ^b	DDQ ^c	C_6H_6	reflux	75
20	FeCl ₃ ^b	DDQ ^c	DMF	80	14
21	FeCl ₃ ^b	DDQ ^c	EtOH	Reflux	trace
22	FeCl ₃ ^b	DDQ ^c	CH₃CN	rt	5
23	FeCl ₃ ^b	DDQ ^c	CH₃CN	50	61
24	FeCl ₃ ^b	DDQ ^c	CH₃CN	reflux	85

Reaction conditions: **1a** (1 eq.), specified amount of metal (a 100 mol%, b 20 mol%) and oxidant; c 2 eq., d 3 eq., e 1 eq.) in 4 mL of solvent. Reactions were allowed to stir for 4 hours with heating bath set to 80°C. g NMR yield based on **1a** and determined by internal standard (Ph₃CH).

Our first attempt using FeCl₃ (1 eq.), *t*ert-butylhydroperoxide (TBHP, 4 eq.) in acetonitrile (80°C) with **1a** yielded **5a** in 56% (see SI for full details). Encouraged by this result, we tested other oxidants in this reaction (DDQ (0.05 V vs. Fc/Fc⁺), TBHP (0.07 V), DTBP (-0.1 V))¹⁰ and found that DDQ outperformed other oxidants. Two equivalents of DDQ were needed for full conversion of **1a**. We next tested first row transition metals that have been shown to undergo similar TMM-SET oxidation reactions.⁷ For the other Lewis acids such as Ti^{IV}, Zn^{II}, Cu^I and Co^{II} salts, the observed conversions/yields were poor. However, Fe^{II} and Fe^{III} salts facilitated the desired transformation and provided high yields of the C-H amination product. FeCl₃ provided slightly higher yields over FeCl₂ (entries 8 and 5 in Table 2). Other Fe^{III} salts (Fe(acac)₃, FeCl₃•6H₂O) provide comparable yields of 62% and 60%, respectively. Aprotic solvents were favored with acetonitrile providing highest yields. At room temperature, only trace amounts of **5a** were observed. Elevated temperatures were needed to achieve full conversion (see SI for full details). We found that sub-stoichiometric quantities (20 mol%), DDQ (2 eq.) in acetonitrile at 80°C gave the target product in 86% yield.

7. Mechanistic Studies

6a

9H-fluoren-9-one was prepared using general procedure (F) below using fluorene and instead of dry acetonitrile a 1:1 mixture of H₂O:CH₃CN was used. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 (dt, *J* = 7.3, 1.0 Hz, 2H), 7.53 (dt, *J* = 7.4, 1.0 Hz, 2H), 7.49 (td, *J* = 7.4, 1.1 Hz, 2H), 7.30 (td, *J* = 7.3, 1.1 Hz, 2H). 13C NMR (150 MHz, Chloroform-*d*) δ 144.6, 134.9, 129.2, 124.5, 120.5.

8. General procedure (F) for iron-catalyzed intramolecular C-H amination:

To a flame dried 10 mL round bottom flask purged with N_2 was equipped a magnetic stirring bar, vigreux column and was charged with aniline substrate (1 equiv), DDQ (2 equiv) and FeCl₃ (20 mol%) under a gentle stream of N_2 . To the flask was then added 2-3 mL of dry acetonitrile and the mixture was allowed to stir at 80°C for 4-6 hours. The resulting mixture was directly filtered through a pad of basic alumina with EtOAc (20 mL). The resulting solution was concentrated under reduced pressure to afford the desired product without the need for column chromatography.

9. Spectroscopic data for products:

2-Phenylquinoline, 5a

Following the general procedure (F) using substrate **1a** (30 mg, 0.143 mmol) afforded desired product **5a** (24 mg, 0.119 mmol, 83%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.25 – 8.15 (m, 4H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.59 – 7.51 (m, 3H), 7.48 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 157.5, 148.4, 139.8, 136.9, 129.9, 129.8, 129.5, 129.0, 127.7, 127.6, 127.3, 126.4, 119.2. Spectral data match those previously reported.¹

2-(naphthalen-1-yl)quinoline, 5f

Following the general procedure (F) using substrate **1b** (50 mg, 0.193 mmol) afforded desired product **5b** (39 mg, 0.154 mmol, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.47 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 6.9 Hz, 1H), 7.60 (t, J = 7.6 Hz, 2H), 7.72 (t, J = 6.8 Hz, 2H), 7.78 (t, J = 7.1 Hz, 1H), 7.91-7.96 (m, 3H), 8.14 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ : 123.2, 125.3, 125.9, 126.5, 127.0, 127.5, 127.7, 128.4, 129.1, 129.7, 131.3. Spectral data match those previously reported.¹¹⁶

2-(4-methoxyphenyl)-7-(trifluoromethyl)quinoline, 5g

Following the general procedure (F) using substrate **1c** (35 mg, 0.114 mmol) afforded desired product **5c** (29 mg, 0.095 mmol, 83%) as light yellow crystals. Mp: 143-146°C. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.57 (s, 1H), 8.29 (d, *J* = 8.6 Hz, 1H), 8.21 (d, *J* = 8.3 Hz, 2H), 7.98 (dd, *J* = 21.4, 8.5 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 8.7 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 129.3, 129.2, 129.2, 128.6, 128.2, 124.8, 123.0, 121.7, 120.4, 114.4, 99.9, 55.4. IR (neat, cm⁻¹): 3900, 3847, 3835, 3826, 3800, 3748, 3735, 3712, 3693, 3669, 3644, 3636, 3570, 1867, 1767, 1720, 1706, 1677, 1645, 1600, 1550, 1547, 1515, 1486, 1472, 1452, 1427, 1347, 1243, 1164, 1028. HRMS (ESI): Calcd for C₁₇H₁₂F₃NO 303.0871, Found: 303.0868.

6-methyl-2-phenylquinoline, 5h

Following the general procedure (F) using substrate 1d (47mg, 0.21 mmol) afforded desired product 5d (21 mg, 0.095mmol, 45%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.14 (dd, *J* = 7.9, 4.1 Hz, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.84

(d, J = 8.5 Hz, 1H), 7.59 (s, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 7.0 Hz, 1H), 7.42 (d, J = 3.7 Hz, 1H), 2.55 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 136.3, 132.1, 129.6, 129.3, 129.2, 129.0, 128.0, 128.0, 127.6, 127.4, 126.5, 125.7, 119.2, 21.8. Spectral data match those previously reported.¹

2-(4-(trifluoromethyl)phenyl)quinoline, 5i

Following the general procedure (F) using substrate **1e** (57mg, 0.21mmol) afforded desired product **5e** (44 mg, 0.16 mmol, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, J= 8.3 Hz, 2H), 8.21 (d, J= 8.6 Hz, 1H), 8.17 (d, J= 8.3 Hz, 1H), 7.85-7.69 (m, 5H), 7.51 (t, J= 7.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*): δ = 118.6, 124.2, 125.6, 126.8, 127.4, 127.5, 127.7, 129.8, 129.9, 131.0 (q, J = 30.3 Hz), 137.0, 142.8, 148.2, 155.5. Spectral data match those previously reported.¹²

6-chloro-2-phenylquinoline, 5j

Following the general procedure (F) using substrate **1f** (45mg, 0.18 mmol) afforded desired product **5f** (35 mg, 0.14 mmol, 78%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 7.9 Hz, 3H), 7.95 (d, *J* = 8.6 Hz, 1H), 7.86 (s, 1H), 7.71 (d, *J* = 9.1 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 3H), 7.53 (d, *J* = 7.3 Hz, 1H). Spectral data match those previously reported.

2-(4-Methylphenyl)quinoline, 5k

Following the general procedure (F) using substrate **1g** (53 mg, 0.24 mmol) afforded desired product **5g** (43 mg, 0.19 mmol, 82%). ¹H NMR (400 MHz, Chloroform-*d*): δ 2.36 (s, 3H), 7.25,c (d, J = 8.3 Hz, 2H), 7.35-7.45, (m, 1H), 7.60-7.75, (m, 3H), 8.00-8.05 (m, 3H), 8.15 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*d*): δ 21.1, 118.5, 125.8, 126.8, 127.2, 127.3, 128.0, 129.3, 129.4, 136.6, 139.1, 148.0, 156.9. Spectral data match those previously reported.¹

6-fluoro-2-phenylquinoline, 51

Following the general procedure (F) using substrate **1h** (63 mg, 0.28 mmol) afforded desired product **5h** (49 mg, 0.22 mmol, 79%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.21 – 8.11 (m, 4H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.50 (dddd, *J* = 21.6, 19.9, 9.1, 5.1 Hz, 5H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 161.3, 156.9, 145.5, 139.5, 136.3, 132.4, 132.3, 129.6, 129.1, 127.9, 127.6, 120.1, 119.9, 110.7, 110.6. Spectral data match those previously reported. ¹

6-methoxy-2-phenylquinoline, 5m

MeO

Following the general procedure (F) using substrate **ii** (51 mg, 0.21 mmol) afforded desired product **5i** (35 mg, 0.15 mmol, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 – 8.12 (m, 4H), 7.92 (d, *J* = 8.7 Hz, 1H), 7.51 (dddd, *J* = 21.4, 20.0, 9.2, 5.0 Hz, 5H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 161.3, 156.9, 145.5, 139.5, 136.3, 132.4, 132.3, 129.6, 129.1, 127.9, 127.6, 120.1, 119.9, 110.7, 110.6. Spectral data match those previously reported.¹³

4-methyl-2-phenylquinoline, 5n

Following the general procedure (F) using substrate **1j** (72 mg, 0.32 mmol) afforded desired product **5j** (59 mg, 0.27 mmol, 84%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.18 (dd, *J* = 8.6, 1.3 Hz, 1H), 8.15 (dt, *J* = 6.6, 1.4 Hz, 1H), 8.01 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.57 – 7.55 (m, 1H), 7.55 – 7.51 (m, 1H), 7.48 – 7.44 (m, 1H), 2.78 (d, *J* = 1.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 157.3, 148.3, 145.0, 140.0, 130.5, 129.5, 129.3, 128.9, 127.7, 127.4, 126.2, 123.8, 120.0, 19.2. Spectral data match those previously reported ¹⁴

2,4-diphenylquinoline, 50

Following the general procedure (F) using substrate **1k** (100 mg, 0.31 mmol) afforded desired product **5k** (85 mg, 0.26 mmol, 86%). ¹H NMR (600 MHz, Chloroform-d) δ 8.18-8.21 (m, 3H), 7.86 (d, J = 2.0 Hz, 1 H), 7.85 (s, 7.85), 7.67 (dd, 1J = 9.0 Hz, 2J = 2.2 Hz, 1H), 7.48-7.60 (m, 7 H).13C NMR (150 MHz, Chloroform-d) δ 157.2, 148.7, 147.33, 139.3, 137.9, 132.4, 131.8, 130.7, 129.8, 129.6, 129.1, 129.0, 128.9, 127.7, 126.7, 124.7, 120.2. Spectral data match those previously reported.

6-(p-tolyl)phenanthridine, **5p**

Following the general procedure (F) using substrate **1** (100 mg, 0.37 mmol) afforded desired product **5** (82 mg, 0.3 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (1H, d, J = 8.0 Hz), 8.61 (1H, d, J = 8.4 Hz), 8.26 (1H, d, J = 8.4 Hz), 8.14 (1H, d, J = 8.4 Hz), 7.87 (1H, dd, J = 8.0, 8.4 Hz), 7.76 (1H, dd, J = 8.4, 8.4 Hz), 7.59-7.70 (4H, m), 7.38 (2H, d, J = 7.9 Hz), 2.49 (3H, s). ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 143.7, 138.6, 136.8, 133.4, 130.5, 130.2, 129.7, 129.1, 129.0, 128.8, 127.1, 126.8, 123.7, 122.2, 121.9, 21.4. Spectral data match those previously reported.

6-phenylphenanthridine-2-carbonitrile, 5q

Following the general procedure (F) using substrate **1m** (50 mg, 0.18 mmol) afforded desired product **5m** (43 mg, 0.15 mmol, 88%). 'H NMR (400 MHz, Chloroform-*d*) δ 8.96 (d, *J* = 1.8 Hz, 1H), 8.74 – 8.63 (m, 1H), 8.30 (dd, *J* = 8.4, 0.6 Hz, 1H), 8.18 (ddd, *J* = 8.3, 1.3, 0.7 Hz, 1H), 8.01 – 7.90 (m, 2H), 7.82 – 7.69 (m, 3H), 7.65 – 7.53 (m, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 164.3, 145.4, 138.9, 132.4, 131.6, 131.4, 130.4, 129.6, 129.3, 128.5, 127.7, 125.5, 123.8, 122.1, 119.1, 110.1. Spectral data match those previously reported.

methyl 2-chloro-6-phenylphenanthridine-4-carboxylate, 5r

Following the general procedure (F) using substrate **1n** (30mg, 0.08 mmol) afforded desired product **5n** (25 mg, 0.07 mmol, 84%) as an off white solid. mp: 180-184°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (d, *J* = 2.4 Hz, 1H), 8.62 (d, *J* = 8.3 Hz, 1H), 8.27 (d, *J* = 8.3 Hz, 1H), 7.97 – 7.87 (m, 2H), 7.87 – 7.80 (m, 2H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 6.3 Hz, 3H), 4.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 161.3, 139.8, 139.2, 134.5, 132.2, 131.9, 130.9, 130.4, 129.1, 129.0, 128.9, 128.2, 128.2, 125.1, 125.0, 124.1, 122.4, 52.6. IR (neat, cm⁻¹): IR (neat): 3910, 3840, 3830, 3805, 3671, 3642, 3559, 2946, 1870, 1720, 1676, 1650, 1611, 1557, 1540, 1523, 1510, 1490, 1475, 1457, 1434, 1401, 1365, 1280, 1103, 1021. HRMS (ESI): Calcd for C₂₁H₁₄ClNO₂ 347.0713, Found: 347.0710.

Phenanthridine, 5e

Following the general procedure (F) using substrate **10** (90 mg, 0.36 mmol) afforded desired product **50** (52 mg, 0.29 mmol, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.30 (d, *J* = 0.8 Hz, 1H), 8.62 (ddd, *J* = 13.4, 8.2, 1.2 Hz, 2H), 8.24 – 8.17 (m, 1H), 8.07 (ddd, *J* = 7.9, 1.4, 0.7 Hz, 1H), 7.88 (ddd, *J* = 8.4, 7.1, 1.4 Hz, 1H), 7.80 – 7.67 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) 153.7, 144.6, 132.7, 131.2, 130.3, 129.0, 128.9, 127.7, 127.3, 126.6, 124.3, 122.4, 122.1. Spectral data match those previously reported.¹⁵

10. Differential Pulse Voltammetry.

Differential Pulse Voltammetry. Data were collected using a CH Instruments CHI630E electrochemical analyzer using a three-electrode configuration (glassy carbon working, Pt counter, Ag reference). The samples were measured by scanning in the positive direction at a scan rate of 0.1 V/s. Oxidation potentials were calculated using Fc/Fc+ as an internal standard.

DPV spectra for aniline, **1p**, **1a**, BPA (4-aminobiphenyl), and OT (*o*-toluidine) in 0.1 M TBAClO₄ in MeCN at 0.1 V/s scan rate measured vs. an internal Fc/Fc+ standard.

11. Gaussian calculations for geometry optimization and frequency calculations neutral and radical cation species were performed at the UMo6-2x/6-311+g(d,p) level of theory.¹⁶

Computational Detail:

Geometries

 NH_2

С	-0.17514 1.55877 -2.13947
С	-0.15491 1.58626 -0.73849
С	-0.11358 2.81301 -0.06224
С	-0.09248 4.01227 -0.78699
С	-0.11271 3.98478 -2.18797
С	-0.15404 2.75803 -2.86421
Н	-0.20669 0.62212 -2.6558
Н	-0.06093 4.94892 -0.27066
Н	-0.0966 4.90044 -2.74133
Н	-0.16949 2.73704 -3.9339
С	-0.17809 0.26839 0.05794
С	-0.21942 -0.95836 -0.61831
С	-0.15786 0.29588 1.45892
С	-0.24051 -2.15762 0.10644
С	-0.17895 -0.90338 2.18366
Н	-0.1263 1.23253 1.97524
С	-0.22028 -2.13013 1.50742
Н	-0.27207 -3.09427 -0.40989
Н	-0.1635 -0.88239 3.25334
Н	-0.23638 -3.04579 2.06078
С	-0.24166 -0.98856 -2.15785
Н	-0.92307 -0.19743 -2.39171
Н	0.75431 -0.68657 -2.40634
С	-0.55345 -2.025 -3.25337
C	-0.42345 -3.39346 -2.98071
C	-0.96719 -1.59971 -4.52297
C	-0.70718 -4.33662 -3.97764
Н	-0.10756 -3.71818 -2.01135
С	-1.25092 -2.54287 -5.5199
Н	-1.06645 -0.55486 -4.73115
С	-1.12092 -3.91132 -5.24723
Н	-0.60792 -5.38147 -3.76945
Н	-1.56682 -2.21814 -6.48926
Н	-1.33755 -4.63145 -6.00841
Ν	-0.09236 2.84184 1.40732
Н	0.40465 3.65219 1.71768

HF=-788.8886141 Sum of electronic and zero-point Energies= -788.579673 Sum of electronic and thermal Energies= -788.563284 Sum of electronic and thermal Enthalpies= -788.562340 Sum of electronic and thermal Free Energies= -788.626277 Mulliken atomic charges: 1 C -0.005138 2 C 1.065462 3 C -0.636945 4 C -0.816674 5 C -0.328885 6 C -0.685807 7 H 0.223997 8 H 0.149911 9 H 0.155634 10 H 0.150648 11 C 1.337954 12 C 0.699666 13 C -0.232655 14 C -0.197486 15 C -0.516194 16 H 0.249251 17 C -0.586039 18 H 0.160427 19 H 0.148817 20 H 0.149896 21 C -1.214035 22 H 0.196246 23 H 0.276641 24 C 1.041891 25 C -0.461987 26 C -0.123115 27 C -0.234168 28 H 0.162673 29 C -0.581562 30 H 0.167449 31 C -0.212698 32 H 0.156164 33 H 0.158620 34 H 0.157610 35 N -0.535785 36 H 0.265722 37 H 0.294493

-1.02995 2.87289 1.75368

Η

Sum of Mulliken atomic charges = 0.00000

С	-0.36418 1.52251 -1.74172
С	-0.40848 1.32913 -0.35444
С	-0.48796 2.43337 0.50478
С	-0.52315 3.731 -0.02329
С	-0.47885 3.92438 -1.41057
С	-0.39937 2.82014 -2.26979
Н	-0.30349 0.6794 -2.39775
Н	-0.58383 4.57411 0.63274
Н	-0.50571 4.91514 -1.81377
Н	-0.36554 2.96779 -3.32902
С	-0.36981 -0.09683 0.22586
С	-0.29033 -1.20107 -0.63336
С	-0.41411 -0.29021 1.61315
С	-0.25514 -2.49869 -0.10529
С	-0.37892 -1.58783 2.14121
Н	-0.47479 0.5529 2.26918
С	-0.29943 -2.69208 1.282
Н	-0.19446 -3.34181 -0.76132
Н	-0.41274 -1.73549 3.20044
Н	-0.27256 -3.68284 1.68519
С	-0.24166 -0.98856 -2.15785
Н	-0.86754 -0.15053 -2.3834
Н	0.77072 -0.75725 -2.41567
С	-0.69074 -2.15319 -3.05983
С	-0.62999 -3.47049 -2.58554
С	-1.16014 -1.8957 -4.35493
С	-1.03865 -4.5303 -3.40635
Н	-0.27159 -3.66709 -1.5967
С	-1.5688 -2.95551 -5.17574
Н	-1.20653 -0.88991 -4.71706
С	-1.50806 -4.27281 -4.70144
Н	-0.99227 -5.53609 -3.04421
Н	-1.92721 -2.75891 -6.16457
Н	-1.82008 -5.082 -5.32815
Ν	-0.53443 2.23052 1.95998
Н	-0.11289 3.01248 2.41916
Н	-1.48625 2.1445 2.25432

HF= -788.6161082

Sum of electronic and zero-point Energies=

-788.307303

Sum of electronic and thermal Energies=-788.291004Sum of electronic and thermal Enthalpies=-788.290060Sum of electronic and thermal Free Energies=-788.353655Mulliken atomic charges:-788.353655

- 1 C 0.171017
- 2 C 0.878480
- 3 C -0.471350
- 4 C -0.450843
- 5 C -0.150101
- 6 C -0.427671
- 7 H 0.192958
- 8 H 0.190052
- 9 H 0.208358
- 10 H 0.212749 11 C 0.543742
- 12 C 0.292013
- 13 C -0.494138
- 14 C -0.260633
- 15 C -0.211673
- 16 H 0.192415
- 17 C -0.375077
- 18 H 0.216296
- 19 H 0.185522
- 20 H 0.189724
- 21 C -0.575839
- 22 H 0.189369
- 23 H 0.191629
- 24 C 0.648468
- 25 C 0.075577
- 26 C -0.091128
- 27 C -0.511350
- 28 H 0.147829 29 C -0.650907
- 30 H 0.148199
- 31 C -0.070402
- 31 C -0.07040
- 32 H 0.173084
- 33 H 0.170044
- 34 H 0.174540
- 35 N -0.322197
- 36 H 0.338919
- 37 H 0.332325

Sum of Mulliken atomic charges = 1.00000

12. Copies of ¹H and ¹³C NMR spectra

3.51

S31

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

.NH2

80 70 60 50 40 30 20 10 0 -10

.

190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

S56

8.38 8.26 8.28 8.28 8.28 7.31 7.31 7.35 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.55 7.55 7.55 7.55

8.8.96 8.8.66 8.8.67 8.8.31 8.8.31 8.8.29 8.8.20 8.8.20 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 8.8.22 9.8.27 7.7.9 8.8.27 7.7.9 8.8.27 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.7 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.9 8.8.17 7.7.7 7.7.7 7.7.9 8.8.17 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 9.8 7.7.7 7.7.7 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.17 7.7.7 8.8.18 7.7.7 7.7.7 8.8.18 8.8.18 8.8.18 8.8.17 7.7.7 7.7.7 8.8.18 7.7.7 7.7.7 8.8.18 7.7.7.7 7.7.7.7 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7

S74

13. References

- ¹ Evoniuk, C. J.; Ly, M.; Alabugin, I. V. Chem. Commun. 2015, 51, 12831.
- ² Mohy El Dine, T.; Erb, W.; Berhault, Y.; Rouden, J.; Blanchet, J. J. Org. Chem. 2015, 80, 4532.
- ³ Anselmi, E.; Abarbri, M.; Duchêne, A.; Langle-Lamandé, S.; Thibonnet, J. Synthesis 2012, 44, 2023.
- ⁴ Wilson, S. R.; Zucker, P. A.; Huang, R. R. C.; Spector, A. J. Am. Chem. Soc. 1989, 111, 5936.
- ⁵ Chen, Y.; Chen, Z.; Zhang, N.; Chen, J.; Zhang, X.; Yan, M. Eur. J. Org. Chem. 2016, 2016, 599.
- ⁶ Harmata, M.; Kahraman, M. Synthesis **1995**, 1995, 713.
- ⁷ Ortgies, S.; Breder, A. Org. Lett. 2015, 17, 2748.
- ⁸ Intrieri, D.; Mariani, M.; Caselli, A.; Ragaini, F.; Gallo, E. Chem. Eur. J. 2012, 18, 10487.

⁹ Tanabiki, M.; Tsuchiya, K.; Kumanomido, Y.; Matsubara, K.; Motoyama, Y.; Nagashima, H.

¹⁰ (a) Lizier, T. M.; Boldrin Zanoni, M. V. *Molecules*, 2012, 17, 7961. (b) Donkers, R. L.; Maran, F.; Wayner, D. D. M.; Workentin, M. S. *J. Am. Chem. Soc.*, 1999, 121, 7239. (c) Rosokha, S. V.; Kochi, J. K. *J. Am. Chem. Soc.*, 2007, 129, 3683. (d) Oyama, M.; Takei, A.; Hoshino, T.; Okazaki, S. *J. Chem. Soc.*, *Perkin Trans.* 2000, 7, 1631. (e) Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L. *Chemosphere*, 2004, 55, 1213. (f) Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T., *Angew. Chem. Int. Ed.*, 2013, 52, 9900.

¹¹ Fleckenstein, C. A.; Plenio, H., Chem. Eur. J. 2008, 14, 4267

¹² Iosub, A. V.; Stahl, S. S. Org. Lett. 2015, 17, 4404.

¹³ Marquise, N.; Bretel, G.; Lassagne, F.; Chevallier, F.; Roisnel, T.; Dorcet, V.; Halauko, Y. S.; Ivashkevich, O.

A.; Matulis, V. E.; Gros, P. C.; Mongin, F. RSC Advances 2014, 4, 19602.

14 Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. *Synlett* **2010**, 2010, 3104.

¹⁵ Tang, C.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2206.

¹⁶ Gaussian 09, Revision C.oi, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Organometallics 2004, 23, 3976.